Bayesian Estimation of Changepoints in a Partially Observed Latent Process Poisson Model

Chigozie Utazi (Joint work with Dr. Peter Neal)

School of Mathematics The University of Manchester

March, 2012

Chigozie Utazi(Joint work with Dr. Peter Neal) Bayesian Estimation of Changepoints in a Partially Observed L.

向下 イヨト イヨト

Outline

3 Latent Process Poisson Model with a Changepoint

回下 ・ヨト ・ヨト

Э

Background

Two classes of models exist for time series data involving Poisson counts:

• Observation-driven models: Lagged values of observed counts included in the mean function.

Example: The INAR(p) model, $X_t = \sum_{i=1}^{p} \alpha_i \circ X_{t-i} + \epsilon_t$, where " \circ " denotes an operator, e.g. $\alpha \circ X \sim \text{Binomial}(X, \alpha)$ and $\epsilon_t \sim iid \operatorname{Po}(\lambda)$.

• Parameter-driven models: A latent process governs the mean function.

Example: Zeger's (1988) model, $X_t|Y_t \sim \mathsf{Po}(\exp(\mathbf{z}'_t \boldsymbol{\beta} + Y_t))$, where $E(\exp(Y_t)) = 1$.

Some features of parameter-driven models

- A stochastic model is postulated for the latent process (An extension of the Poisson regression model).
- The latent process accounts for overdispersion and autocorrelation in the model.
- Easy to interpret and derive model properties, but difficult to estimate.
- The model provides a framework for exchange of dynamics between the count process and the underlying latent process.

同トイヨトイヨト

Motivation

$$X_t|Y_t, \mathbf{z}_t \sim \mathsf{Po}(\exp(f(\mathbf{z}_t) + \omega Y_t)),$$

where $Y_t = \alpha Y_{t-1} + e_t$ and $e_t \sim N(0, \sigma^2 = 1/\tau)$.

Process of interest: $\{Y_t, t = 1, \ldots, n\}$

- If y_1, y_2, \ldots, y_n are fully observed, the x_t 's are uninformative.
- If y_1, y_2, \ldots, y_n are partially observed, the x_t 's provide additional information (provided $\omega \neq 0$).

Motivating Example:

Temporal analysis of air pollution and health:

- Estimating the association between some health outcomes and air pollution;
- Estimating the parameters of a partially observed pollution variable;
- Detection of changes in one or both variables.

(4 回) (4 回) (4 回)

Chigozie Utazi(Joint work with Dr. Peter Neal) Bayesian Estimation of Changepoints in a Partially Observed Li

Our Contribution

- Model Formulation
- Parameter Estimation Procedure
- Changepoint Estimation

・ロン ・回と ・ヨン・ モン・

æ

Outline Introduction The Basic Latent Process Poisson Model Latent Process Poisson Model with a Changepoint Simulation

The Basic Latent Process Poisson Model

Chigozie Utazi(Joint work with Dr. Peter Neal) Bayesian Estimation of Changepoints in a Partially Observed L.

- 4 回 2 - 4 □ 2 - 4 □

æ

Model Specification

Observed Counts: X_1, X_2, \ldots, X_n

Latent Variable: Y_1, Y_2, \ldots, Y_n

Covariates: $z_1, z_2, ..., z_n$, $z_i = (1, z_{i,1}, z_{i,2}, ..., z_{i,p-1})$

The Model:

$$X_t | Y_t, \mathbf{z}_t \sim \mathsf{Po}(\exp(\mathbf{z}_t' \boldsymbol{\beta} + \omega Y_t)), \tag{1}$$

イロト 不得 トイラト イラト ニラー

where $Y_t = \alpha Y_{t-1} + e_t$, $e_t \sim N(0, \sigma^2 = 1/\tau)$ and $\beta = (\beta_0, \beta_1, \dots, \beta_{p-1})'$. To ensure stationarity in the latent process, it is assumed that $|\alpha| < 1$.

• Note that $\omega = 0 \Rightarrow$ a Poisson regression model.

Bayesian Estimation of Parameters

Let $\theta = (\omega, \beta, \alpha, \tau)$ denote the vector of parameters of the model and $\pi(\theta)$ denote its joint prior distribution. The **likelihood** function (conditional on Y_1)is given by

$$L(\boldsymbol{\theta}|\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \prod_{t=1}^{n} \frac{\exp(\boldsymbol{z}_{t}^{\prime} \boldsymbol{\beta} x_{t} + \omega y_{t} x_{t} - e^{\boldsymbol{z}_{t}^{\prime} \boldsymbol{\beta} + \omega y_{t}})}{x_{t}!}$$
$$\times \prod_{t=2}^{n} \frac{\tau^{1/2}}{\sqrt{2\pi}} \exp(-\frac{\tau}{2} (y_{t} - \alpha y_{t-1})^{2}). \tag{2}$$

Priors: $\beta_i \sim N(u_1, 1/v_1)$, $i = 0, \dots, p-1$, $\alpha \sim U(-1, 1)$, $\omega \sim N(u_2, 1/v_2)$ and $\tau \sim \text{Gamma}(a, b)$. The parameters are assumed to be apriori independent.

Given our choice of priors, the posterior distribution of $\boldsymbol{\theta}$ can now be written as:

$$\pi(\boldsymbol{\theta}|data) \propto \prod_{t=1}^{n} \exp(\mathbf{z}_{t}^{\prime} \boldsymbol{\beta} x_{t} + \omega y_{t} x_{t} - e^{\mathbf{z}_{t}^{\prime} \boldsymbol{\beta} + \omega y_{t}})$$

$$\times \prod_{t=2}^{n} \tau^{1/2} \exp(-\frac{\tau}{2} (y_{t} - \alpha y_{t-1})^{2})$$

$$\times e^{-\frac{v_{1}}{2} \sum_{i=0}^{p-1} (\beta_{i} - u_{1})^{2}} \times e^{-\frac{v_{2}}{2} (\omega - u_{2})^{2}}$$

$$\times \tau^{a-1} e^{-b\tau}.$$
(3)

・ロン ・回と ・ヨン・

æ

Conditional posterior distributions of the parameters:

$$\pi(\beta_{i}|\boldsymbol{\theta}_{-\beta_{i}},\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \propto \exp\left(\beta_{i}\sum_{t=1}^{n} z_{ti}x_{t} - \sum_{t=1}^{n} e^{\mathbf{z}_{t}'\boldsymbol{\beta}+\omega y_{t}} - \frac{v_{1}}{2}(\beta_{i}^{2}-2u_{1}\beta_{i})\right);$$

$$(4)$$

$$\pi(\omega|\boldsymbol{\theta}_{-\omega},\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \propto \exp\left(\sum_{t=1}^{n} \omega y_{t}x_{t} - \sum_{t=1}^{n} e^{\mathbf{z}_{t}'\boldsymbol{\beta}+\omega y_{t}} - \frac{v_{2}}{2}(\omega^{2}-2u_{2}\omega)\right)$$

$$(5)$$

$$\pi(\alpha|\boldsymbol{\theta}_{-\alpha},\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \sim N\left(\frac{\tau\sum_{t=2}^{n} y_{t}y_{t-1}}{\tau\sum_{t=2}^{n} y_{t-1}^{2}}, \frac{1}{\tau\sum_{t=2}^{n} y_{t-1}^{2}}\right), I(|\alpha|<1);$$

$$(6)$$

$$\pi(\tau|\boldsymbol{\theta}_{-\tau},\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \sim \text{Gamma}\left(a + \frac{(n-1)}{2}, \frac{\sum_{t=2}^{n} (y_{t}-\alpha y_{t-1})^{2}}{2} + b\right).$$

$$(7)$$

イロト イヨト イヨト イヨト Bayesian Estimation of Changepoints in a Partially Observed L

æ

Chigozie Utazi(Joint work with Dr. Peter Neal)

Estimation of missing values in the latent process

Noting that by Markov property, $P(y_t|y_{-t}) \propto P(y_t|y_{t-1})P(y_{t+1}|y_t)$, the conditional posterior distribution of y_t for $t = 2, \ldots, n-1$ can easily be derived from eqn (3) as

$$\pi(y_t | \boldsymbol{y}_{-t}, \boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\theta}) \propto \exp(-\frac{\tau}{2}(y_t - \alpha y_{t-1})^2) \times \exp(-\frac{\tau}{2}(y_{t+1} - \alpha y_t)^2) \times \exp(\omega y_t x_t - e^{\boldsymbol{z}_t' \boldsymbol{\beta} + \omega y_t}).$$
(8)

We use the independent sampler to update the missing values.

Specifically, we use the Gaussian proposal density

$$q(y_t|\boldsymbol{y}_{-t}, \theta) \sim N\left(\frac{\alpha(y_{t-1}+y_{t+1})}{1+\alpha^2}, \frac{1}{\tau(1+\alpha^2)}\right)$$
(9)

with acceptance probability

$$\alpha(y_t \to y_t') = \min\left(1, \frac{\exp(\omega y_t' x_t - e^{\omega y_t' + \mathbf{z}_t' \boldsymbol{\beta}})}{\exp(\omega y_t x_t - e^{\omega y_t + \mathbf{z}_t' \boldsymbol{\beta}})}\right), \quad (10)$$

where y'_t denotes the proposed value of y_t . The proposal density given in equation 9 was determined to yield the best estimates based on pilot runs. The **proposal density** for Y_n is $N(\alpha y_{n-1}, 1/\tau)$.

MCMC Algorithm for the Basic Model

- Initialize the parameters and the missing values in $oldsymbol{y},$
- Update β ,
- Update ω ,
- Update α ,
- Update τ ,
- Update missing y values,
- Repeat steps 2-6 until a desired number of iterations is reached.

Simulation experiments using the Basic Model

The simulation studies were designed to examine how the model performs and compares with the AR(1) model under the following conditions:

- Different patterns of missingness in the latent process,
- Varying values of ω ,
- High, moderate and low autocorrelation in the latent process.

Does the inclusion of X_t in the model lead to any improvement in parameter estimation in Y_t ?

▲帰▶ ★ 国▶ ★ 国▶

SQ C

Simulation study using the Basic Model

The hyperparameters were chosen as follows:

$$\beta_i \sim N(0, 1)$$

$$\omega \sim N(0.2, 1/5)$$

$$\alpha \sim U(-1, 1)$$

$$\tau \sim \text{Gamma}(1, 1)$$

Initial guesses for the missing values in y were drawn from N(0,1).

・同下 ・ヨト ・ヨト

Table: Comparing the Basic Model with an AR(1) Model (Regularly Missing Data)

		AF	$(1)^1$	LPPM ²		
Amount of	Parameter	Posterior Mean	95%	Posterior Mean	95%	
Missingness	(True value)	(Std. Dev.)	Credible Interval	(Std. Dev.)	Credible Interva	
90%	$\beta_0 = 0.5$		-	0.5344	(0.3178,0.7510)	
				(0.1105)		
	$\omega = 0.5$	-	-	0.5303	(0.4379,0.6226)	
				(0.0471)		
	$\alpha = 0.5$	-0.0013	(-0.6587,0.6561)	0.4158	(0.0700,0.7617)	
		(0.3354)	-	(0.1765)		
	$\tau = 4.0$	3.1093	(1.7798,4.4388)	3.6290	(1.8256,5.4324)	
		(0.6783)		(0.9201)		
75%	$\beta_0 = 0.5$	-	-	0.5288	(0.3669,0.6907)	
				(0.0826)		
	$\omega = 0.5$	-	-	0.5372	(0.4520,0.6225)	
				(0.0435)		
	$\alpha = 0.5$	-0.0011	(-0.6502,0.6480)	0.5177	(0.3354,0.7000)	
		(0.3312)		(0.0930)		
	$\tau = 4.0$	2.5635	(1.8581, 3.2689)	3.4915	(2.3432,4.6398)	
		(0.3599)		(0.5859)		

¹AR(1) - First Order Autoregressive Model

² LPPM - Basic Latent Process Poisson Model

Sample size=400, No of iterations=100,000, Burn-in=10,000

Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed L

→ ∃ →

Table: Comparing the Basic Model with an AR(1) Model (Data Missing at Random)

		AF	$(1)^1$	LPPM ²		
Amount of	Parameter	Posterior Mean	95%	Posterior Mean	95%	
Missingness	(True value)	(Std. Dev.)	Credible Interval	(Std. Dev.)	Credible Interva	
90%	$\beta_0 = 0.5$	-	-	0.5125	(0.2742,0.7517)	
				(0.1215)		
	$\omega = 0.5$	-	-	0.4829	(0.3899,0.5759)	
				(0.0475)		
	$\alpha = 0.5$	0.1582	(-0.3271,0.6435)	0.3004	(0.0124,0.5885)	
		(0.2476)		(0.1470)		
	$\tau = 4.0$	3.0239	(1.7798, 4.4388)	3.1808	(1.8608,4.5008)	
		(0.6970)		(0.6735)		
75%	$\beta_0 = 0.5$	-	-	0.5129	(0.3215,0.7043)	
				(0.0977)		
	$\omega = 0.5$	-	-	0.4553	(0.3626,0.5480)	
				(0.0473)		
	$\alpha = 0.5$	0.2535	(-0.0293,0.5363)	0.5058	(0.3129,0.6988)	
		(0.1443)		(0.0985)	. ,	
	$\tau = 4.0$	3.7969	(2.7546,4.8393)	4.1633	(2.8728,5.4538)	
		(0.5318)		(0.6584)		

¹AR(1) - First Order Autoregressive Model

² LPPM - Basic Latent Process Poisson Model

Sample size=400, No of iterations=100,000, Burn-in=10,000

Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed L

→ ∃ →

Table: Comparing the Basic Model with an AR(1) Model (Varying ω , 90% Data Missing ¹)

	$\omega = 0.2$		$\omega = 0.5$		$\omega = 0.8$	
	AR(1) ²	LPPM ²	AR(1)	LPPM	AR(1)	LPPM
Parameter	Post. Mean	Post. Mean	Post. Mean	Post. Mean	Post. Mean	Post. Mean
(True value)	(Std. Dev.)	(Std. Dev.)	(Std. Dev.)	(Std. Dev.)	(Std. Dev.)	(Std. Dev.)
ω	-	0.0365	-	0.5147	-	0.8057
		(0.0947)		(0.1213)		(0.1218)
$\beta_0 = 0.5$	-	0.4811	-	0.5288	-	0.5997
		(0.0402)		(0.0476)		(0.0476)
$\alpha = 0.5$	0.0079	-0.0280	-0.0025	0.4045	0.0066	0.4163
	(0.3695)	(0.3412)	(0.3166)	(0.1907)	(0.3159)	(0.1334)
$\tau = 4.0$	2.6813	3.0578	3.1134	3.6055	4.2152	4.2959
	(0.5822)	(0.7938)	(0.6725)	(0.9323)	(0.9292)	(0.9493)

²AR(1) - First Order Autoregressive Model LPPM - Basic Latent Process Poisson Model

¹Data missing regularly, Sample size=400, No of iterations=100,000, Burn=in=10,000 < = > < = >

Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed L

Table: A Comparison between the Basic Model and the AR(1) Model (Varying ω , 75% Data Missing ¹)

	$\omega = 0.2$		$\omega = 0.5$		$\omega = 0.8$	
	AR(1) ²	LPPM ²	AR(1)	LPPM	AR(1)	LPPM
Parameter	Post. Mean	Post. Mean	Post. Mean	Post. Mean	Post. Mean	Post. Mean
(True value)	(Std. Dev.)	(Std. Dev.)	(Std. Dev.)	(Std. Dev.)	(Std. Dev.)	(Std. Dev.)
ω	-	0.0409	-	0.5290	-	0.7943
		(0.0810)		(0.0821)		(0.0980)
$\beta_0 = 0.5$	-	0.4823	-	0.5376	-	0.5856
		(0.0395)		(0.0433)		(0.0466)
$\alpha = 0.5$	-0.0036	-0.0296	0.0103	0.5196	-0.0116	0.4507
	(0.2573)	(0.2655)	(0.2778)	(0.0940)	(0.4120)	(0.0974)
$\tau = 4.0$	3.1294	3.4249	2.5687	3.5088	4.1138	4.5210
	(0.4391)	(0.6062)	(0.3510)	(0.5955)	(0.5764)	(0.7304)

²AR(1) - First Order Autoregressive Model LPPM - Basic Latent Process Poisson Model

¹Data missing regularly, Sample size=400, No of iterations=100,000, Burn=in=10,000 ← ≡ → ← ≡ →

Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed L

Some Comments:

-Varying the sample size has no effect on parameter estimation.

- It was also observed from simulation experiments (though not presented) using $\alpha = 0.2, 0.5, 0.8$ that estimation of parameters in the AR(1) model did not improve even with very high correlation in Y.

- In all, even though the AR(1) model is seen to be competing with our Basic LPPM in the estimation of τ , the latter yields estimates that are closer to the true parameter values.

Outline Introduction The Basic Latent Process Poisson Model Latent Process Poisson Model with a Changepoint Simulation

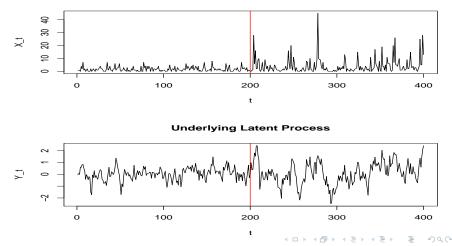
Latent Process Poisson Model with a Changepoint

Chigozie Utazi(Joint work with Dr. Peter Neal) Bayesian Estimation of Changepoints in a Partially Observed L.

回 と く ヨ と く ヨ と

An illustration (Very clear changepoint)

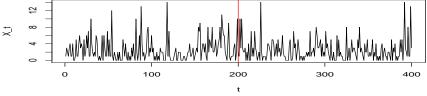
Observed Counts

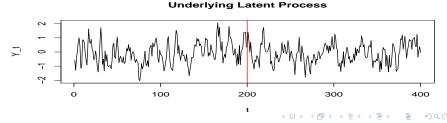


Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed La

An illustration (Changepoint quite unclear)

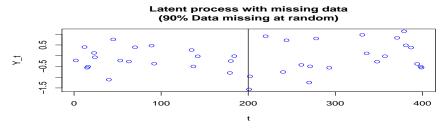


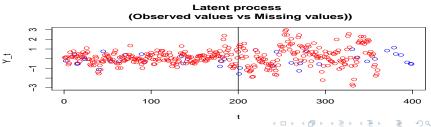


Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed La

An illustration - Missing values (Any changepoint?)





Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed La

The Model with a changepoint in all the parameters

Notation: X_t - Observed Counts, Y_t - Partially-Observed Latent Process, z_t -Covariate Vector and m - Unknown Changepoint **The Model**:

$$X_{t}|Y_{t}, \mathbf{z}_{t} \sim \begin{cases} \mathsf{Po}(\exp(\mathbf{z}_{t}'\beta_{1} + \omega_{1}Y_{t})) & \text{for} \quad 1 \leq t \leq m; \\ Y_{t} = \alpha_{1}Y_{t-1} + e_{1,t} & \text{and} & e_{1,t} \sim N(0, 1/\tau_{1}); \\ \mathsf{Po}(\exp(\mathbf{z}_{t}'\beta_{2} + \omega_{2}Y_{t})) & \text{for} \quad m+1 \leq t \leq n; \\ Y_{t} = \alpha_{2}Y_{t-1} + e_{2,t} & \text{and} & e_{2,t} \sim N(0, 1/\tau_{2}); \end{cases}$$
(11)

where $\beta_1 = (\beta_{1,0}, \beta_{1,1}, \dots, \beta_{1,p-1})$ and $\beta_2 = (\beta_{2,0}, \beta_{2,1}, \dots, \beta_{2,p-1})$ are regression coefficients. We assume that $-1 < \alpha_1, \alpha_2 < 1$ to ensure stationarity in the latent process.

マボン イラン イラン・ラ

Parameter Estimation

Priors: Same as given previously for the basic model. That is, Normal priors for $\beta_{1,i}$, $\beta_{2,i}, \omega_1, \omega_2$; Uniform priors for α_1, α_2 ; and Gamma priors for τ_1, τ_2 . For m, we use a Discrete Uniform(2, n - 1) prior. **Likelihood**:

$$L_{c} \propto \prod_{t=1}^{m} \exp(\mathbf{z}_{t}' \boldsymbol{\beta}_{1} x_{t} + \omega_{1} y_{t} x_{t} - e^{\mathbf{z}_{t}' \boldsymbol{\beta}_{1} + \omega_{1} y_{t}}) \times \prod_{t=m+1}^{n} \exp(\mathbf{z}_{t}' \boldsymbol{\beta}_{2} x_{t} + \omega_{2} y_{t} x_{t} - e^{\mathbf{z}_{t}' \boldsymbol{\beta}_{2} + \omega_{2} y_{t}}) \times \prod_{t=2}^{m} \tau_{1}^{1/2} e^{-\frac{\tau_{1}}{2} (y_{t} - \alpha_{1} y_{t-1})^{2}} \times \prod_{t=m+1}^{n} \tau_{2}^{1/2} e^{-\frac{\tau_{2}}{2} (y_{t} - \alpha_{2} y_{t-1})^{2}}$$
(12)

(4月) (3日) (3日) 日

Joint Posterior Distribution of the parameters

Let $\theta_c = (\omega_1, \omega_2, \beta_1, \beta_2, \alpha_1, \alpha_2, \tau_1, \tau_2, m)$ denote the vector of parameters to be estimated. The **joint posterior distribution** is

$$\pi(\theta_{c}|data) \propto \prod_{t=1}^{m} \exp(\mathbf{z}_{t}'\boldsymbol{\beta}_{1}x_{t} + \omega_{1}y_{t}x_{t} - e^{\mathbf{z}_{t}'\boldsymbol{\beta}_{1} + \omega_{1}y_{t}})$$

$$\times \prod_{t=m+1}^{n} \exp(\mathbf{z}_{t}'\boldsymbol{\beta}_{2}x_{t} + \omega_{2}y_{t}x_{t} - e^{\mathbf{z}_{t}'\boldsymbol{\beta}_{2} + \omega_{2}y_{t}}) \times$$

$$\times \prod_{t=2}^{m} \tau_{1}^{1/2} e^{-\frac{\tau_{1}}{2}(y_{t} - \alpha_{1}y_{t-1})^{2}} \times \prod_{t=m+1}^{n} \tau_{2}^{1/2} e^{-\frac{\tau_{2}}{2}(y_{t} - \alpha_{2}y_{t-1})^{2}}$$

$$\times e^{-\frac{v_{1}}{2}\sum_{i=1}^{2}\sum_{j=0}^{p-1}(\beta_{i,j} - u_{1})^{2}} \times e^{-\frac{v_{2}}{2}\sum_{i=1}^{2}(\omega_{i} - u_{2})^{2}}$$

$$\times (\tau_{1}\tau_{2})^{a-1} e^{-b(\tau_{1} + \tau_{2})}.$$
(13)

Chigozie Utazi(Joint work with Dr. Peter Neal) Bayesian Estimation of Changepoints in a Partially Observed L.

Conditional Posterior Distribution of m

Let
$$t_1 = 1(2)$$
, $t_2 = m$ when $i = 1$ and $t_1 = m + 1$, $t_2 = n$ when $i = 2$.

$$p(m|\theta_{-m}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \frac{p(\theta_{-m}, m; \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})}{\sum_{j=1}^{n} p(\theta_{-m}, j; \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})}; \quad (14)$$

where

$$p(\theta_{-m}, m; \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \propto e^{\sum_{t=1}^{m} (\boldsymbol{z}_{t}' \beta_{1} x_{t} + \omega_{1} y_{t} x_{t} - e^{\boldsymbol{z}_{t}' \beta_{1} + \omega_{1} y_{t}})} \\ \times e^{\sum_{t=m+1}^{n} (\boldsymbol{z}_{t}' \beta_{2} x_{t} + \omega_{2} y_{t} x_{t} - e^{\boldsymbol{z}_{t}' \beta_{2} + \omega_{2} y_{t}})} \times \tau_{1}^{\frac{m-1}{2}} \tau_{2}^{\frac{n-m}{2}} \\ \times e^{-\frac{\tau_{1}}{2} \sum_{t=2}^{m} (y_{t} - \alpha_{1} y_{t-1})^{2}} \times e^{-\frac{\tau_{2}}{2} \sum_{t=m+1}^{n} (y_{t} - \alpha_{2} y_{t-1})^{2}}$$

Note: The full conditionals of other parameters have the same form as those of the Basic Model.

マロト マヨト マヨト

Estimating the Missing Values in the Latent Process

- Missing values in Y occurring before and after m are treated as given in the basic model.
- Y_n is also treated as given in the basic model.
- A special case arises when y_{m+1} is missing; for which the proposal density is $q(y_t \to y'_t) \sim N\left(\frac{\tau_1 \alpha_1 y_{t-1} + \tau_2 \alpha_2 y_{t+1}}{\tau_1 + \tau_2 \alpha_2^2}, \frac{1}{\tau_1 + \tau_2 \alpha_2^2}\right) \text{ with acceptance}$ probability $min\left(1, \frac{\exp(\omega_2 y'_t x_t e^{\omega_2 y'_t + z'_t \beta_2})}{\exp(\omega_2 y_t x_t e^{\omega_2 y_t + z'_t \beta_2})}\right).$

• P • • P • • P • P

Model Selection using RJMCMC

- We use the RJMCMC algorithm to choose between the basic latent process Poisson model (now Model 1)and the Latent process poisson model with a changepoint (now referred to as Model 2).
- In other words, we seek to answer the question: Is there any evidence of a changepoint?
- Model 1 parameters: $\theta = (\beta, \omega, \alpha, \tau)$
- Model 2 parameters: $\theta_c = (\beta_1, \beta_2, \omega_1, \omega_2, \alpha_1, \alpha_2, \tau_1, \tau_2, m)$

- 4 周 ト 4 日 ト 4 日 ト - 日

Jump functions: Model $1 \rightarrow$ Model 2

- Generate the auxiliary variables (parameters): $a_i(i = 0, ..., p - 1)$, b, c, d; each from $N(0, \sigma^2)$ and $k \sim \text{Discrete Uniform}(2, n - 1)$.
- Obtain the parameters of the proposed model (Model 2) as follows:

$$\beta_{1,i} = \beta_i + (1 - (m/n))a_i \qquad \beta_{2,i} = \beta_i - (m/n)a_i
\omega_1 = \omega + (1 - (m/n))b \qquad \omega_2 = \omega - (m/n)b
\alpha_1 = \alpha + (1 - (m/n))c \qquad \alpha_2 = \alpha - (m/n)c
\tau_1 = \tau + (1 - (m/n))d \qquad \tau_2 = \tau - (m/n)d
m = k \qquad (15)$$

• We have used the idea of moment-matching (see Green, 1995) and weights obtained using *m* and *n* in defining the jump functions for the parameters.

Jump functions: Model $2 \rightarrow$ Model 1

• Obtain the parameters of the proposed model (Model 1) as follows:

$$\beta_{i} = (m/n)\beta_{1,i} + (1 - (m/n))\beta_{2,i} \qquad a_{i} = \beta_{1,i} - \beta_{2,i} \\ \omega = (m/n)\omega_{1} + (1 - (m/n))\omega_{2} \qquad b = \omega_{1} - \omega_{2} \\ \alpha = (m/n)\alpha_{1} + (1 - (m/n))\alpha_{2} \qquad c = \alpha_{1} - \alpha_{2} \\ \tau = (m/n)\tau_{1} + (1 - (m/n))\tau_{2} \qquad d = \tau_{1} - \tau_{2} \\ k = m$$
 (16)

• The new parameters are simply weighted averages of the corresponding parameters in Model 2 and are obtained by reversing the functions given previously.

Jacobian:Model 1 \rightarrow Model 2

$$J_{1\to2} = \begin{pmatrix} \frac{\partial\beta_{1,0}}{\partial\beta_0} & \frac{\partial\beta_{2,0}}{\partial\beta_0} & \cdots & \frac{\partial\tau_2}{\partial\beta_0} & \frac{\partial m}{\partial\beta_0} \\ \frac{\partial\beta_{1,0}}{\partial a_0} & \frac{\partial\beta_{2,0}}{\partial a_0} & \cdots & \frac{\partial\tau_2}{\partial a_0} & \frac{\partial m}{\partial a_0} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{\partial\beta_{1,0}}{\partial d} & \frac{\partial\beta_{2,0}}{\partial d} & \cdots & \frac{\partial\tau_2}{\partial d} & \frac{\partial m}{\partial d} \\ \frac{\partial\beta_{1,0}}{\partial k} & \frac{\partial\beta_{2,0}}{\partial k} & \cdots & \frac{\partial\tau_2}{\partial k} & \frac{\partial m}{\partial k} \end{pmatrix}.$$
(17)

- The first 2p + 6 rows and columns form a block diagonal matrix with diagonal entries of the form: $\begin{bmatrix} 1 & 1\\ (1-\frac{m}{2}) & -(\frac{m}{2}) \end{bmatrix}$.
- The last row and column have 1 as the diagonal entry and zeros elsewhere.
- The determinant is $|J_{1\rightarrow 2}| = 1^{(p+3)} \times 1 = 1.$
- The Jacobian for the reverse move is also 1.

イロト イポト イヨト イヨト 二日

Acceptance Probability (Model $1 \rightarrow$ Model2)

$$\begin{split} A_{1\to2}(\theta,\theta_c) &= \min(1,\text{likelihood ratio}\times\text{prior ratio}\times\text{proposal ratio}\\ &\times |J_{1\to2}|). \end{split}$$
(18)

Likelihood ratio:

$$\frac{\exp(\sum_{t=1}^{m} (\mathbf{z}_{t}^{\prime} \boldsymbol{\beta}_{1} x_{t} + \omega_{1} x_{t} y_{t} - e^{\mathbf{z}_{t}^{\prime} \boldsymbol{\beta}_{1} + \omega_{1} y_{t}})) \times \exp(\sum_{t=m+1}^{n} (\mathbf{z}_{t}^{\prime} \boldsymbol{\beta}_{2} x_{t} + \omega_{2} x_{t} y_{t} - e^{\mathbf{z}_{t}^{\prime} \boldsymbol{\beta}_{2} + \omega_{2} y_{t}})) \times}{\frac{\tau_{1}^{\frac{m-1}{2}} \times e^{-\frac{\tau_{1}}{2} \sum_{t=2}^{m} (y_{t} - \alpha_{1} y_{t-1})^{2}} \times \tau_{2}^{\frac{n-m}{2}} \times e^{-\frac{\tau_{2}}{2} \sum_{t=m+1}^{n} (y_{t} - \alpha_{2} y_{t-1})^{2}}}}{\exp(\sum_{t=1}^{n} (\mathbf{z}_{t}^{\prime} \boldsymbol{\beta} x_{t} + \omega x_{t} y_{t} - e^{\mathbf{z}_{t}^{\prime} \boldsymbol{\beta} + \omega y_{t}})) \times \tau^{\frac{n-1}{2}} \times e^{-\frac{\tau}{2} \sum_{t=2}^{n} (y_{t} - \alpha y_{t-1})^{2}}}}$$
(19)

Chigozie Utazi(Joint work with Dr. Peter Neal) Bayesian Estimation of Changepoints in a Partially Observed L.

(日本)(日本)(日本)

3

Prior ratio:

$$\frac{b^{a}(v_{1})^{p/2}\sqrt{v_{2}e^{-\frac{v_{1}}{2}\sum_{i=0}^{p-1}(\beta_{1,i}-u_{1})^{2}e^{-\frac{v_{1}}{2}\sum_{i=0}^{p-1}(\beta_{2,i}-u_{1})^{2}e^{-\frac{v_{2}}{2}\sum_{i=1}^{2}(\omega_{i}-u_{2})^{2}}{(\tau_{1}\tau_{2})^{a-1}e^{-b(\tau_{1}+\tau_{2})}}}{2\Gamma(a)(2\pi)^{\frac{1+p}{2}}(n-2)e^{-\frac{v_{1}}{2}\sum_{i=0}^{p-1}(\beta-u_{1})^{2}}e^{-\frac{v_{2}}{2}(\omega-u_{2})^{2}}\tau^{a-1}e^{-b\tau}}$$
(20)

Proposal ratio:

$$\frac{(n-2)(2\pi)^{\frac{p+3}{2}}\sigma^{3+p}}{e^{-\frac{1}{2\sigma^2}(\sum_{i=0}^{p-1}a_i^2+b^2+c^2+d^2)}}$$
(21)

回 と く ヨ と く ヨ と …

æ

Note: The acceptance probability for the reverse move i.e. Model $2 \rightarrow \text{Model } 1 \text{ is } A_{2\rightarrow 1}(\theta_c, \theta) = A_{1\rightarrow 2}^{-1}(\theta, \theta_c).$

The Reversible Jump MCMC Algorithm

- Initialize all the parameters and the missing $m{y}$ values.
- If the current model is 1:
 - a. Update $oldsymbol{eta}$, ω , lpha and au
 - b. Update the missing values in \boldsymbol{y}
- If the current model is 2:
 - a. Update $oldsymbol{eta}_1$, $oldsymbol{eta}_2$, ω_1 , ω_2 , α_1 , α_2 , τ_1 and τ_2
 - b. Update m
 - c. Update the missing values in $oldsymbol{y}$
- Propose model switching as follows:

伺下 イヨト イヨト

- If model=1:
 - Draw **a**, b, c, d and k.
 - Obtain the new parameters β_1' , β_2' , ω_1' , ω_2' , α_1' , α_2' , τ_1' , τ_2' and m'.
 - Calculate $A_{1\rightarrow 2}$. If the move is accepted, switch to model 2 and set the model parameters equal to the proposed values as given above. Otherwise, remain in model 1.
- If model=2:
 - Obtain β' , a, ω' , b, α' , c, τ' , d and k.
 - Calculate A_{2→1}. If the move is accepted, switch to model 1 and set the model parameters equal to the proposed values as given above. Otherwise, remain in model 2.
- Repeat 2-4 for a desired number of iterations.

イロト イポト イヨト イヨト 二日

Da C

Simulation Experiments Using the Changepoint Model

The simulation experiments were designed to examine the performance of the model under the following conditions:

- Changepoints occuring at different positions in the data,
- Varying proportions of missingness in Y,
- Model selection and parameter estimation when there is no changepoint.

・ 同 ト ・ ヨ ト ・ ヨ ト

Table: Results of a simulation study investigating the estimation of changepoints at different positions(90% data missing in Y, Sample size=400)¹

	m=100		m=200		<i>m</i> =300	
Parameter	Posterior	Std.	Posterior	Std.	Posterior	Std.
(True value)	Mean	Deviation	Mean	Deviation	Mean	Deviation
$\beta_{1,0} = 0.6$	0.6858	0.1088	0.5304	0.0997	0.6394	0.1930
$\beta_{1,1} = 0.6$	0.5498	0.0747	0.6856	0.0692	0.5653	0.2930
$\omega_1 = 0.8$	0.7647	0.0837	0.7869	0.2606	0.8063	0.1671
$\alpha_1 = 0.8$	0.7010	0.1119	0.7366	0.1678	0.7660	0.2057
$\tau_1 = 2.0$	1.8210	0.3995	2.0108	0.5110	1.7416	0.4661
\overline{m}	102.5919	10.4274	230.0713	27.8400	300.9430	9.4761
$\beta_{2,0} = 0.3$	0.3267	0.0537	0.3461	0.0731	0.3004	0.0559
$\beta_{2,1} = 0.3$	0.2927	0.0481	0.3228	0.0758	0.2548	0.0507
$\omega_2 = 0.5$	0.4191	0.1128	0.4107	0.2606	0.4522	0.2060
$\alpha_2 = 0.5$	0.4082	0.2323	0.4256	0.3280	0.4566	0.2446
$\tau_2 = 4.0$	3.7637	0.8721	3.0180	0.9922	3.2474	0.5464

¹Number of iterations=100,000; Burn-in=10,000; Data assumed to be missing systematically; Algorithm initialized in Model 1; Percentage time spent in Model 2 after burn-in=100 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed L

Da C

Table: Results of a simulation study investigating the estimation of changepoints at different positions(75% data missing in Y, Sample size=400)¹

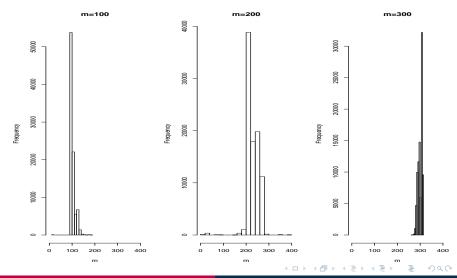
	m=100		m=200		<i>m</i> =300	
Parameter	Posterior	Std.	Posterior	Std.	Posterior	Std.
(True value)	Mean	Deviation	Mean	Deviation	Mean	Deviation
$\beta_{1,0} = 0.6$	0.6099	0.1053	0.6372	0.0825	0.6137	0.0777
$\beta_{1,1} = 0.6$	0.6207	0.0603	0.6865	0.0490	0.6987	0.1089
$\omega_1 = 0.8$	0.7562	0.0688	0.8369	0.0461	0.7873	0.0684
$\alpha_1 = 0.8$	0.7886	0.0668	0.8314	0.0454	0.7645	0.0781
$\tau_1 = 2.0$	2.4192	0.5388	1.7114	0.2725	1.6462	0.3796
\overline{m}	117.7047	9.9526	200.2734	7.4865	310.9739	24.6959
$\beta_{2,0} = 0.3$	0.2112	0.0625	0.3412	0.0678	0.3513	0.0574
$\beta_{2,1} = 0.3$	0.2999	0.0529	0.3286	0.0550	0.3004	0.0492
$\omega_2 = 0.5$	0.5170	0.1334	0.4647	0.1395	0.4175	0.1474
$\alpha_2 = 0.5$	0.4208	0.1414	0.4423	0.2370	0.4081	0.1876
$\tau_2 = 4.0$	3.8594	0.7681	2.8856	0.7518	2.8935	0.6477

¹Number of iterations=100,000; Burn-in=10,000; Data assumed to be missing systematically; Algorithm initialized in Model 1; Percentage time spent in Model 2 after burn-in=100 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed L

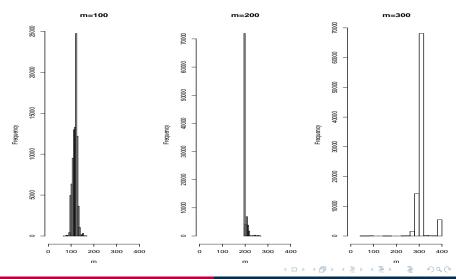
Figure: Histograms of the posterior distributions of m (90% data missing)



Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed La

Figure: Histograms of the posterior distributions of m (75% data missing)



Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed La

Table: Model and Parameter estimation in the absence of a changepoint using RJMCMC^1

Amount of	Parameter	Posterior	Posterior	95%
Missingness	(True value)	Mean	Std. Dev.	Credible Interval
	True Model=1	Post. prob.=0.986		
90% ²	$\beta_0 = 0.3$	0.3259	0.0541	(0.2199,0.4319)
	$\beta_1 = 0.5$	0.4706	0.0445	(0.3835,0.5578)
	$\omega = 0.5$	0.4805	0.1811	(0.1256,0.8354)
	$\alpha = 0.5$	0.3522	0.2330	(-0.1045,0.8089)
	$\tau = 4.0$	3.5274	0.9153	(1.7335, 5.3213)
	True Model=1	Post. prob.=0.995		
75% ³	$\beta_0 = 0.3$	0.3082	0.0503	(0.2095,0.4068)
	$\beta_1 = 0.5$	0.4690	0.0434	(0.3840,0.5540)
	$\omega = 0.5$	0.5448	0.0977	(0.3533,0.7363)
	$\alpha = 0.5$	0.4134	0.1470	(0.1253,0.7015)
	$\tau = 4.0$	3.7221	0.6507	(2.4467,4.9974)

¹Sample size=400, No of iterations=100,000, Burn-in=10,000

- ²Percent time spent in Model 1 after burn-in = 98.6%
- 3 Percent time spent in Model 1 after burn-in = 99.5%

Chigozie Utazi(Joint work with Dr. Peter Neal)

< □ > < ② > < ≧ > < ≧ > < ≧ < ○ < ○
 Bayesian Estimation of Changepoints in a Partially Observed L

Extensions

- All or a subset of the covariates changing
- Changepoint in the latent process only
- Multiple Changepoints
- Extension to spatio-temporal models

(4 回) (4 回) (4 回)

References

- Chen, K. S. and Ledolter J. (1995). Monte Carlo EM Estimation for Time Series Model Involving Counts. *Journal of the American Statistical Association*, Vol. 90, No. 429, pp. 242-252
- ② Davis, R. A., Dunsmuir W. T. and Wang, Y. (1999). Modelling Time Series of Count Data. In Asymptotics, Nonparametrics and Time Series, Ed. S. Ghosh, pp. 63-114. New York: Marcel Dekker.
- Davis, R. A., Dunsmuir W. T. and Wang, Y. (2000). On autocorrelation in a Poisson Regression Model. *Biometrika*, 87, 3, pp. 491-505.
- Green, P. J. (1995). Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. *Biometrika*, 82,4, pp. 711-32
- Samet, J. M., Zeger, S. L., Dominici, F., Curriero, F., Coursac, I., Dockery, D. W., Schwartz, J. AND Zanobetti, A. (2000). The National Morbidity, Mortality, and Air Pollution Study, Part II: Morbidity and Mortality from Air Pollution in the United States. Cambridge, MA: Health Effects Institute.
- Zeger, S. L. (1988). A Regression Model for Times Series of Counts. Biometrika, 75,4, pp.621-9.

Chigozie Utazi(Joint work with Dr. Peter Neal)

Bayesian Estimation of Changepoints in a Partially Observed La

3

Outline Introduction The Basic Latent Process Poisson Model Latent Process Poisson Model with a Changepoint Simulation

Thanks

Chigozie Utazi (Joint work with Dr. Peter Neal) Bayesian Estimation of Changepoints in a Partially Observed L.

▲ロト ▲圖ト ▲屋ト ▲屋ト

æ