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Background

Two classes of models exist for time series data involving Poisson
counts:

Observation-driven models: Lagged values of observed counts
included in the mean function.

Example: The INAR(p) model,
Xt =

∑p
i=1 αi ◦Xt−i + εt, where ”◦” denotes an

operator, e.g. α ◦X ∼ Binomial(X,α) and
εt ∼ iid Po(λ).

Parameter-driven models: A latent process governs the mean
function.

Example: Zeger’s (1988) model,
Xt|Yt ∼ Po(exp(z′tβ + Yt)), where E(exp(Yt)) = 1.
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Some features of parameter-driven models

A stochastic model is postulated for the latent process (An
extension of the Poisson regression model).

The latent process accounts for overdispersion and
autocorrelation in the model.

Easy to interpret and derive model properties, but difficult to
estimate.

The model provides a framework for exchange of dynamics
between the count process and the underlying latent process.
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Motivation

Xt|Yt, zt ∼ Po(exp(f(zt) + ωYt)),

where Yt = αYt−1 + et and et ∼ N(0, σ2 = 1/τ).

Process of interest: {Yt, t = 1, . . . , n}

If y1, y2, . . . , yn are fully observed, the xt’s are uninformative.

If y1, y2, . . . , yn are partially observed, the xt’s provide
additional information (provided ω 6= 0).
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Motivating Example:

Temporal analysis of air pollution and health:

Estimating the association between some health outcomes
and air pollution;

Estimating the parameters of a partially observed pollution
variable;

Detection of changes in one or both variables.
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Our Contribution

Model Formulation

Parameter Estimation Procedure

Changepoint Estimation
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The Basic Latent Process Poisson Model
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Model Specification

Observed Counts: X1, X2, . . . , Xn

Latent Variable: Y1, Y2, . . . , Yn

Covariates: z1, z2, . . . , zn, zi = (1, zi,1, zi,2, . . . , zi,p−1)

The Model:

Xt|Yt, zt ∼Po(exp(z′tβ + ωYt)), (1)

where Yt = αYt−1 + et, et ∼ N(0, σ2 = 1/τ) and
β = (β0, β1, . . . , βp−1)

′. To ensure stationarity in the latent
process, it is assumed that |α| < 1.

Note that ω = 0⇒ a Poisson regression model.
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Bayesian Estimation of Parameters

Let θ = (ω,β, α, τ) denote the vector of parameters of the model
and π(θ) denote its joint prior distribution. The likelihood
function (conditional on Y1)is given by

L(θ|x,y, z) =

n∏
t=1

exp(z′tβxt + ωytxt − ez
′
tβ+ωyt)

xt!

×
n∏
t=2

τ1/2√
2π

exp(−τ
2

(yt − αyt−1)2). (2)

Priors: βi ∼ N(u1, 1/v1), i = 0, . . . , p− 1, α ∼ U(−1, 1),
ω ∼ N(u2, 1/v2) and τ ∼ Gamma(a, b). The parameters are
assumed to be apriori independent.
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Given our choice of priors, the posterior distribution of θ can now
be written as:

π(θ|data) ∝
n∏
t=1

exp(z′tβxt + ωytxt − ez
′
tβ+ωyt)

×
n∏
t=2

τ1/2exp(−τ
2

(yt − αyt−1)2)

× e−
v1
2

∑p−1
i=0 (βi−u1)

2 × e−
v2
2
(ω−u2)2

× τa−1e−bτ . (3)
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Conditional posterior distributions of the parameters:

π(βi|θ−βi ,x,y,z) ∝ exp

(
βi

n∑
t=1

ztixt −
n∑
t=1

ez
′
tβ+ωyt −

v1

2
(β2
i − 2u1βi)

)
;

(4)

π(ω|θ−ω,x,y, z) ∝ exp

(
n∑
t=1

ωytxt −
n∑
t=1

ez
′
tβ+ωyt − v2

2
(ω2 − 2u2ω)

)
;

(5)

π(α|θ−α,x,y, z) ∼ N
(
τ
∑n

t=2 ytyt−1
τ
∑n

t=2 y
2
t−1

,
1

τ
∑n

t=2 y
2
t−1

)
, I(|α| < 1);

(6)

π(τ |θ−τ ,x,y, z) ∼ Gamma

(
a+

(n− 1)

2
,

∑n
t=2(yt − αyt−1)2

2
+ b

)
.

(7)
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Estimation of missing values in the latent process

Noting that by Markov property,
P (yt|y−t) ∝ P (yt|yt−1)P (yt+1|yt), the conditional posterior
distribution of yt for t = 2, . . . , n− 1 can easily be derived from
eqn (3) as

π(yt|y−t,x, z,θ) ∝ exp(−τ
2

(yt − αyt−1)2)× exp(−τ
2

(yt+1 − αyt)2)

× exp(ωytxt − ez
′
tβ+ωyt). (8)

We use the independent sampler to update the missing values.
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Specifically, we use the Gaussian proposal density

q(yt|y−t, θ) ∼ N
(
α(yt−1 + yt+1)

1 + α2
,

1

τ(1 + α2)

)
(9)

with acceptance probability

α(yt → y′t) = min

(
1,

exp(ωy′txt − eωy
′
t+z′tβ)

exp(ωytxt − eωyt+z′tβ)

)
, (10)

where y′t denotes the proposed value of yt. The proposal density
given in equation 9 was determined to yield the best estimates
based on pilot runs. The proposal density for Yn is
N(αyn−1, 1/τ).
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MCMC Algorithm for the Basic Model

Initialize the parameters and the missing values in y,

Update β,

Update ω,

Update α,

Update τ ,

Update missing y values,

Repeat steps 2-6 until a desired number of iterations is
reached.
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Simulation experiments using the Basic Model

The simulation studies were designed to examine how the model
performs and compares with the AR(1) model under the following
conditions:

Different patterns of missingness in the latent process,

Varying values of ω,

High, moderate and low autocorrelation in the latent process.

Does the inclusion of Xt in the model lead to any improvement in
parameter estimation in Yt?
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Simulation study using the Basic Model

The hyperparameters were chosen as follows:

βi ∼ N(0, 1)

ω ∼ N(0.2, 1/5)

α ∼ U(−1, 1)

τ ∼ Gamma(1, 1)

Initial guesses for the missing values in y were drawn from N(0, 1).
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Table: Comparing the Basic Model with an AR(1) Model (Regularly
Missing Data)

AR(1)1 LPPM2

Amount of Parameter Posterior Mean 95% Posterior Mean 95%
Missingness (True value) (Std. Dev.) Credible Interval (Std. Dev.) Credible Interval

90% β0 = 0.5 - - 0.5344 (0.3178,0.7510)
(0.1105)

ω = 0.5 - - 0.5303 (0.4379,0.6226)
(0.0471)

α = 0.5 -0.0013 (-0.6587,0.6561) 0.4158 (0.0700,0.7617)
(0.3354) - (0.1765)

τ = 4.0 3.1093 (1.7798,4.4388) 3.6290 (1.8256,5.4324)
(0.6783) (0.9201)

75% β0 = 0.5 - - 0.5288 (0.3669,0.6907)
(0.0826)

ω = 0.5 - - 0.5372 (0.4520,0.6225)
(0.0435)

α = 0.5 -0.0011 (-0.6502,0.6480) 0.5177 (0.3354,0.7000)
(0.3312) - (0.0930)

τ = 4.0 2.5635 (1.8581,3.2689) 3.4915 (2.3432,4.6398)
(0.3599) (0.5859)

1
AR(1) - First Order Autoregressive Model

2
LPPM - Basic Latent Process Poisson Model

Sample size=400, No of iterations=100,000, Burn-in=10,000
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Table: Comparing the Basic Model with an AR(1) Model (Data Missing
at Random)

AR(1)1 LPPM2

Amount of Parameter Posterior Mean 95% Posterior Mean 95%
Missingness (True value) (Std. Dev.) Credible Interval (Std. Dev.) Credible Interval

90% β0 = 0.5 - - 0.5125 (0.2742,0.7517)
(0.1215)

ω = 0.5 - - 0.4829 (0.3899,0.5759)
(0.0475)

α = 0.5 0.1582 (-0.3271,0.6435) 0.3004 (0.0124,0.5885)
(0.2476) - (0.1470)

τ = 4.0 3.0239 (1.7798,4.4388) 3.1808 (1.8608,4.5008)
(0.6970) (0.6735)

75% β0 = 0.5 - - 0.5129 (0.3215,0.7043)
(0.0977)

ω = 0.5 - - 0.4553 (0.3626,0.5480)
(0.0473)

α = 0.5 0.2535 (-0.0293,0.5363) 0.5058 (0.3129,0.6988)
(0.1443) - (0.0985)

τ = 4.0 3.7969 (2.7546,4.8393) 4.1633 (2.8728,5.4538)
(0.5318) (0.6584)

1
AR(1) - First Order Autoregressive Model

2
LPPM - Basic Latent Process Poisson Model

Sample size=400, No of iterations=100,000, Burn-in=10,000
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Table: Comparing the Basic Model with an AR(1) Model (Varying ω,
90% Data Missing 1)

ω = 0.2 ω = 0.5 ω = 0.8

AR(1)2 LPPM2 AR(1) LPPM AR(1) LPPM
Parameter Post. Mean Post. Mean Post. Mean Post. Mean Post. Mean Post. Mean
(True value) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.)

ω - 0.0365 - 0.5147 - 0.8057
(0.0947) (0.1213) (0.1218)

β0 = 0.5 - 0.4811 - 0.5288 - 0.5997
(0.0402) (0.0476) (0.0476)

α = 0.5 0.0079 -0.0280 -0.0025 0.4045 0.0066 0.4163
(0.3695) (0.3412) (0.3166) (0.1907) (0.3159) (0.1334)

τ = 4.0 2.6813 3.0578 3.1134 3.6055 4.2152 4.2959
(0.5822) (0.7938) (0.6725) (0.9323) (0.9292) (0.9493)

2
AR(1) - First Order Autoregressive Model LPPM - Basic Latent Process Poisson Model

1
Data missing regularly, Sample size=400, No of iterations=100,000, Burn-in=10,000
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Table: A Comparison between the Basic Model and the AR(1) Model
(Varying ω, 75% Data Missing 1)

ω = 0.2 ω = 0.5 ω = 0.8

AR(1)2 LPPM2 AR(1) LPPM AR(1) LPPM
Parameter Post. Mean Post. Mean Post. Mean Post. Mean Post. Mean Post. Mean
(True value) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.)

ω - 0.0409 - 0.5290 - 0.7943
(0.0810) (0.0821) (0.0980)

β0 = 0.5 - 0.4823 - 0.5376 - 0.5856
(0.0395) (0.0433) (0.0466)

α = 0.5 -0.0036 -0.0296 0.0103 0.5196 -0.0116 0.4507
(0.2573) (0.2655) (0.2778) (0.0940) (0.4120) (0.0974)

τ = 4.0 3.1294 3.4249 2.5687 3.5088 4.1138 4.5210
(0.4391) (0.6062) (0.3510) (0.5955) (0.5764) (0.7304)

2
AR(1) - First Order Autoregressive Model LPPM - Basic Latent Process Poisson Model

1
Data missing regularly, Sample size=400, No of iterations=100,000, Burn-in=10,000

Chigozie Utazi(Joint work with Dr. Peter Neal) Bayesian Estimation of Changepoints in a Partially Observed Latent Process Poisson Model



Outline Introduction The Basic Latent Process Poisson Model Latent Process Poisson Model with a Changepoint Simulation Experiments Further Work References

Some Comments:

-Varying the sample size has no effect on parameter estimation.

- It was also observed from simulation experiments (though not
presented) using α = 0.2, 0.5, 0.8 that estimation of parameters in
the AR(1) model did not improve even with very high correlation
in Y .

- In all, even though the AR(1) model is seen to be competing
with our Basic LPPM in the estimation of τ , the latter yields
estimates that are closer to the true parameter values.
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Latent Process Poisson Model with a Changepoint
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An illustration (Very clear changepoint)
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An illustration (Changepoint quite unclear)
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An illustration - Missing values (Any changepoint?)
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The Model with a changepoint in all the parameters

Notation: Xt - Observed Counts, Yt - Partially-Observed Latent
Process, zt -Covariate Vector and m - Unknown Changepoint
The Model:

Xt|Yt, zt ∼


Po(exp(z′tβ1 + ω1Yt)) for 1 ≤ t ≤ m;

Yt = α1Yt−1 + e1,t and e1,t ∼ N(0, 1/τ1);

Po(exp(z′tβ2 + ω2Yt)) for m+ 1 ≤ t ≤ n;
Yt = α2Yt−1 + e2,t and e2,t ∼ N(0, 1/τ2);

(11)

where β1 = (β1,0, β1,1, . . . , β1,p−1) and
β2 = (β2,0, β2,1, . . . , β2,p−1) are regression coefficients. We assume
that −1 < α1, α2 < 1 to ensure stationarity in the latent process.
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Parameter Estimation

Priors: Same as given previously for the basic model. That is,
Normal priors for β1,i, β2,i,ω1, ω2; Uniform priors for α1, α2; and
Gamma priors for τ1, τ2. For m, we use a Discrete
Uniform(2, n− 1) prior.
Likelihood:

Lc ∝
m∏
t=1

exp(z′tβ1xt + ω1ytxt − ez
′
tβ1+ω1yt)×

n∏
t=m+1

exp(z′tβ2xt + ω2ytxt − ez
′
tβ2+ω2yt)×

m∏
t=2

τ
1/2
1 e−

τ1
2
(yt−α1yt−1)2 ×

n∏
t=m+1

τ
1/2
2 e−

τ2
2
(yt−α2yt−1)2 (12)
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Joint Posterior Distribution of the parameters

Let θc = (ω1, ω2,β1,β2, α1, α2, τ1, τ2,m) denote the vector of
parameters to be estimated. The joint posterior distribution is

π(θc|data) ∝
m∏
t=1

exp(z′tβ1xt + ω1ytxt − ez
′
tβ1+ω1yt)

×
n∏

t=m+1

exp(z′tβ2xt + ω2ytxt − ez
′
tβ2+ω2yt)×

×
m∏
t=2

τ
1/2
1 e−

τ1
2
(yt−α1yt−1)2 ×

n∏
t=m+1

τ
1/2
2 e−

τ2
2
(yt−α2yt−1)2

× e−
v1
2

∑2
i=1

∑p−1
j=0 (βi,j−u1)

2

× e−
v2
2

∑2
i=1(ωi−u2)2

× (τ1τ2)
a−1e−b(τ1+τ2). (13)
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Conditional Posterior Distribution of m

Let t1 = 1(2), t2 = m when i = 1 and t1 = m+ 1, t2 = n when
i = 2.

p(m|θ−m,x,y, z) =
p(θ−m,m;x,y, z)∑n
j=1 p(θ−m, j;x,y, z)

; (14)

where

p(θ−m,m;x,y, z) ∝e
∑m
t=1(z

′
tβ1xt+ω1ytxt−ez

′
tβ1+ω1yt )

×e
∑n
t=m+1(z

′
tβ2xt+ω2ytxt−ez

′
tβ2+ω2yt ) × τ

m−1
2

1 τ
n−m

2
2

×e−
τ1
2

∑m
t=2(yt−α1yt−1)2 × e−

τ2
2

∑n
t=m+1(yt−α2yt−1)2 .

Note: The full conditionals of other parameters have the same
form as those of the Basic Model.
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Estimating the Missing Values in the Latent Process

Missing values in Y occurring before and after m are treated
as given in the basic model.

Yn is also treated as given in the basic model.

A special case arises when ym+1 is missing; for which the
proposal density is

q(yt → y′t) ∼ N
(
τ1α1yt−1+τ2α2yt+1

τ1+τ2α2
2

, 1
τ1+τ2α2

2

)
with acceptance

probability min

(
1,

exp(ω2y′txt−e
ω2y
′
t+z′tβ2 )

exp(ω2ytxt−eω2yt+z′tβ2 )

)
.
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Model Selection using RJMCMC

We use the RJMCMC algorithm to choose between the basic
latent process Poisson model (now Model 1)and the Latent
process poisson model with a changepoint (now referred to as
Model 2).

In other words, we seek to answer the question: Is there any
evidence of a changepoint?

Model 1 parameters: θ = (β, ω, α, τ)

Model 2 parameters: θc = (β1,β2, ω1, ω2, α1, α2, τ1, τ2,m)
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Jump functions: Model 1→ Model 2

Generate the auxiliary variables (parameters):
ai(i = 0, . . . , p− 1), b, c, d; each from N(0, σ2) and
k ∼ Discrete Uniform(2, n− 1).

Obtain the parameters of the proposed model (Model 2) as
follows:

β1,i = βi + (1− (m/n))ai β2,i = βi − (m/n)ai

ω1 = ω + (1− (m/n))b ω2 = ω − (m/n)b

α1 = α+ (1− (m/n))c α2 = α− (m/n)c

τ1 = τ + (1− (m/n))d τ2 = τ − (m/n)d

m = k (15)

We have used the idea of moment-matching (see Green,
1995) and weights obtained using m and n in defining the
jump functions for the parameters.
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Jump functions: Model 2→ Model 1

Obtain the parameters of the proposed model (Model 1) as
follows:

βi = (m/n)β1,i + (1− (m/n))β2,i ai = β1,i − β2,i
ω = (m/n)ω1 + (1− (m/n))ω2 b = ω1 − ω2

α = (m/n)α1 + (1− (m/n))α2 c = α1 − α2

τ = (m/n)τ1 + (1− (m/n))τ2 d = τ1 − τ2
k = m (16)

The new parameters are simply weighted averages of the
corresponding parameters in Model 2 and are obtained by
reversing the functions given previously.
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Jacobian:Model 1→Model 2

J1→2 =



∂β1,0
∂β0

∂β2,0
∂β0

· · · ∂τ2
∂β0

∂m
∂β0

∂β1,0
∂a0

∂β2,0
∂a0

· · · ∂τ2
∂a0

∂m
∂a0

...
...

. . .
...

...
∂β1,0
∂d

∂β2,0
∂d · · · ∂τ2

∂d
∂m
∂d

∂β1,0
∂k

∂β2,0
∂k · · · ∂τ2

∂k
∂m
∂k

 . (17)

The first 2p+ 6 rows and columns form a block diagonal
matrix with diagonal entries of the form:

[ 1 1
(1−m

n
) −(m

n
)

]
.

The last row and column have 1 as the diagonal entry and
zeros elsewhere.

The determinant is |J1→2| = 1(p+3) × 1 = 1.

The Jacobian for the reverse move is also 1.
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Acceptance Probability (Model 1→Model2)

A1→2(θ, θc) = min(1, likelihood ratio× prior ratio× proposal ratio

×|J1→2|).
(18)

Likelihood ratio:

exp(
∑m
t=1(z

′
tβ1xt+ω1xtyt−ez

′
tβ1+ω1yt ))×exp(

∑n
t=m+1(z

′
tβ2xt+ω2xtyt−ez

′
tβ2+ω2yt ))×

τ
m−1

2
1 ×e−

τ1
2

∑m
t=2(yt−α1yt−1)

2
×τ

n−m
2

2 ×e−
τ2
2

∑n
t=m+1(yt−α2yt−1)

2

exp(
∑n

t=1(z
′
tβxt + ωxtyt − ez

′
tβ+ωyt))× τ

n−1
2 × e−

τ
2

∑n
t=2(yt−αyt−1)2

(19)
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Prior ratio:

ba(v1)p/2
√
v2e
− v12

∑p−1
i=0

(β1,i−u1)
2
e−

v1
2

∑p−1
i=0

(β2,i−u1)
2
e−

v2
2

∑2
i=1(ωi−u2)

2

(τ1τ2)a−1e−b(τ1+τ2)

2Γ(a)(2π)
1+p
2 (n− 2)e−

v1
2

∑p−1
i=0 (β−u1)2e−

v2
2
(ω−u2)2τa−1e−bτ

(20)

Proposal ratio:

(n− 2)(2π)
p+3
2 σ3+p

e−
1

2σ2
(
∑p−1
i=0 a

2
i+b

2+c2+d2)
(21)

Note: The acceptance probability for the reverse move i.e. Model
2 → Model 1 is A2→1(θc, θ) = A−11→2(θ, θc).
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The Reversible Jump MCMC Algorithm

Initialize all the parameters and the missing y values.

If the current model is 1:
a. Update β, ω, α and τ
b. Update the missing values in y

If the current model is 2:
a. Update β1, β2, ω1, ω2, α1, α2, τ1 and τ2
b. Update m
c. Update the missing values in y

Propose model switching as follows:
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If model=1:

Draw a, b, c, d and k .
Obtain the new parameters β′

1, β′
2, ω′

1, ω′
2, α′

1, α′
2, τ ′1, τ ′2 and

m′.
Calculate A1→2 . If the move is accepted, switch to model 2
and set the model parameters equal to the proposed values as
given above. Otherwise, remain in model 1.

If model=2:

Obtain β′, a, ω′, b, α′, c, τ ′, d and k.
Calculate A2→1. If the move is accepted, switch to model 1
and set the model parameters equal to the proposed values as
given above. Otherwise, remain in model 2.

Repeat 2-4 for a desired number of iterations.
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Simulation Experiments Using the Changepoint Model

The simulation experiments were designed to examine the
performance of the model under the following conditions:

Changepoints occuring at different positions in the data,

Varying proportions of missingness in Y ,

Model selection and parameter estimation when there is no
changepoint.
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Table: Results of a simulation study investigating the estimation of
changepoints at different positions(90% data missing in Y , Sample
size=400)1

m=100 m=200 m=300
Parameter Posterior Std. Posterior Std. Posterior Std.
(True value) Mean Deviation Mean Deviation Mean Deviation
β1,0 = 0.6 0.6858 0.1088 0.5304 0.0997 0.6394 0.1930
β1,1 = 0.6 0.5498 0.0747 0.6856 0.0692 0.5653 0.2930
ω1 = 0.8 0.7647 0.0837 0.7869 0.2606 0.8063 0.1671
α1 = 0.8 0.7010 0.1119 0.7366 0.1678 0.7660 0.2057
τ1 = 2.0 1.8210 0.3995 2.0108 0.5110 1.7416 0.4661

m 102.5919 10.4274 230.0713 27.8400 300.9430 9.4761
β2,0 = 0.3 0.3267 0.0537 0.3461 0.0731 0.3004 0.0559
β2,1 = 0.3 0.2927 0.0481 0.3228 0.0758 0.2548 0.0507
ω2 = 0.5 0.4191 0.1128 0.4107 0.2606 0.4522 0.2060
α2 = 0.5 0.4082 0.2323 0.4256 0.3280 0.4566 0.2446
τ2 = 4.0 3.7637 0.8721 3.0180 0.9922 3.2474 0.5464

1Number of iterations=100,000; Burn-in=10,000; Data assumed to be
missing systematically; Algorithm initialized in Model 1; Percentage time spent
in Model 2 after burn-in=100
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Table: Results of a simulation study investigating the estimation of
changepoints at different positions(75% data missing in Y , Sample
size=400)1

m=100 m=200 m=300
Parameter Posterior Std. Posterior Std. Posterior Std.
(True value) Mean Deviation Mean Deviation Mean Deviation
β1,0 = 0.6 0.6099 0.1053 0.6372 0.0825 0.6137 0.0777
β1,1 = 0.6 0.6207 0.0603 0.6865 0.0490 0.6987 0.1089
ω1 = 0.8 0.7562 0.0688 0.8369 0.0461 0.7873 0.0684
α1 = 0.8 0.7886 0.0668 0.8314 0.0454 0.7645 0.0781
τ1 = 2.0 2.4192 0.5388 1.7114 0.2725 1.6462 0.3796

m 117.7047 9.9526 200.2734 7.4865 310.9739 24.6959
β2,0 = 0.3 0.2112 0.0625 0.3412 0.0678 0.3513 0.0574
β2,1 = 0.3 0.2999 0.0529 0.3286 0.0550 0.3004 0.0492
ω2 = 0.5 0.5170 0.1334 0.4647 0.1395 0.4175 0.1474
α2 = 0.5 0.4208 0.1414 0.4423 0.2370 0.4081 0.1876
τ2 = 4.0 3.8594 0.7681 2.8856 0.7518 2.8935 0.6477

1Number of iterations=100,000; Burn-in=10,000; Data assumed to be
missing systematically; Algorithm initialized in Model 1; Percentage time spent
in Model 2 after burn-in=100
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Figure: Histograms of the posterior distributions of m (90% data missing)
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Figure: Histograms of the posterior distributions of m (75% data missing)
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Table: Model and Parameter estimation in the absence of a changepoint
using RJMCMC1

Amount of Parameter Posterior Posterior 95%
Missingness (True value) Mean Std. Dev. Credible Interval

True Model=1 Post. prob.=0.986
90%2 β0 = 0.3 0.3259 0.0541 (0.2199,0.4319)

β1 = 0.5 0.4706 0.0445 (0.3835,0.5578)
ω = 0.5 0.4805 0.1811 (0.1256,0.8354)
α = 0.5 0.3522 0.2330 (-0.1045,0.8089)
τ = 4.0 3.5274 0.9153 (1.7335,5.3213)

True Model=1 Post. prob.=0.995
75%3 β0 = 0.3 0.3082 0.0503 (0.2095,0.4068)

β1 = 0.5 0.4690 0.0434 (0.3840,0.5540)
ω = 0.5 0.5448 0.0977 (0.3533,0.7363)
α = 0.5 0.4134 0.1470 (0.1253,0.7015)
τ = 4.0 3.7221 0.6507 (2.4467,4.9974)

1
Sample size=400, No of iterations=100,000, Burn-in=10,000

2
Percent time spent in Model 1 after burn-in = 98.6%

3
Percent time spent in Model 1 after burn-in = 99.5%
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Extensions

All or a subset of the covariates changing

Changepoint in the latent process only

Multiple Changepoints

Extension to spatio-temporal models
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