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ISBA, Université catholique de Louvain

Recent Advances in Changepoint Analysis
University of Warwick,

March 26-28, 2012

Joint work with M. Fiecas (UCSD), J. Franke and J. Tadjuidje (University
of Kaiserslautern)



Outline

Introduction and motivating data example

Multivariate Hidden Markov Mixture

Shrinkage Estimation of Covariance Matrices

Specific context of Hidden State Covariance estimation

Numerical performance of the oracle estimators

Beyond the oracle: shrinkage for HMM
Maximum Likelihood Estimation
Shrinkage based EM-Algorithm
Simulation Studies
Data analysis example - revisited

Conclusion



Motivating data analysis

Returns of US Industry Portfolio

◮ Monthly returns of P = 30 different industry sectors (NYSE, NASDAQ
and AMEX)

◮ T = 1026 time points between July 1926 and December 2011

◮ Characteristics: changing market environment over time

◮ Model: Hidden (Markov) states based on pseudo-Gaussian likelihood

Xt =

K∑

k=1

St,k Σ
1/2
k εt ,
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Challenge

◮ Variance-covariance analysis of (mean-centered) log-returns

◮ Due to high dimensionality, sample covariance matrix (30 × 30) possibly
not invertible and numerically unstable

◮ In this work: method to improve this estimator by shrinkage

Shrinkage for covariance estimation

◮ Developed by Ledoit et al (2004), Sancetta (2008)

◮ Can drastically improve the mean-squared error and the condition number

◮ (Theory: double asymptotics P → ∞ and T → ∞)

◮ Our contribution: Use for Hidden Markov mixtures



Multivariate Hidden Markov Mixture

Let St be a finite-state Markov chain with values in {e1, . . . , eK}, where ei is a
unit vector in R

K and having the ith entry equal to 1.

P(St = ej | St−1 = ei , St−2, · · · ) = P(St = ej | St−1 = ei ) = aij

Let assume

1. St aperiodic and irreducible, and

2. St is α-mixing with exponentially decreasing rate.

Then, St stationary with distribution given by πk = P(St = ek).
We define,

Xt =

K∑

k=1

St,k(µk + Σ
1/2
k εt) , (1)

where εt i.i.d. (0, Ip), independent of St and St,k = 1 iff St = ek .

For ease of presentation: µk = 0 ∀ k.

Some literature: Francq and Roussignol (1997), Yang (2000): Switching
Markov VAR; Francq and Zarköıan (2001): Multivariate Markov switching
ARMA; Franke et al (2010, 2011): Mixtures of nonparametric AR, Markov
switching AR-ARCH.



Shrinkage Estimation of Covariance Matrices

Goal: Estimate Σ by more ”regular” estimator than empirical covariance

Σ̂ =
1

T

T∑

t=1

XtX
′
t

Idea (Ledoit et al, 2004, Sancetta, 2008): Shrinkage of Σ̂ :

Σ̂s = (1 − W ) Σ̂ + W αIp with 0 ≤ W ≤ 1. (2)

Shrink Σ̂ towards αIp such that tr(αIp) = E tr Σ̂ ≈ tr Σ.

Interesting: extreme eigenvalues are shrunken towards the ”grand mean”
tr Σ̂

p
.

Although bias is introduced, variance is highly reduced (for p large), and the
MSE is reduced.



Optimal shrinkage weights
Choose optimal shrinkage weight W by minimizing MSE:

W
∗ = arg min

W∈[0,1]
E||Σ̂s − Σ||2

where ||A||2 = 1
p

tr(AA′), the scaled Frobenius norm. The solution is

W
∗ =

E||Σ̂ − Σ||2

E||αIp − Σ̂||2
∧ 1. (3)

But: Σ̂∗
s is not feasible as depending on unknowns, in particular α = 1

p
tr(Σ).

Interpretations:
W ∗ is also the PRIAL (”percentage relative improvement of average loss”) of

Σ̂∗
s over Σ̂ . It shows that (even under - correct - double asymptotics p and T

to infinity) shrinkage is important.

Also, we have a Pythagorean for shrinkage (asymptotically, if biased Σ̂):

α
2 + β

2 = δ
2

,

◮ α2 = distance between ”truth” and shrinkage target
◮ β2 = distance between ”truth” and (unshrunken) estimator
◮ δ2 = distance between (unshrunken) estimator and shrinkage target



A Pythagorean for Shrinkage



Shrinkage Estimation of Covariance Matrices (2)
How to estimate consistently the optimal shrinkage weight W ∗?

W
∗ =

E||Σ̂ − Σ||2

E||αIp − Σ̂||2
∧ 1. (4)

Estimate
◮ α by α̂ = 1

p
tr(Σ̂)

◮ denominator by sample analogue ||αIp − Σ̂||2
◮ numerator by some less direct alternative approach which works even for

correlated data Xt , suggested by Sancetta (2008):

Note that

E||Σ̂ − Σ||2 =
1

p

p∑

i,j

var(Σ̂ij) =
1

p

p∑

i,j

1

T
fij(0) ,

where fij is the spectral density of (the time series) Y
ij
t := Xti Xtj .

Estimate f (ω)(0) via some lag-window smoother over the empirical
autocovariances of Y

ij
t .

The shrinkage estimator Σ̂s
k (based on estimated optimal shrinkage weights)

asymptotically has the same propoerties as the optimal shrinkage estimator
Σs,∗, improving the PRIAL over Σ̂.

Also: both estimators improve the condition number of the matrix Σ̂ defined to
be the ratio of its largest to its smallest eigenvalue.



Covariance estimators built via oracle states
Paradigm: Ignore that state variables St are unknown, develop covariance
shrinkage estimators. Consider

∼
Σ

(0)

k =
1

∑T

t=1 St,k

T∑

t=1

St,kXtX
′
t

=
1

Tk

T∑

t=1

St,kXtX
′
t Oracle State Covariance estimator

Problem of numerical stability if the effective sample size
∑T

t=1 St,k = Tk is not
large enough compared to the dimension of the process p.

Way out: work with

Σ
(0)
k =

1

T

T∑

t=1

St,kXtX
′
t = π

(0)
k

∼
Σ

(0)

k ,

with

π
(0)
k =

1

T

T∑

t=1

St,k ,

Observe that Σ
(0)
k estimates

E Σ
(0)
k = πkΣk

but it is still potentially ill-conditioned: Shrinkage



Shrinkage based Oracle State Covariance Estimator
Goal: Shrink Σ

(0)
k towards αk Ip , with αk = 1

p
tr(πkΣk) which can be

unbiasedly and
√

T−consistently estimated by

α
(0)
k =

1

p
tr Σ

(0)
k .

Let
Σ

s
k = (1 − Wk) Σ

(0)
k + Wk α

(0)
k Ip with 0 ≤ Wk ≤ 1.

and optimize the {Wk} by

∼
W

(0)

k = arg min
Wk∈[0,1]

E||(1 − Wk) Σ
(0)
k + Wk α

(0)
k Ip − πkΣk ||2.

We get

∼
W

(0)

k =
E||Σ(0)

k − πkΣk ||2 −
∑p

i=1 cov(tr Σ
(0)
ii,k , α

(0)
k )

E||α(0)
k Ip − Σ

(0)
k ||2

∧ 1

≈ E||Σ(0)
k − πkΣk ||2

E||α(0)
k Ip − Σ

(0)
k ||2

∧ 1

using that

p∑

i=1

cov(tr Σ
(0)
ii,k , α

(0)
k ) =

1

p
var(tr Σ

(0)
k ) = p E(α

(0)
k − αk)

2 = O
(

p

T

)
.



Estimation of the shrinkage weights

As in Sancetta (2008), estimate the numerator

E||Σ(0)
k − πkΣk ||2

by an estimator of the spectral density fij(ω) of Y
ij,k
t = StkXtiXtj at

frequency ω = 0 .
Reminder: Use lag-window smoothed empirical autocovariances.
Indeed, for K (u) ≥ 0, K (u) = K (−u) and K (0) = 1 and some b > 0

f̂
b
ij,k(0) =

T−1∑

s=−T+1

K
( s

b

)
Γ

(0)
ij,k(s).

Then, we get an estimator of the optimal shrinkage weights W
(0)
k as follows:

Ŵ
(0)
k =

1
p

1
T

∑p

i,j=1 f̂ b
ij,k(0)

∥∥∥Σ(0)
k − α

(0)
k Ip

∥∥∥
2
∧ 1.



Some asymptotic theory

Theorem
Under the above assumptions on St , with E‖εt‖8 < ∞, a kernel K (u) with

”usual” poperties and a bandwidth b = bT → ∞ such that
bT√

T
→ 0. Moreover,

assume, with p fixed,

A1) αk Ip 6= πkΣk

Then

a) W ∗
k =

E||Σ(0)
k − πkΣk ||2

E||αk Ip − Σ
(0)
k ||2

∧ 1 ≍ 1

T

b)
(
Ŵ

(0)
k − W ∗

k

)
= op(T

−1)

c)
∥∥∥Σ̂s

k − πkΣk

∥∥∥ = ‖Σs,∗
k − πkΣk‖ (1 + op(

1√
T

))

That is, the shrinkage estimator Σ̂s
k based on estimated optimal weights Ŵ

(0)
k

is asymptotically as performant as Σ
s,∗
k based on true optimal weights W ∗

k

(and both reduce the risk of the unshrunken estimator Σ
(0)
k ) .



Variations of this Theorem

Asymptotically growing dimension p = p(T ) → ∞:

A2) 1
pγ ‖αk Ip − πkΣk‖2 → c > 0 for some 2 > γ > 0 such that p2−γ

T
→ 0.

Then, with aT = T

p2−γ

a) W ∗
k =

E||Σ(0)
k

−πkΣk ||2

E||αk Ip−Σ
(0)
k

||2
∧ 1 ≍ p2−γ

T

b) aT

(
Ŵ

(0)
k − W ∗

k

)
= op(1)

c)
∥∥∥Σ̂s

k − πkΣk

∥∥∥ = ‖Σs,∗
k − πkΣk‖ (1 + op(

1√
aT

))

Interpretation: Everything is scaled with the amount of cross-covariance
converging to zero with p → ∞.

If µk 6= 0: Estimator µ̂k =
∑

t StkXtk∑
t Stk

leads to additional but asymptotically

vanishing bias.



Oracle estimators: Example with two hidden states

Let
St ∈ {0, 1}, εt ∼ N (0, Ip)

and define
Xt = (StΣ

1/2
1 + (1 − St)Σ

1/2
2 )εt

Additionally,

A = (aij)1≤i,j≤2

=

(
0.95 0.05
0.05 0.95

)

Furthermore
p = 20 T = 256



Let

R1 =





1 .2 .2 .2
.2 1 .2 .2
.2 .2 1 .2
.2 .2 .2 1



 and R2 =





1 .5 .5 .5
.5 1 .5 .5
.5 .5 1 .5
.5 .5 .5 1



 .

and construct the block-diagonal correlation matrix

R =





R1 04 · · · · · · 04

04 R2

. . .
...

...
. . . R1

. . .
...

...
. . . R2 04

04 · · · · · · 04 R1





We then consider

B =
√

5R, D =
√

10I20 and H =





√
1I5 05 · · · 05

05

√
2I5

. . .
...

...
. . .

√
3I5 05

05 · · · 05

√
5I5







1. Distribution of estimated shrinkage weights:

Simulation 1 Simulation 2 Simulation 3

Σ1 = H Σ2 = D Σ1 = B Σ2 = D Σ1 = B Σ2 = H

Mode of estimated shrinkage weight

in State 1/ State 2 in State 1/ State 2 in State 1/ State 2

0.65 / 1.0 0.3 / 1.0 0.3 / 0.65

2. Improvement for Average Loss:

PRIAL(Σ̂s
k) = 100 × E||Σ(0)

k − πkΣk ||2 − E||Σ̂s
k − πkΣk ||2

E||Σ(0)
k − πkΣk ||2

. (5)

which yields

State Covariance Matrix Precision Matrix

Simulation 1
1 49.293 95.626
2 70.876 89.640

Simulation 2
1 22.132 85.653
2 71.837 89.544

Simulation 3
1 19.054 84.965
2 45.727 86.194

Table: PRIALs per state for the covariance matrix and the precision (=inverse
covariance) matrix when the true state is known.



Condition numbers

Let λ1 ≥ . . . ≥ λp be the ordered eigenvalues of a matrix Σ.

cond(Σ) =
λ1

λp

≡ condition number of Σ. (6)

The larger cond(Σ), the more numerically unstable the inversion of the matrix.

Sample Covariance Matrix Shrinkage Estimator     

20

40

60

C
on

di
tio

n 
N

um
be

r
State 1

Sample Covariance Matrix Shrinkage Estimator     

5

10

15

C
on

di
tio

n 
N

um
be

r

State 2

Figure: Comparison of condition numbers for each Monte Carlo iteration in Simulation
1 for (top) state 1 and (bottom) state 2. The mean decreasing trend is shown in red.



Maximum Likelihood Estimation

Recall
St ∈ {0, 1}, εt ∼ N (0, Ip) and define

Xt = (StΣ
1/2
1 + (1 − St)Σ

1/2
2 )εt (7)

Additionally,

A =

(
0.95 0.05
0.05 0.95

)

Given St,k = 1 and

f (Xt , µk ,Σk) =
1

(2π)p/2|Σk |1/2
exp

(
−1

2
(Xt − µk)

′
Σ

−1
k (Xt − µk)

)

= f (Xt | St = ek , λ)

where λ is the vector of parameters for the K different probability density
functions.



More generally, if we were given a hidden sample path S = (S1, . . . , ST ), one
could have defined

L(X1, . . . , XT | λ, S) =
T∏

t=1

f (Xt | St , λ) =
T∏

t=1

(
K∑

k=1

St,k f (Xt , µk ,Σk)

)

and therefore the extended likelihood could have been written as

P(X , S | λ) = L(X1, . . . , XT | λ, S)L(S | λ). (8)

Unfortunately the hidden process is unknown. Therefore,

L(X1, . . . , XT | θ) =
∑

all possible S

P(X , S | θ). (9)

where θ is the vector of parameters of the K different probability distribution
functions and the transition probabilities.

A direct optimization of the likelihood function could be numerically
cumbersome - we prefer to use the EM-Algorithm.



Idea of the EM-Algorithm

Algorithm 1 EM Algorithm

1. Initialize a good starting value of the parameter θ(0)

2. E-Step: Assume the parameter are known and compute the estimated
state variables Ŝt,k (making use of the forward and backward procedure
see e.g. Rabiner (1989))

3. M-Step: Assume the hidden state variables are known and update the
parameter estimates by optimizing the cost function (quasi-likelihood
function) with respect to the unknown parameters

4. Iterate the E-step and M-Step until a stopping criterion is satisfied.



The M-Step

1. Transition probabilities

âi,j =
Expected number of transitions from state i to state j

Expected number of transitions from i to anywhere
, i , j = 1, . . . , K

(10)

2. Initial Distribution

π̂k =

∑
t Ŝt,k

T
(11)

3. State means

µ̂k =

∑
t Ŝt,kXt∑

t Ŝt,k

(12)

4. State covariances

Σ̂
s
k = (1 − Ŵ

(0)
k )Σ

(0)
k + Ŵ

(0)
k α

(0)
k Ip,

where

Σ
(0)
k =

∑
t Ŝt,k(Xt − µ̂k)(Xt − µ̂k)

′

T
, k = 1, . . . , K ,

and then set

Σ̂k =
1

π̂k

Σ̂
s
k .

where Σ̂s
k is the shrinkage estimator.



Histogram Transition Probabilities: Simulation 1
Recall Transition matrix

A =

(
0.95 0.05
0.05 0.95

)

Recall Simulation 1: Σ1 = H Σ2 = D state separation small
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(a) Simulation 1 - Sample Covariance Matrix
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(b) Simulation 1 - Shrinkage Estimator



Histogram Transition Probabilities: Simulation 2

Recall Simulation 2: Σ1 = B Σ2 = D state separation moderate
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(c) Simulation 2 - Sample Covariance Matrix
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(d) Simulation 2 - Shrinkage Estimator



Histogram Transition Probabilities: Simulation 3

Recall Simulation 3: Σ1 = B Σ2 = H state separation larger

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Transition Probability

F
re

q
u

e
n

c
y

Transition Probability Matrix − Sample Covariance Matrix

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

(e) Simulation 3 - Sample Covariance Matrix
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(f) Simulation 3 - Shrinkage Estimator



Sample reconstructed paths - using the Viterbi Algorithm
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(g) Simulation with Σ1 = Σ2 = D
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Sample reconstructed paths (cont’d)
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Data analysis example - revisited
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Analysis of portfolio data - results

◮ BIC indicated 2 states with estimated transition probability matrix (see
paper)

Â =

(
0.9418 0.0582
0.2565 0.7435

)
.

◮ Industry portfolios prefer less volatile state 1 over state 2 (Great
Depression 1930s, dot-com bubble early 2000s, and recent financial crisis
late 2007)

◮ Inspection of the correlation matrix: stronger correlations in state 2
1. ”games and recreation” industry, highly correlated with many of the other

industries;
2. ”chemicals, textiles, construction, steel, machinery, electrical equipment,

automobiles, transportation equipment, and metal mining” correlated with
one another;

3. and with ”business equipment, supplies, transportation, wholesale, retail,
restaurants and hotels, banking and trading”,...
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Figure: Estimated variance-covariance (top) and correlation (bottom) matrix state 1
(left) and 2 (right). The brighter the color, the greater the value.



Conclusion

Shrinkage for Covariance estimation in Hidden Markov Models

◮ improves MSE and

◮ reduces condition number,

◮ in particular when effective sample sizes per state are small (in the order of
dimension p):

◮ allows for numerically more stable and invertible estimators

◮ stabilizes EM and Path reconstruction
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