Shrinkage Estimation for Multivariate Hidden Markov Mixture Models

Rainer von Sachs ISBA, Université catholique de Louvain

Recent Advances in Changepoint Analysis University of Warwick, March 26-28, 2012

Joint work with M. Fiecas (UCSD), J. Franke and J. Tadjuidje (University of Kaiserslautern)

Outline

Introduction and motivating data example

Multivariate Hidden Markov Mixture

Shrinkage Estimation of Covariance Matrices

Specific context of Hidden State Covariance estimation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Numerical performance of the oracle estimators

Beyond the oracle: shrinkage for HMM

Maximum Likelihood Estimation Shrinkage based EM-Algorithm Simulation Studies Data analysis example - revisited

Conclusion

Motivating data analysis

Returns of US Industry Portfolio

- Monthly returns of P = 30 different industry sectors (NYSE, NASDAQ and AMEX)
- T = 1026 time points between July 1926 and December 2011
- Characteristics: changing market environment over time
- Model: Hidden (Markov) states based on pseudo-Gaussian likelihood

$$X_t = \sum_{k=1}^{K} S_{t,k} \, \mathbf{\Sigma}_k^{1/2} \varepsilon_t \, ,$$

US Industry Portfolio

Challenge

- Variance-covariance analysis of (mean-centered) log-returns
- ▶ Due to high dimensionality, sample covariance matrix (30 × 30) possibly not invertible and numerically unstable
- In this work: method to improve this estimator by shrinkage

Shrinkage for covariance estimation

- Developed by Ledoit et al (2004), Sancetta (2008)
- > Can drastically improve the mean-squared error and the condition number

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- (Theory: double asymptotics $P \to \infty$ and $T \to \infty$)
- Our contribution: Use for Hidden Markov mixtures

Multivariate Hidden Markov Mixture

Let S_t be a finite-state Markov chain with values in $\{e_1, \ldots, e_K\}$, where e_i is a unit vector in \mathbb{R}^K and having the *i*th entry equal to 1.

$$P(S_t = e_j | S_{t-1} = e_i, S_{t-2}, \cdots) = P(S_t = e_j | S_{t-1} = e_i) = a_{ij}$$

Let assume

- 1. S_t aperiodic and irreducible, and
- 2. S_t is α -mixing with exponentially decreasing rate.

Then, S_t stationary with distribution given by $\pi_k = P(S_t = e_k)$. We define,

$$X_t = \sum_{k=1}^{K} S_{t,k} (\mu_k + \boldsymbol{\Sigma}_k^{1/2} \varepsilon_t) , \qquad (1)$$

where ε_t i.i.d. $(0, \mathbf{I}_p)$, independent of S_t and $S_{t,k} = 1$ iff $S_t = e_k$. For ease of presentation: $\mu_k = 0 \forall k$.

Some literature: Francq and Roussignol (1997), Yang (2000): Switching Markov VAR; Francq and Zarkoïan (2001): Multivariate Markov switching ARMA; Franke et al (2010, 2011): Mixtures of nonparametric AR, Markov switching AR-ARCH.

Shrinkage Estimation of Covariance Matrices

Goal: Estimate $\pmb{\Sigma}$ by more "regular" estimator than empirical covariance

$$\widehat{\Sigma} = rac{1}{T}\sum_{t=1}^T X_t X_t'$$

Idea (Ledoit et al, 2004, Sancetta, 2008): Shrinkage of $\widehat{\Sigma}$:

$$\widehat{\Sigma}_s = (1 - W) \ \widehat{\Sigma} + W \ \alpha I_p \text{ with } 0 \le W \le 1.$$
 (2)

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Shrink $\widehat{\Sigma}$ towards αI_{ρ} such that $tr(\alpha I_{\rho}) = \mathbb{E} tr \widehat{\Sigma} \approx tr \Sigma$.

Interesting: extreme eigenvalues are shrunken towards the "grand mean" $\frac{\text{tr }\Sigma}{p}$. Although bias is introduced, variance is highly reduced (for *p* large), and the MSE is reduced.

Optimal shrinkage weights

Choose optimal shrinkage weight W by minimizing MSE:

$$W^* = rg\min_{W \in [0,1]} \mathbb{E} || \widehat{\Sigma}_s - oldsymbol{\Sigma} ||^2$$

where $||\mathbf{A}||^2 = \frac{1}{p} \operatorname{tr}(\mathbf{A}\mathbf{A}')$, the scaled Frobenius norm. The solution is

$$W^* = \frac{\mathbb{E}||\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}||^2}{\mathbb{E}||\alpha I_{\rho} - \widehat{\boldsymbol{\Sigma}}||^2} \wedge 1.$$
(3)

ъ

Sac

But: $\widehat{\Sigma}_{s}^{*}$ is not feasible as depending on unknowns, in particular $\alpha = \frac{1}{\rho} \operatorname{tr}(\mathbf{\Sigma})$.

Interpretations:

 W^* is also the PRIAL ("percentage relative improvement of average loss") of $\widehat{\Sigma}_s^*$ over $\widehat{\Sigma}$. It shows that (even under - correct - double asymptotics p and T to infinity) shrinkage is important.

Also, we have a Pythagorean for shrinkage (asymptotically, if biased $\hat{\Sigma}$):

$$\alpha^2 + \beta^2 = \delta^2 ,$$

- $\alpha^2 =$ distance between "truth" and shrinkage target
- $\beta^2 =$ distance between "truth" and (unshrunken) estimator
- $\delta^2 =$ distance between (unshrunken) estimator and shrinkage target

A Pythagorean for Shrinkage

ヘロト ヘ週ト ヘヨト ヘヨト

æ

Shrinkage Estimation of Covariance Matrices (2)

How to estimate consistently the optimal shrinkage weight W^* ?

$$W^* = \frac{\mathbb{E}||\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}||^2}{\mathbb{E}||\alpha I_p - \widehat{\boldsymbol{\Sigma}}||^2} \wedge 1.$$
(4)

Estimate

- α by $\widehat{\alpha} = \frac{1}{p} \operatorname{tr}(\widehat{\Sigma})$
- denominator by sample analogue $|| lpha I_{
 ho} \widehat{\Sigma} ||^2$
- numerator by some less direct alternative approach which works even for correlated data X_t, suggested by Sancetta (2008):

Note that

$$\mathbb{E} ||\widehat{\Sigma} - oldsymbol{\Sigma}||^2 = rac{1}{p} \sum_{i,j}^p \mathsf{var}(\widehat{\Sigma}_{ij}) = rac{1}{p} \sum_{i,j}^p rac{1}{T} f_{ij}(0) \; ,$$

where f_{ij} is the spectral density of (the time series) $Y_t^{ij} := X_{ti} X_{tj}$. Estimate $f(\omega)(0)$ via some lag-window smoother over the empirical autocovariances of Y_t^{ij} .

The shrinkage estimator $\hat{\Sigma}_{k}^{s}$ (based on *estimated* optimal shrinkage weights) asymptotically has the same propoerties as the optimal shrinkage estimator $\Sigma^{s,*}$, improving the PRIAL over $\hat{\Sigma}$.

Also: both estimators improve the *condition number* of the matrix $\widehat{\Sigma}$ defined to be the ratio of its largest to its smallest eigenvalue.

Covariance estimators built via oracle states

Paradigm: Ignore that state variables S_t are unknown, develop covariance shrinkage estimators. Consider

$$\begin{split} \widetilde{\boldsymbol{\Sigma}}_{k}^{(0)} &= \frac{1}{\sum_{t=1}^{T} S_{t,k}} \sum_{t=1}^{T} S_{t,k} X_{t} X_{t}' \\ &= \frac{1}{T_{k}} \sum_{t=1}^{T} S_{t,k} X_{t} X_{t}' \quad \text{Oracle State Covariance estimator} \end{split}$$

Problem of numerical stability if the effective sample size $\sum_{t=1}^{T} S_{t,k} = T_k$ is not large enough compared to the dimension of the process p. Way out: work with

$$\mathbf{\Sigma}_{k}^{(0)} = rac{1}{T} \sum_{t=1}^{T} S_{t,k} X_{t} X_{t}' = \pi_{k}^{(0)} \; \widetilde{\mathbf{\Sigma}}_{k}^{(0)} \; ,$$

with

$$\pi_k^{(0)} = rac{1}{T} \sum_{t=1}^T S_{t,k} \; ,$$

Observe that $\mathbf{\Sigma}_{k}^{(0)}$ estimates

$$\mathbb{E} \, \boldsymbol{\Sigma}_k^{(0)} = \pi_k \boldsymbol{\Sigma}_k$$

but it is still potentially ill-conditioned: Shrinkage

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Shrinkage based Oracle State Covariance Estimator

Goal: Shrink $\Sigma_k^{(0)}$ towards $\alpha_k \mathbf{I}_p$, with $\alpha_k = \frac{1}{p} \operatorname{tr}(\pi_k \Sigma_k)$ which can be unbiasedly and \sqrt{T} -consistently estimated by

$$\alpha_k^{(0)} = \frac{1}{p} \operatorname{tr} \boldsymbol{\Sigma}_k^{(0)}$$

Let

$$\boldsymbol{\Sigma}_k^s = (1 - W_k) \; \boldsymbol{\Sigma}_k^{(0)} \; + W_k \; lpha_k^{(0)} \boldsymbol{\mathsf{I}}_{\boldsymbol{\mathsf{P}}} \quad ext{with } 0 \leq W_k \leq 1.$$

and optimize the $\{W_k\}$ by

$$\widetilde{W}_{k}^{(0)} = \arg \min_{W_{k} \in [0,1]} \mathbb{E} || (1 - W_{k}) \mathbf{\Sigma}_{k}^{(0)} + W_{k} \alpha_{k}^{(0)} \mathbf{I}_{p} - \pi_{k} \mathbf{\Sigma}_{k} ||^{2}.$$

We get

$$\begin{split} \widetilde{W}_{k}^{(0)} &= \frac{\mathbb{E}||\boldsymbol{\Sigma}_{k}^{(0)} - \pi_{k}\boldsymbol{\Sigma}_{k}||^{2} - \sum_{i=1}^{p} \operatorname{cov}(\operatorname{tr}\boldsymbol{\Sigma}_{ii,k}^{(0)}, \alpha_{k}^{(0)})}{\mathbb{E}||\alpha_{k}^{(0)}\boldsymbol{I}_{p} - \boldsymbol{\Sigma}_{k}^{(0)}||^{2}} \wedge 1 \\ &\approx \frac{\mathbb{E}||\boldsymbol{\Sigma}_{k}^{(0)} - \pi_{k}\boldsymbol{\Sigma}_{k}||^{2}}{\mathbb{E}||\alpha_{k}^{(0)}\boldsymbol{I}_{p} - \boldsymbol{\Sigma}_{k}^{(0)}||^{2}} \wedge 1 \end{split}$$

using that

$$\sum_{i=1}^{p} \operatorname{cov}(\operatorname{tr} \boldsymbol{\Sigma}_{ii,k}^{(0)}, \alpha_{k}^{(0)}) = \frac{1}{p} \operatorname{var}(\operatorname{tr} \boldsymbol{\Sigma}_{k}^{(0)}) = p \mathbb{E}(\alpha_{k}^{(0)} - \alpha_{k})^{2} = O\left(\frac{p}{T}\right) .$$

 $) \land \bigcirc$

з.

Estimation of the shrinkage weights

As in Sancetta (2008), estimate the numerator

$$\mathbb{E}||oldsymbol{\Sigma}_k^{(0)} - \pi_koldsymbol{\Sigma}_k||^2$$

by an estimator of the spectral density $f_{ij}(\omega)$ of $Y_t^{ij,k} = S_{tk}X_{ti}X_{tj}$ at frequency $\omega = 0$. Reminder: Use lag-window smoothed empirical autocovariances. Indeed, for $K(u) \ge 0$, K(u) = K(-u) and K(0) = 1 and some b > 0

$$\widehat{f}^{\,b}_{ij,k}(0) = \sum_{s=-\mathcal{T}+1}^{\mathcal{T}-1} \mathcal{K}\left(rac{s}{b}
ight) \mathsf{\Gamma}^{(0)}_{ij,k}(s).$$

Then, we get an estimator of the optimal shrinkage weights $W_k^{(0)}$ as follows:

$$\hat{W}_{k}^{(0)} = rac{rac{1}{p}rac{1}{T}\sum_{i,j=1}^{p}\hat{f}_{ij,k}^{b}(0)}{\left\|oldsymbol{\Sigma}_{k}^{(0)} - lpha_{k}^{(0)}oldsymbol{\mathsf{I}}_{p}
ight\|^{2}} \wedge 1.$$

Some asymptotic theory

Theorem

Under the above assumptions on S_t , with $\mathbb{E} \|\varepsilon_t\|^8 < \infty$, a kernel K(u) with "usual" poperties and a bandwidth $b = b_T \to \infty$ such that $\frac{b_T}{\sqrt{T}} \to 0$. Moreover, assume, with p fixed,

A1) $\alpha_k \mathbf{I}_p \neq \pi_k \mathbf{\Sigma}_k$

Then

a)
$$W_k^* = \frac{\mathbb{E}||\boldsymbol{\Sigma}_k^{(0)} - \pi_k \boldsymbol{\Sigma}_k||^2}{\mathbb{E}||\alpha_k \mathbf{I}_{\rho} - \boldsymbol{\Sigma}_k^{(0)}||^2} \wedge 1 \asymp \frac{1}{T}$$

b) $\left(\hat{W}_k^{(0)} - W_k^*\right) = o_{\rho}(T^{-1})$
c) $\left\|\hat{\boldsymbol{\Sigma}}_k^s - \pi_k \boldsymbol{\Sigma}_k\right\| = \|\boldsymbol{\Sigma}_k^{s,*} - \pi_k \boldsymbol{\Sigma}_k\| \left(1 + o_{\rho}(\frac{1}{\sqrt{T}})\right)$

That is, the shrinkage estimator $\hat{\Sigma}_k^s$ based on estimated optimal weights $\hat{W}_k^{(0)}$ is asymptotically as performant as $\Sigma_k^{s,*}$ based on true optimal weights W_k^* (and both reduce the risk of the unshrunken estimator $\Sigma_k^{(0)}$).

Variations of this Theorem

Asymptotically growing dimension $p = p(T) \to \infty$: A2) $\frac{1}{p^{\gamma}} \|\alpha_k \mathbf{I}_p - \pi_k \mathbf{\Sigma}_k\|^2 \to c > 0$ for some $2 > \gamma > 0$ such that $\frac{p^{2-\gamma}}{T} \to 0$. Then, with $a_T = \frac{T}{p^{2-\gamma}}$ a) $W_k^* = \frac{\mathbb{E}||\mathbf{\Sigma}_k^{(0)} - \pi_k \mathbf{\Sigma}_k||^2}{\mathbb{E}||\alpha_k \mathbf{I}_p - \mathbf{\Sigma}_k^{(0)}||^2} \land 1 \asymp \frac{p^{2-\gamma}}{T}$ b) $a_T \left(\hat{W}_k^{(0)} - W_k^*\right) = o_p(1)$ c) $\left\|\hat{\mathbf{\Sigma}}_k^s - \pi_k \mathbf{\Sigma}_k\right\| = \|\mathbf{\Sigma}_k^{s,*} - \pi_k \mathbf{\Sigma}_k\| (1 + o_p(\frac{1}{\sqrt{a_T}}))$

Interpretation: Everything is scaled with the amount of cross-covariance converging to zero with $p \rightarrow \infty$.

If $\mu_k \neq 0$: Estimator $\hat{\mu}_k = \frac{\sum_t S_{tk} X_{tk}}{\sum_t S_{tk}}$ leads to additional but asymptotically vanishing bias.

Oracle estimators: Example with two hidden states

Let

$$S_t \in \{0,1\}, arepsilon_t \sim \mathcal{N}(0, \mathbf{I}_{
ho})$$

and define

$$X_t = (S_t \boldsymbol{\Sigma}_1^{1/2} + (1 - S_t) \boldsymbol{\Sigma}_2^{1/2}) \varepsilon_t$$

Additionally,

$$\begin{array}{lll} \mathbf{A} & = & (a_{ij})_{1 \leq i,j \leq 2} \\ & = & \begin{pmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{pmatrix} \end{array}$$

Furthermore

$$p = 20$$
 $T = 256$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let

$$\mathbf{R}_1 = \begin{pmatrix} 1 & .2 & .2 & .2 \\ .2 & 1 & .2 & .2 \\ .2 & .2 & 1 & .2 \\ .2 & .2 & .2 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{R}_2 = \begin{pmatrix} 1 & .5 & .5 & .5 \\ .5 & 1 & .5 & .5 \\ .5 & .5 & 1 & .5 \\ .5 & .5 & .5 & 1 \end{pmatrix}.$$

and construct the block-diagonal correlation matrix

$$\mathbf{R} = \begin{pmatrix} \mathbf{R}_{1} & \mathbf{0}_{4} & \cdots & \cdots & \mathbf{0}_{4} \\ \mathbf{0}_{4} & \mathbf{R}_{2} & \ddots & & \vdots \\ \vdots & \ddots & \mathbf{R}_{1} & \ddots & \vdots \\ \vdots & & \ddots & \mathbf{R}_{2} & \mathbf{0}_{4} \\ \mathbf{0}_{4} & \cdots & \cdots & \mathbf{0}_{4} & \mathbf{R}_{1} \end{pmatrix}$$

We then consider

$$\mathbf{B} = \sqrt{5}\mathbf{R}, \quad \mathbf{D} = \sqrt{10}\mathbf{I}_{20} \quad \text{and} \ \mathbf{H} = \begin{pmatrix} \sqrt{1}\mathbf{I}_5 & \mathbf{0}_5 & \cdots & \mathbf{0}_5 \\ \mathbf{0}_5 & \sqrt{2}\mathbf{I}_5 & \ddots & \vdots \\ \vdots & \ddots & \sqrt{3}\mathbf{I}_5 & \mathbf{0}_5 \\ \mathbf{0}_5 & \cdots & \mathbf{0}_5 & \sqrt{5}\mathbf{I}_5 \end{pmatrix}$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへで

1. Distribution of estimated shrinkage weights:

Simulation 1		Simulation 2		Simulation 3	
$\mathbf{\Sigma}_1 = \mathbf{H}$	$\Sigma_2 = D$	$\mathbf{\Sigma}_1 = \mathbf{B}$	$\mathbf{\Sigma}_2 = \mathbf{D}$	$\mathbf{\Sigma}_1 = \mathbf{B}$	$\Sigma_2 = H$

Mode of estimated shrinkage weight

in State 1/ State 2	in State 1/ State 2	in State 1/ State 2
0.65 / 1.0	0.3 / 1.0	0.3 / 0.65

2. Improvement for Average Loss:

$$\mathsf{PRIAL}(\hat{\boldsymbol{\Sigma}}_{k}^{s}) = 100 \times \frac{\mathbb{E}||\boldsymbol{\Sigma}_{k}^{(0)} - \pi_{k}\boldsymbol{\Sigma}_{k}||^{2} - \mathbb{E}||\hat{\boldsymbol{\Sigma}}_{k}^{s} - \pi_{k}\boldsymbol{\Sigma}_{k}||^{2}}{\mathbb{E}||\boldsymbol{\Sigma}_{k}^{(0)} - \pi_{k}\boldsymbol{\Sigma}_{k}||^{2}}.$$
(5)

which yields

	State	Covariance Matrix	Precision Matrix
Simulation 1	1	49.293	95.626
Simulation 1	2	70.876	89.640
Simulation 2	1	22.132	85.653
Simulation 2	2	71.837	89.544
Cimulation 2	1	19.054	84.965
Simulation S	2	45.727	86.194

Table: PRIALs per state for the covariance matrix and the precision (=inverse covariance) matrix when the true state is known.

Condition numbers

Let $\lambda_1 \geq \ldots \geq \lambda_p$ be the ordered eigenvalues of a matrix $\boldsymbol{\Sigma}$.

$$\operatorname{cond}(\mathbf{\Sigma}) = \frac{\lambda_1}{\lambda_p} \equiv \quad \text{condition number of } \mathbf{\Sigma}.$$
 (6)

The larger cond(Σ), the more numerically unstable the inversion of the matrix.

Figure: Comparison of condition numbers for each Monte Carlo iteration in Simulation 1 for (top) state 1 and (bottom) state 2. The mean decreasing trend is shown in red.

Maximum Likelihood Estimation

Recall $S_t \in \{0,1\}, arepsilon_t \sim \mathcal{N}(0, \mathbf{I}_p)$ and define

$$X_t = (S_t \boldsymbol{\Sigma}_1^{1/2} + (1 - S_t) \boldsymbol{\Sigma}_2^{1/2}) \varepsilon_t$$
(7)

Additionally,

$$\mathbf{A} = \begin{pmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{pmatrix}$$

Given $S_{t,k} = 1$ and

$$\begin{array}{ll} f(X_t, \mu_k, \mathbf{\Sigma}_k) &=& \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2} (X_t - \mu_k)' \mathbf{\Sigma}_k^{-1} (X_t - \mu_k)\right) \\ &=& f(X_t \mid S_t = e_k, \lambda) \end{array}$$

where λ is the vector of parameters for the K different probability density functions.

More generally, if we were given a hidden sample path $S = (S_1, \ldots, S_T)$, one could have defined

$$L(X_1,\ldots,X_T \mid \lambda,S) = \prod_{t=1}^T f(X_t \mid S_t,\lambda) = \prod_{t=1}^T \left(\sum_{k=1}^K S_{t,k} f(X_t,\mu_k,\boldsymbol{\Sigma}_k) \right)$$

and therefore the extended likelihood could have been written as

$$P(X, S \mid \lambda) = L(X_1, \dots, X_T \mid \lambda, S)L(S \mid \lambda).$$
(8)

Unfortunately the hidden process is unknown. Therefore,

$$L(X_1,\ldots,X_T \mid \theta) = \sum_{\text{all possible } S} P(X,S \mid \theta).$$
(9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ● ●

where θ is the vector of parameters of the K different probability distribution functions and the transition probabilities.

A direct optimization of the likelihood function could be numerically cumbersome - we prefer to use the *EM-Algorithm*.

Algorithm 1 EM Algorithm

- 1. Initialize a good starting value of the parameter $\theta^{(0)}$
- 2. E-Step: Assume the parameter are known and compute the estimated state variables $\hat{S}_{t,k}$ (making use of the forward and backward procedure see e.g. Rabiner (1989))
- 3. M-Step: Assume the hidden state variables are known and update the parameter estimates by optimizing the cost function (quasi-likelihood function) with respect to the unknown parameters

4. Iterate the E-step and M-Step until a stopping criterion is satisfied.

The M-Step

1. Transition probabilities

$$\hat{a}_{i,j} = \frac{\text{Expected number of transitions from state i to state j}}{\text{Expected number of transitions from i to anywhere}}, i, j = 1, \dots, K$$
(10)

2. Initial Distribution

$$\hat{\pi}_k = \frac{\sum_t \hat{S}_{t,k}}{T} \tag{11}$$

3. State means

$$\hat{\mu}_{k} = \frac{\sum_{t} \hat{S}_{t,k} X_{t}}{\sum_{t} \hat{S}_{t,k}}$$
(12)

(ロ)、(型)、(E)、(E)、 E) の(の)

4. State covariances

$$\hat{\boldsymbol{\Sigma}}_{k}^{s} = (1 - \hat{W}_{k}^{(0)}) \boldsymbol{\Sigma}_{k}^{(0)} + \hat{W}_{k}^{(0)} \alpha_{k}^{(0)} \boldsymbol{I}_{p},$$

where

$$\mathbf{\Sigma}_{k}^{(0)} = rac{\sum_{t} \hat{S}_{t,k} (X_{t} - \hat{\mu}_{k}) (X_{t} - \hat{\mu}_{k})'}{\mathcal{T}}, \ k = 1, \dots, K,$$

and then set

$$\hat{\mathbf{\Sigma}}_k = rac{1}{\hat{\pi}_k} \hat{\mathbf{\Sigma}}_k^s.$$

where $\hat{\boldsymbol{\Sigma}}_{k}^{s}$ is the shrinkage estimator.

Histogram Transition Probabilities: Simulation 1

Recall Transition matrix

$$\mathbf{A} = \begin{pmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{pmatrix}$$

Recall Simulation 1: $\pmb{\Sigma}_1 = \pmb{\mathsf{H}} ~~ \pmb{\Sigma}_2 = \pmb{\mathsf{D}}$ state separation small

Histogram Transition Probabilities: Simulation 2

Recall Simulation 2: $\pmb{\Sigma}_1 = \pmb{B} ~~ \pmb{\Sigma}_2 = \pmb{D}$ state separation moderate

(c) Simulation 2 - Sample Covariance Matrix

(d) Simulation 2 - Shrinkage Estimator

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Histogram Transition Probabilities: Simulation 3

Recall Simulation 3: $\Sigma_1 = \mathbf{B}$ $\Sigma_2 = \mathbf{H}$ state separation larger

(e) Simulation 3 - Sample Covariance Matrix (f) Simulation 3 - Shrinkage Estimator

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sample reconstructed paths - using the Viterbi Algorithm

◆□▶ ◆□▶ ★ □▶ ★ □▶ = 三 の へ ()

Sample reconstructed paths (cont'd)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(i) Simulation 2

Data analysis example - revisited

US Industry Portfolio

500 < □ > < 同 > < 回 >

Analysis of portfolio data - results

 BIC indicated 2 states with estimated transition probability matrix (see paper)

$$\widehat{\mathbf{A}} = \begin{pmatrix} 0.9418 & 0.0582 \\ 0.2565 & 0.7435 \end{pmatrix}$$

- Industry portfolios prefer less volatile state 1 over state 2 (Great Depression 1930s, dot-com bubble early 2000s, and recent financial crisis late 2007)
- Inspection of the correlation matrix: stronger correlations in state 2
 - 1. "games and recreation" industry, highly correlated with many of the other industries;
 - "chemicals, textiles, construction, steel, machinery, electrical equipment, automobiles, transportation equipment, and metal mining" correlated with one another;
 - 3. and with "business equipment, supplies, transportation, wholesale, retail, restaurants and hotels, banking and trading",...

Figure: Estimated variance-covariance (top) and correlation (bottom) matrix state 1 (left) and 2 (right). The brighter the color, the greater the value.

Conclusion

Shrinkage for Covariance estimation in Hidden Markov Models

- improves MSE and
- reduces condition number,
- in particular when effective sample sizes per state are small (in the order of dimension p):

- allows for numerically more stable and invertible estimators
- stabilizes EM and Path reconstruction