## LASSO for structural break estimation in time series

#### Chun Yip Yau

Department of Statistics The Chinese University of Hong Kong Research supported in part by HKSAR-RGC-GRF

27 March 2012

Joint with N.H. Chan (CUHK) and R.M. Zhang (Zhejiang University)

Chun Yip Yau (CUHK)

LASSO for Change-point Estimation

27 March 2012 1 / 36

#### Introduction

- 2 Structural break detection as a high-dimension regression problem
- 3 Theoretical Results
- ④ Simulation Studies

Chun Yip Yau (CUHK)

**5** Applications



## Piecewise Stationary Time Series



- Interpreted as stationary time series with structural changes at  $\{t_1, \ldots, t_m\}$ .
- An intuitive model for non-stationary time series.
- Difficulty in estimation: The optimization

$$\arg\min_{\{t_1, t_2, \dots, t_m\}} \sum_{i=1}^m L(t_i, t_{i+1}),$$

requires  $\binom{n}{m}$  evaluations of  $L(t_i, t_{i+1})$ , the criterion function for the *i*-th segment  $\{y_{t_i+1}, \ldots, y_{t_{i+1}}\}$ .

Literatures:

- Ombao, Raz, Von Sachs and Malow (2001): SLEX transformation (a family of orthogonal transformation) for segmentation.
- Davis, Lee and Rodriguez-Yam (2006,2008): Minimum Description Length (MDL) criterion function and Genetic algorithm for the optimization

$$\arg\min_{\{t_1, t_2, \dots, t_m\}} \sum_{i=1}^m MDL(t_i, t_{i+1}).$$

- Bayesian appraoches: (Lavielle (1998), Punskaya, Andrieu, Doucet and Fitzgerald (2002)).
- Some drawbacks:
  - computationally intensive
  - lack of theoretical justifications

## The Structural Break Autoregressive (SBAR) Model

#### The SBAR model

$$Y_t = \begin{cases} \beta_{1,1}Y_{t-1} + \beta_{1,2}Y_{t-2} + \ldots + \beta_{1,p}Y_{t-p} + \sigma_1\epsilon_t , & \text{if } 1 \le t < \tau_1 , \\ \beta_{2,1}Y_{t-1} + \beta_{2,2}Y_{t-2} + \ldots + \beta_{2,p}Y_{t-p} + \sigma_2\epsilon_t , & \text{if } \tau_1 \le t < \tau_2 , \\ \ldots \\ \beta_{m+1,1}Y_{t-1} + \ldots + \beta_{m+1,p}Y_{t-p} + \sigma_{m+1}\epsilon_t , & \text{if } \tau_m \le t < n , \end{cases}$$

can be reformulated as a high-dimensional regression framework

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} \mathbf{Y}_0^{\mathrm{T}} & 0 & 0 & \dots & 0 \\ \mathbf{Y}_1^{\mathrm{T}} & \mathbf{Y}_1^{\mathrm{T}} & 0 & \dots & 0 \\ \mathbf{Y}_2^{\mathrm{T}} & \mathbf{Y}_2^{\mathrm{T}} & \mathbf{Y}_2^{\mathrm{T}} & \dots & 0 \\ \vdots \\ \mathbf{Y}_{n-1}^{\mathrm{T}} & \mathbf{Y}_{n-1}^{\mathrm{T}} & \mathbf{Y}_{n-1}^{\mathrm{T}} & \mathbf{Y}_{n-1}^{\mathrm{T}} & \dots & \mathbf{Y}_{n-1}^{\mathrm{T}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta}_1 \\ \mathbf{0} \\ \boldsymbol{\beta}_2 - \boldsymbol{\beta}_1 \\ \vdots \\ \boldsymbol{\beta}_{m+1} - \boldsymbol{\beta}_m \\ \mathbf{0} \end{pmatrix} + \begin{pmatrix} \boldsymbol{\sigma}_1 \boldsymbol{\epsilon}_1 \\ \vdots \\ \boldsymbol{\sigma}_2 \boldsymbol{\epsilon}_{\tau_1} \\ \vdots \\ \boldsymbol{\sigma}_{k+1} \boldsymbol{\epsilon}_{\tau_k} \\ \vdots \\ \boldsymbol{\sigma}_{m+1} \boldsymbol{\epsilon}_n \end{pmatrix},$$

#### where

• 
$$\mathbf{Y}_{t-1}^{\mathrm{T}} = (Y_{t-1}, Y_{t-2}, \dots, Y_{t-p})$$
,  
•  $\boldsymbol{\beta}_{k}^{\mathrm{T}} = (\beta_{k,1}, \dots, \beta_{k,p})$ .

Chun Yip Yau (CUHK)

# An *n*-dimensional Regression Problem under Sparsity

#### Write

$$\begin{pmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ \vdots \\ Y_{n} \end{pmatrix} = \begin{pmatrix} \mathbf{Y}_{0}^{\mathrm{T}} & 0 & 0 & \cdots & 0 \\ \mathbf{Y}_{1}^{\mathrm{T}} & \mathbf{Y}_{1}^{\mathrm{T}} & 0 & \cdots & 0 \\ \mathbf{Y}_{2}^{\mathrm{T}} & \mathbf{Y}_{2}^{\mathrm{T}} & \mathbf{Y}_{2}^{\mathrm{T}} & \cdots & 0 \\ \vdots \\ \mathbf{Y}_{n-1}^{\mathrm{T}} & \mathbf{Y}_{n-1}^{\mathrm{T}} & \mathbf{Y}_{n-1}^{\mathrm{T}} & \mathbf{Y}_{n-1}^{\mathrm{T}} & \cdots & \mathbf{Y}_{n-1}^{\mathrm{T}} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \mathbf{0} \\ \beta_{2} - \beta_{1} \\ \vdots \\ \beta_{m+1} - \beta_{m} \\ \mathbf{0} \end{pmatrix} + \begin{pmatrix} \sigma_{1}\epsilon_{1} \\ \vdots \\ \sigma_{2}\epsilon_{\tau_{1}} \\ \vdots \\ \sigma_{k+1}\epsilon_{\tau_{k}} \\ \vdots \\ \sigma_{m+1}\epsilon_{n} \end{pmatrix}$$

as

$$\stackrel{\rightarrow}{\mathbf{Y}}_n = \mathbf{X}_n \boldsymbol{\theta}_n + \mathbf{e}_n \,.$$

- Goal: Want a sparse solution for  $\theta_n$ .
- The non-zero entries of  $\theta_n$  comprise the change-points.
  - Location estimate:  $\mathcal{A}_n := \{\hat{t}_1, \dots, \hat{t}_{\hat{m}}\} = \{t : \theta_t \in \boldsymbol{\theta}_n, \theta_t \neq 0\}.$
  - Parameter estimate:  $\hat{\boldsymbol{\beta}}_k = \sum_{j=1}^{t_k} \theta_j$ .

## LASSO: sparse solution for regression problems

• Goal: Want a sparse solution for  $oldsymbol{ heta}_n$  for

$$\stackrel{\rightarrow}{\mathbf{Y}}_n = \mathbf{X}_n \boldsymbol{ heta}_n + \mathbf{e}_n$$
 .

• LASSO perfectly suits this problem:

• obtain a sparse solution in a computationally efficient way.

LASSO:

$$\arg\min_{\boldsymbol{\theta}_{n}} \frac{1}{n} \left\| \overrightarrow{\mathbf{Y}}_{n} - \mathbf{X}_{n} \boldsymbol{\theta}_{n} \right\|^{2} + \lambda_{n} \sum_{i=1}^{n} \left\| \theta_{i} \right\|,$$

where  $\boldsymbol{\theta}_n = (\theta_1, \dots, \theta_n)$ ,  $\theta_k \in \mathcal{R}^p$ .

- Tibshirani (1996): LASSO  $\longrightarrow \theta_i \in \Re$
- Yuan and Lin (2005): Group LASSO  $\longrightarrow \theta_i \in \Re^p$
- The challenge: dependent data.

#### Assumptions

#### The true model

$$Y_{t} = \begin{cases} \beta_{1,1}^{0} Y_{t-1} + \beta_{1,2}^{0} Y_{t-2} + \ldots + \beta_{1,p}^{0} Y_{t-p} + \sigma_{1}^{0} \epsilon_{t}, & \text{if } 1 \leq t < \tau_{1}^{0}, \\ \beta_{2,1}^{0} Y_{t-1} + \beta_{2,2}^{0} Y_{t-2} + \ldots + \beta_{2,p}^{0} Y_{t-p} + \sigma_{2}^{0} \epsilon_{t}, & \text{if } \tau_{1}^{0} \leq t < \tau_{2}^{0}, \\ \ldots \\ \beta_{m_{0}+1,1}^{0} Y_{t-1} + \beta_{m_{0}+1,2}^{0} Y_{t-2} + \ldots + \beta_{m_{0}+1,p}^{0} Y_{t-p} + \sigma_{m_{0}+1}^{0} \epsilon_{t}, & \text{if } \tau_{m_{0}}^{0} \leq t < n, \end{cases}$$

LASSO:

$$\arg\min_{\boldsymbol{\theta}_n} \frac{1}{n} \left\| \stackrel{\rightarrow}{\mathbf{Y}}_n - \mathbf{X}_n \boldsymbol{\theta}_n \right\|^2 + \lambda_n \sum_{i=1}^n \left\| \theta_i \right\|.$$

Assumptions:

- H1:  $\{\varepsilon_t\}$  i.i.d(0,1) and  $\mathbf{E}|\varepsilon_1|^{4+\delta} < \infty$  for some  $\delta > 0$ .
- H2: All characteristic roots of the AR polynomials are outside the unit circle and  $\min_{1 \le i \le m_0+1} ||\beta_i^0 \beta_{i-1}^0|| > 0.$
- H3:  $\min_{1 \le i \le m_0+1} |\tau_i^0 \tau_{i-1}^0| / (n\gamma_n) \to \infty$  for some  $\gamma_n \to 0$  with  $n^2(n\gamma_n)^{-2-\delta/2} \to 0$  and  $\gamma_n/\lambda_n \to \infty$ .

#### Theorem 1

Consistency of the change-point estimates when the number of change-points is known. Assume H1, H2 and H3, and assume that  $|A_n| = m_0$  is fixed in advance. If  $\lambda_n = 6pC\sqrt{\log n/n}$  for some  $C > 1 + \sqrt{1+2b}$ ,  $b = 2(\max_t EY_t^2 + 1)$ , then

$$P\{\max_{1 \le i \le m_0} |\hat{t}_i - t_i^0| \le n\gamma_n\} \to 1, \quad \text{as } n \to \infty,$$

where 
$$\gamma_n \to 0$$
 with  $n^2(n\gamma_n)^{-2-\delta/2} \to 0$  and  $\gamma_n/\lambda_n \to \infty$ .

#### Remarks:

- It is not possible to estimate  $t_i^0$  consistently.
- ②  $\gamma_n$  is interpreted as the convergence rate for the relative change-point location  $\xi_i^0 = t_i^0/n$ .

 $If E|\varepsilon_1|^q < \infty \text{ for all } q > 0 \text{, then } \gamma_n = O(\frac{\log n}{n}).$ 

When the number of change-points is unknown,

- the number of change-points will not be underestimated.
- for each true change-point  $\tau_k$ , there exists an estimated change-point around its  $n\gamma_n$  neighborhood.

#### Theorem 2

If H1, H2 and H3 holds, then as  $n \to \infty$ ,

 $P\{|\mathcal{A}_n| \ge m_0\} \to 1\,,$ 

#### and

$$P\{\max_{b\in\mathcal{A}}\min_{a\in\mathcal{A}_n}|b-a|\leq n\gamma_n\}\to 1,$$

where  $\gamma_n \to 0$  with  $n^2(n\gamma_n)^{-2-\delta/2} \to 0$  and  $\gamma_n/\lambda_n \to \infty$ ,  $\mathcal{A}$  is the set of true change-points,  $\mathcal{A}_n$  is the set of change-point estimates.

- After applying LASSO, the true change-points are identified in a nγ<sub>n</sub> neighborhood, but the number of change-points may be overestimated, i.e. |A<sub>n</sub>| > m<sub>0</sub>.
- It is natural to choose the best possible subset of  $A_n$  as the estimated change-points, using an information criterion of the form

$$IC(m, \mathbf{t}) = \sum_{j=1}^{m+1} \sum_{t=t_{j-1}}^{t_j-1} (Y_t - \widehat{\widehat{\beta}}_j \mathbf{Y}_{t-1})^2 + m\omega_n,$$

which is a sum of a goodness of fit measure and a penalty term, where  $\hat{\beta}_j$  is the least squares estimator for the segment  $\{t_{j-1}, \ldots, t_j - 1\}$ .

### Two-step estimation procedure

Information criterion:

$$IC(m, \mathbf{t}) = \sum_{j=1}^{m+1} \sum_{t=t_{j-1}}^{t_j-1} (Y_t - \widehat{\beta}_j \mathbf{Y}_{t-1})^2 + m\omega_n.$$

• Using the change-point estimate  $A_n$  from LASSO, we estimate the number and locations of the change points by

$$(\hat{\hat{m}}, \hat{\mathbf{t}}) = \arg \min_{\substack{m \in (0, 1, \dots, |\mathcal{A}_n|), \\ \mathbf{t} = (t_1, \dots, t_m) \subset \mathcal{A}_n}} IC(m, \mathbf{t}).$$

• Examples:

- BIC of Yao (1988)
- MDL of Davis, Lee and Rodgriduez-Yam (2006,2008)
- Computational burden reduces from  $\begin{pmatrix} n \\ m \end{pmatrix}$  to  $2^{|\mathcal{A}_n|}$ .

Consistency of the change-point locations when the number of change-points is unknown:

$$(\hat{\hat{m}}, \hat{\mathbf{t}}) = \arg \min_{\substack{m \in (0, 1, \dots, |\mathcal{A}_n|), \\ \mathbf{t} = (t_1, \dots, t_m) \subset \mathcal{A}_n}} IC(m, \mathbf{t}).$$

#### Theorem 3

Assume that H1, H2 and H3 hold and assume that the penalty term  $\omega_n$  satisfies  $\lim_{n\to\infty} \omega_n / [8m_0 n \gamma_n (\max_{1\leq i\leq n} EY_i^2)] > 1$ . Further assume that  $t_i^0 = [n\xi_i^0]$  with  $\min_{1\leq i\leq m_0} |\xi_i^0 - \xi_{i-1}^0| \geq \varepsilon > 0$ . Then

$$P\{\widehat{\widehat{m}} = m_0\} \quad \to \quad 1\,,$$

and

$$P\{\max_{1 \le i \le m_0} |\widehat{t}_i - t_i^0| \le n\gamma_n\} \to 1.$$

When the number of change-points is unknown, the estimator is

$$(\hat{\hat{m}}, \hat{\mathbf{t}}) = \arg \min_{\substack{m \in (0, 1, \dots, |\mathcal{A}_n|), \\ \mathbf{t} = (t_1, \dots, t_m) \subset \mathcal{A}_n}} IC(m, \mathbf{t}) \,.$$

- It requires  $2^{|\mathcal{A}_n|}$  evaluations of the IC.
- If  $2^{|\mathcal{A}_n|}$  is too large we can further simplify the computation by the *backward elimination algorithm* (BEA).
- BEA further reduces the computational order from  $2^{|\mathcal{A}_n|}$  to  $|\mathcal{A}_n|^2$ .

### Backward Elimination Algorithm (BEA)

- The BEA starts with the set of change-points  $\mathcal{A}_n$ , then
- removes the "most redundant" change-point that corresponds to the largest reduction of the *IC*.
- repeat successively until no further removal is possible.

**9** Set 
$$K = |\mathcal{A}_n|$$
,  $\mathbf{t}_K := (t_{K,1}, \ldots, t_{K,K}) = \mathcal{A}_n$  and  $V_K^* = IC(K, \mathcal{A}_n)$ .

- **2** For  $i = 1, \ldots, K$ , compute  $V_{K,i} = IC(K 1, \mathbf{t}_K \setminus \{t_{K,i}\})$ . Set  $V_{K-1}^* = \min_i V_{K,i}$ .
- If  $V_{K-1}^* > V_K^*$ , then the estimated locations of change-points are  $\mathcal{A}_n^* = \mathbf{t}_K$ .
  - If  $V_{K-1}^* \leq V_K^*$  and K = 1, then  $\mathcal{A}_n^* = \emptyset$ . That is, there is no change-point in the time series.
  - If  $V_{K-1}^* \leq V_K^*$  and K > 1, then set  $j = \arg\min_i V_{K,i}$ ,  $\mathbf{t}_{K-1} := \mathbf{t}_K \setminus \{t_{K-1,j}\}$  and K = K - 1. Go to step 2.

Example

• LASSO gives the estimate  $\mathcal{A}_n = (\hat{t}_1, \hat{t}_2, \hat{t}_3)$ .

• 
$$V_3^* = IC(3, \mathcal{A}_n) = 10.$$

1. Removing one point:

i. 
$$V_{3,1} = IC(2, (\hat{t}_1, \hat{t}_2)) = 11.$$
  
ii.  $V_{3,2} = IC(2, (\hat{t}_1, \hat{t}_3)) = 10.5.$   
iii.  $V_{3,3} = IC(2, (\hat{t}_2, \hat{t}_3)) = 9.$   
•  $V_2^* = \min_i V_{3,i} = 9 <= V_3^* = 10$ , proceed for further reduction.

2. Removing one more point:

i. 
$$V_{2,1} = IC(1, (\hat{t}_2)) = 10$$
  
ii.  $V_{2,2} = IC(1, (\hat{t}_3)) = 9.5$ .  
•  $V_1^* = \min_i V_{2,i} = 9.5 > V_2^* = 9$ 

• Conclude that  $\hat{\hat{m}} = 2$ ,  $\hat{\hat{t}} = (\hat{t}_2, \hat{t}_3)$ .

Consistency of the change-point estimates when the number of change-points is unknown:

#### Theorem 4

Let  $\mathcal{A}_n^* =: (\hat{t}_i^*, \dots, \hat{t}_{|\mathcal{A}_n^*|}^*)$  be the estimate obtained from BEA. Under the conditions of Theorem 3, we have

$$P\{|\mathcal{A}_n^*| = m_0\} \quad \to \quad 1\,,$$

and

$$P\{\max_{1\leq i\leq m_0}|\hat{t}_i^* - t_i^0| \leq n\gamma_n\} \to 1.$$

## Summary: Two-step procedure of change-point estimation

• First Step: Get a possibly overestimated locations estimator  $\mathcal{A}_n$  from the LASSO

$$\arg\min_{\boldsymbol{\theta}_{n}} \frac{1}{n} \left\| \overrightarrow{\mathbf{Y}}_{n} - \mathbf{X}_{n} \boldsymbol{\theta}_{n} \right\|^{2} + \lambda_{n} \sum_{i=1}^{n} \left\| \theta_{i} \right\|,$$

• Second Step: Select the best subset of change-points from  $\mathcal{A}_n$  by the Information Criterion

$$(\hat{\hat{m}}, \hat{\mathbf{t}}) = \arg \min_{\substack{m \in (0, 1, \dots, |\mathcal{A}_n|), \\ \mathbf{t} = (t_1, \dots, t_m) \subset \mathcal{A}_n}} IC(m, \mathbf{t}).$$

- If  $2^{|\mathcal{A}_n|}$  is not large, then all possible subsets can be evaluated.
- Otherwise, Backward Elimination Algorithm can be used to obtain the location estimates.

• Consistency:

$$\begin{split} P\{|\mathcal{A}_n^*| = m_0\} &\to 1,\\ \text{and} \quad P\{\max_{1 \leq i \leq m_0} |\hat{t}_i^* - t_i^0| \leq n\gamma_n\} &\to 1. \end{split}$$

## Computational Issues of Group LASSO

Two fast implementations of group LASSO in the first step:

$$\arg\min_{\boldsymbol{\theta}_n} \frac{1}{n} \left\| \overrightarrow{\mathbf{Y}}_n - \mathbf{X}_n \boldsymbol{\theta}_n \right\|^2 + \lambda_n \sum_{i=1}^n \left\| \boldsymbol{\theta}_i \right\|.$$

- 1 Exact Solution by block coordinate descent. (Yuan & Lin (2006), Fu (1998)):
  - iteratively solving estimating equations
  - converges to the global optimum
  - stable and efficient
- 2 Approximate Solution by group Least Angle Regression (LARS). (Erfon et al. (2004), Yuan & Lin (2006)):
  - add the "most correlated" covariate one by one.
  - computationally more efficient.
  - well approximates the solution of group LASSO in many cases.

• When p = 1, LARS algorithm gives the exact solution of LASSO.

- A stationary AR(p) model is assumed in each segment.
- The theoretical results hold if p is greater than the maximum order among all segments.
- In practice, a large p (e.g., p=10) is used in the two-step estimation procedure.
- After the change-points are detected, standard model selection procedure can be applied for each segment.
- Since the convergence rate of change-point locations is faster than  $n^{-1/2}$ , the model selection has the same asymptotic properties as the no-change-point case.

# Example 1. Compare to Davis, Lee and Rodgriduez-Yam (2006)

• True model:

$$Y_t = \begin{cases} 0.9Y_{t-1} + \epsilon_t , & \text{if } 1 \le t \le 512 ,\\ 1.69Y_{t-1} - 0.81Y_{t-2} + \epsilon_t , & \text{if } 513 \le t \le 768 ,\\ 1.32Y_{t-1} - 0.81Y_{t-2} + \epsilon_t , & \text{if } 769 \le t \le 1024 . \end{cases}$$



Time Series

Chun Yip Yau (CUHK)

# Example 1. Compare to Davis, Lee and Rodgriduez-Yam (2006)

- True relative location of change-points =  $(\frac{512}{1024}, \frac{768}{1024}) = (0.5, 0.75).$
- Replications: 200.

| Number of | A    | uto-PAR | M     |     | Two-Step |       |  |  |
|-----------|------|---------|-------|-----|----------|-------|--|--|
| segments  | (%)  | Mean    | SE    | (%) | Mean     | SE    |  |  |
| 3         | 96.0 | 0.500   | 0.007 | 100 | 0.500    | 0.012 |  |  |
|           |      | 0.750   | 0.005 |     | 0.750    | 0.011 |  |  |
| 4         | 4.0  | 0.496   | 0.004 | 0   |          |       |  |  |
|           |      | 0.566   | 0.108 |     |          |       |  |  |
|           |      | 0.752   | 0.003 |     |          |       |  |  |

# Example 2. Compare to Davis, Lee and Rodgriduez-Yam (2006)

True model:

$$Y_t = \begin{cases} 0.75Y_{t-1} + \epsilon_t \,, & \text{if } 1 \le t \le 50 \,, \\ -0.5Y_{t-1} + \epsilon_t \,, & \text{if } 51 \le t \le 1024 \,. \end{cases}$$



# Example 2. Compare to Davis, Lee and Rodgriduez-Yam (2006)

- True relative location of change-points =  $(\frac{50}{1024}) = (0.0488)$ .
- Replications: 200.

| Number of | Auto-PARM |         |       |     | Two-Step |       |  |  |
|-----------|-----------|---------|-------|-----|----------|-------|--|--|
| segments  | (%)       | Mean SE |       | (%) | Mean     | SE    |  |  |
| 2         | 100       | 0.042   | 0.004 | 100 | 0.049    | 0.004 |  |  |

## Example 3. Long time series with many change-points

#### • True model:

$$Y_t = \begin{cases} 0.9Y_{t-1} + \epsilon_t, & \text{if } 1 \le t \le t_1, \\ 1.69Y_{t-1} - 0.81Y_{t-2} + \epsilon_t, & \text{if } t_1 \le t \le t_2, \\ 1.32Y_{t-1} - 0.81Y_{t-2} + \epsilon_t, & \text{if } t_2 \le t \le t_3, \\ 0.7Y_{t-1} - 0.2Y_{t-2} + \epsilon_t, & \text{if } t_3 \le t \le t_4, \\ 0.1Y_{t-1} - 0.3Y_{t-2} + \epsilon_t, & \text{if } t_4 \le t \le t_5, \\ 0.9Y_{t-1} + \epsilon_t, & \text{if } t_5 \le t \le t_6, \\ 1.32Y_{t-1} - 0.81Y_{t-2} + \epsilon_t, & \text{if } t_6 \le t \le t_7, \\ 0.25Y_{t-1} + \epsilon_t, & \text{if } t_7 \le t \le t_8, \\ -0.5Y_{t-1} + 0.1Y_{t-2} + \epsilon_t, & \text{if } t_8 \le t \le T. \end{cases}$$

- Three scenarios of relative change-point locations.
  - $\tau = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8)$
  - $\tau = (0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5)$
  - $\tau = (0.1, 0.2, 0.25, 0.3, 0.5, 0.8, 0.9, 0.95)$

## Example 3. Long time series with many change-points

• Scenario 1:  $\tau = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8); n = 10,000.$ 



• Scenario 2:  $\boldsymbol{\tau} = (0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5); n = 20,000.$ 



• Scenario 3:  $\boldsymbol{\tau} = (0.1, 0.2, 0.25, 0.3, 0.5, 0.8, 0.9, 0.95); n = 50,000.$ 



Chun Yip Yau (CUHK)

LASSO for Change-point Estimation

27 March 2012 26 / 36

#### Results from two-step estimation procedure. Replication=200.

|                       | Scenario 1 |        |        | Scenario 2 |        |         | Scenario 3 |        |         |
|-----------------------|------------|--------|--------|------------|--------|---------|------------|--------|---------|
| T                     | 10000      |        |        | 20000      |        |         | 50000      |        |         |
| Computing Time        | 4s         |        |        | 7s         |        |         | 18s        |        |         |
| $\%$ of $\hat{m} = 8$ | 90         |        |        | 84         |        |         | 92         |        |         |
|                       | True       | Mean   | SE     | True       | Mean   | SE      | True       | Mean   | SE      |
| $t_1/T$               | 0.1        | 0.1022 | 0.0091 | 0.1        | 0.1001 | 0.0010  | 0.1        | 0.1020 | 0.0129  |
| $t_2/T$               | 0.2        | 0.2008 | 0.0012 | 0.2        | 0.1998 | 0.00042 | 0.2        | 0.1999 | 0.00018 |
| $t_3/T$               | 0.3        | 0.3001 | 0.0010 | 0.25       | 0.2499 | 0.00048 | 0.25       | 0.2500 | 0.00020 |
| $t_4/T$               | 0.4        | 0.3942 | 0.0088 | 0.3        | 0.2984 | 0.0032  | 0.3        | 0.2998 | 0.00039 |
| $t_5/T$               | 0.5        | 0.4999 | 0.0012 | 0.35       | 0.3501 | 0.00090 | 0.5        | 0.4999 | 0.00020 |
| $t_6/T$               | 0.6        | 0.5999 | 0.0010 | 0.4        | 0.4001 | 0.00081 | 0.8        | 0.7999 | 0.00026 |
| $t_7/T$               | 0.75       | 0.7501 | 0.0011 | 0.45       | 0.4501 | 0.00057 | 0.9        | 0.9000 | 0.00021 |
| $t_8/T$               | 0.8        | 0.7998 | 0.0016 | 0.5        | 0.4998 | 0.00070 | 0.95       | 0.9499 | 0.00044 |

# Electroencephalogram (EEG) Time Series

- EEG is the recording of electrical activity along the scalps of a subject.
- It measures voltage fluctuations resulting from ionic current flows within the neurons of the brain.
- use for medical diagnostics:
  - epilepsy
  - tumors
  - stroke
  - brain disorders ...



Mayo Foundation for Medical Education and Research. All rights reserved.

Chun Yip Yau (CUHK)

LASSO for Change-point Estimation

27 March 2012 28 / 36

## Electroencephalogram (EEG) Time Series

- The following EEG is recorded from a female patient diagnosed with left temporal lobe epilepsy.
- Data collection:
  - Sampling rate: 100Hz,
  - Recording period: 5 minutes and 28 seconds,
  - Sample size: *n*=32,768.
- Investigated by Ombao *et al.* (2000) and Davis, Lee and Rodriguez-Yam (2006).
- Results of Two-step LASSO procedure:



| Locations of change points (seconds) |       |       |       |       |       |       |       |       |       |       |       |
|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                      | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    |
| Two-step                             | 184.2 | 206.1 | 220.0 | 234.2 | 255.4 | 276.7 | 305.7 | 325.0 | -     | -     | -     |
| Auto-PARM                            | 185.8 | 189.6 | 206.2 | 220.9 | 233.0 | 249.0 | 261.6 | 274.6 | 306.0 | 308.4 | 325.8 |

#### • Estimated starting time for seizure:

- Neurologist: t=185s.
- Auto-PARM: *t*=185.8s.
- LASSO Two-step: *t*=184.23s.

## Electroencephalogram (EEG) Time Series





• MDL+Genetic algorithm (Davis, Lee and Rodriguez-Yam (2005))



## Standard & Poor's 500 Index

- From Jan 2, 2004 to April 29, 2011.
- Structural changes in Volatility.



- Applications of LASSO procedure for structural changes in volatility.
  - Two-step LASSO procedure assumes piecewise stationary time series with an autoregressive structure.
  - Volatility is modeled by GARCH processes.
  - The square of the GARCH process is an ARMA process, which can in turn be approximated by AR processes.
  - Thus, the LASSO procedure can be applied to the squares of the log-return process of S&P500 series for change-point detection.

### Standard & Poor's 500 Index

#### Results:



## Standard & Poor's 500 Index



Interpretations of the three estimated change-points:

- July 10, 2007
  - Standard and Poor's placed 612 securities backed by subprime residential mortgages on a credit watch preluded the panic of the market.
- September 15, 2008
  - Lehman Brothers Holdings incorporated filed for bankruptcy protection triggered the financial crisis.
- April 7, 2009
  - Quantitative Easing (QE) policy.
  - US Federal Reserve gradually purchased around \$ 1 trillion debt, Mortgage-backed securities and Treasury notes in the early 2009 stabilized the market.

Chun Yip Yau (CUHK)

27 March 2012 34 / 36

- Two step change point estimation procedure.
  - First step: LASSO for screening out the change-points.
  - Second step: Change-point estimation by Information Criterion.
- Consistency is proved for:
  - the estimated number of change-points.
  - the estimated locations of change-point.
- Computational efficiency:
  - LASSO: efficient.
  - LARS approximation: highly efficient.

#### Thank You!

æ

・ロト ・聞ト ・ヨト ・ヨト