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Piecewise Stationary Time Series

Time Series

Time
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Interpreted as stationary time series with structural changes at
{t1, . . . , tm}.
An intuitive model for non-stationary time series.
Difficulty in estimation: The optimization

arg min
{t1,t2,...,tm}

m∑
i=1

L(ti, ti+1) ,

requires

(
n
m

)
evaluations of L(ti, ti+1), the criterion function for

the i-th segment {yti+1, . . . , yti+1}.
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Estimation of Piecewise Stationary Time Series

Literatures:

Ombao, Raz, Von Sachs and Malow (2001): SLEX transformation (a
family of orthogonal transformation) for segmentation.

Davis, Lee and Rodriguez-Yam (2006,2008): Minimum Description
Length (MDL) criterion function and Genetic algorithm for the
optimization

arg min
{t1,t2,...,tm}

m∑
i=1

MDL(ti, ti+1) .

Bayesian appraoches: (Lavielle (1998), Punskaya, Andrieu, Doucet
and Fitzgerald (2002)).

Some drawbacks:

computationally intensive
lack of theoretical justifications
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The Structural Break Autoregressive (SBAR) Model

The SBAR model

Yt =


β1,1Yt−1 + β1,2Yt−2 + . . .+ β1,pYt−p + σ1εt , if 1 ≤ t < τ1 ,
β2,1Yt−1 + β2,2Yt−2 + . . .+ β2,pYt−p + σ2εt , if τ1 ≤ t < τ2 ,
. . . . . .
βm+1,1Yt−1 + . . .+ βm+1,pYt−p + σm+1εt , if τm ≤ t < n ,

can be reformulated as a high-dimensional regression framework
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+
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σk+1ετk
...

σm+1εn


,

where

YT
t−1 = (Yt−1, Yt−2, . . . , Yt−p) ,

βT
k = (βk,1, . . . , βk,p) .
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An n-dimensional Regression Problem under Sparsity

Write
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

σ1ε1
...

σ2ετ1
...

σk+1ετk
...

σm+1εn


as

→
Yn= Xnθn + en .

Goal: Want a sparse solution for θn.

The non-zero entries of θn comprise the change-points.
Location estimate: An := {t̂1, . . . , t̂m̂} = {t : θt ∈ θn, θt 6= 0}.
Parameter estimate: β̂k =

∑t̂k
j=1 θj .
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LASSO: sparse solution for regression problems

Goal: Want a sparse solution for θn for

→
Yn= Xnθn + en .

LASSO perfectly suits this problem:

obtain a sparse solution in a computationally efficient way.

LASSO:

argmin
θn

1

n

∥∥∥→Yn −Xnθn

∥∥∥2 + λn

n∑
i=1

‖θi‖ ,

where θn = (θ1, . . . , θn), θk ∈ Rp.

Tibshirani (1996): LASSO −→ θi ∈ <
Yuan and Lin (2005): Group LASSO −→ θi ∈ <p

The challenge: dependent data.
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Assumptions

The true model

Yt =


β0
1,1Yt−1 + β0

1,2Yt−2 + . . .+ β0
1,pYt−p + σ0

1εt , if 1 ≤ t < τ01 ,
β0
2,1Yt−1 + β0

2,2Yt−2 + . . .+ β0
2,pYt−p + σ0

2εt , if τ01 ≤ t < τ02 ,
. . . . . .
β0
m0+1,1Yt−1 + β0

m0+1,2Yt−2 + . . .+ β0
m0+1,pYt−p + σ0

m0+1εt , if τ0m0
≤ t < n ,

LASSO:

argmin
θn

1

n

∥∥∥→Yn −Xnθn

∥∥∥2 + λn

n∑
i=1

‖θi‖ .

Assumptions:

H1: {εt} i.i.d(0, 1) and E|ε1|4+δ <∞ for some δ > 0.

H2: All characteristic roots of the AR polynomials are outside the
unit circle and min1≤i≤m0+1 ||β0

i − β0
i−1|| > 0.

H3: min1≤i≤m0+1 |τ0i − τ0i−1|/(nγn)→∞ for some γn → 0 with

n2(nγn)
−2−δ/2 → 0 and γn/λn →∞.
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Theorem 1

Consistency of the change-point estimates when the number of
change-points is known. Assume H1, H2 and H3, and assume that
|An| = m0 is fixed in advance. If λn = 6pC

√
log n/n for some

C > 1 +
√
1 + 2b, b = 2(maxt EY

2
t + 1), then

P{ max
1≤i≤m0

|t̂i − t0i | ≤ nγn} → 1, as n→∞,

where γn → 0 with n2(nγn)
−2−δ/2 → 0 and γn/λn →∞.

Remarks:

1 It is not possible to estimate t0i consistently.

2 γn is interpreted as the convergence rate for the relative change-point
location ξ0i = t0i /n.

3 If E|ε1|q <∞ for all q > 0, then γn = O( lognn ).
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When the number of change-points is unknown,

the number of change-points will not be underestimated.

for each true change-point τk, there exists an estimated change-point
around its nγn neighborhood.

Theorem 2

If H1, H2 and H3 holds, then as n→∞,

P{|An| ≥ m0} → 1 ,

and

P{max
b∈A

min
a∈An

|b− a| ≤ nγn} → 1,

where γn → 0 with n2(nγn)
−2−δ/2 → 0 and γn/λn →∞, A is the set of

true change-points, An is the set of change-point estimates.

Chun Yip Yau (CUHK) LASSO for Change-point Estimation 27 March 2012 10 / 36



Two-step Estimation Procedure

After applying LASSO, the true change-points are identified in a nγn
neighborhood, but the number of change-points may be
overestimated, i.e. |An| > m0.

It is natural to choose the best possible subset of An as the estimated
change-points, using an information criterion of the form

IC(m, t) =

m+1∑
j=1

tj−1∑
t=tj−1

(Yt −
̂̂
βjYt−1)

2 +mωn ,

which is a sum of a goodness of fit measure and a penalty term, wherê̂
βj is the least squares estimator for the segment {tj−1, . . . , tj − 1}.
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Two-step estimation procedure

Information criterion:

IC(m, t) =

m+1∑
j=1

tj−1∑
t=tj−1

(Yt −
̂̂
βjYt−1)

2 +mωn .

Using the change-point estimate An from LASSO, we estimate the
number and locations of the change points by

( ˆ̂m, ˆ̂t) = arg min
m∈(0,1,...,|An|),
t=(t1,...,tm)⊂An

IC(m, t) .

Examples:
BIC of Yao (1988)
MDL of Davis, Lee and Rodgriduez-Yam (2006,2008)

Computational burden reduces from

(
n
m

)
to 2|An|.
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Consistency of the change-point locations when the number of
change-points is unknown:

( ˆ̂m, ˆ̂t) = arg min
m∈(0,1,...,|An|),
t=(t1,...,tm)⊂An

IC(m, t) .

Theorem 3

Assume that H1, H2 and H3 hold and assume that the penalty term ωn
satisfies limn→∞ ωn/[8m0nγn(max1≤i≤n EY

2
i )] > 1. Further assume that

t0i = [nξ0i ] with min1≤i≤m0 |ξ0i − ξ0i−1| ≥ ε > 0. Then

P{ ̂̂m = m0} → 1 ,

and

P{ max
1≤i≤m0

|̂t̂i − t0i | ≤ nγn} → 1.
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Two-step Estimation Procedure

When the number of change-points is unknown, the estimator is

( ˆ̂m, ˆ̂t) = arg min
m∈(0,1,...,|An|),
t=(t1,...,tm)⊂An

IC(m, t) .

It requires 2|An| evaluations of the IC.

If 2|An| is too large we can further simplify the computation by the
backward elimination algorithm (BEA).

BEA further reduces the computational order from 2|An| to |An|2.
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Backward Elimination Algorithm (BEA)

The BEA starts with the set of change-points An, then

removes the “most redundant” change-point that corresponds to the
largest reduction of the IC.

repeat successively until no further removal is possible.

1 Set K = |An|, tK := (tK,1, . . . , tK,K) = An and V ∗K = IC(K,An).
2 For i = 1, . . . ,K, compute VK,i = IC(K − 1, tK\{tK,i}). Set
V ∗K−1 = mini VK,i.

3 If V ∗K−1 > V ∗K , then the estimated locations of change-points are
A∗n = tK .
If V ∗K−1 ≤ V ∗K and K = 1, then A∗n = ∅. That is, there is no
change-point in the time series.
If V ∗K−1 ≤ V ∗K and K > 1, then set j = argmini VK,i,
tK−1 := tK\{tK−1,j} and K = K − 1. Go to step 2.
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Backward Elimination Algorithm (BEA)

Example

LASSO gives the estimate An = (t̂1, t̂2, t̂3).

V ∗3 = IC(3,An) = 10.

1. Removing one point:

i. V3,1 = IC(2, (t̂1, t̂2)) = 11.
ii. V3,2 = IC(2, (t̂1, t̂3)) = 10.5.
iii. V3,3 = IC(2, (t̂2, t̂3)) = 9.

V ∗2 = mini V3,i = 9 <= V ∗3 = 10, proceed for further reduction.

2. Removing one more point:

i. V2,1 = IC(1, (t̂2)) = 10
ii. V2,2 = IC(1, (t̂3)) = 9.5.

V ∗1 = mini V2,i = 9.5 > V ∗2 = 9

Conclude that ˆ̂m = 2, ˆ̂t = (t̂2, t̂3).
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Consistency of the change-point estimates when the number of
change-points is unknown:

Theorem 4

Let A∗n =: (t̂∗i , . . . , t̂
∗
|A∗
n|
) be the estimate obtained from BEA. Under the

conditions of Theorem 3, we have

P{|A∗n| = m0} → 1 ,

and

P{ max
1≤i≤m0

|t̂∗i − t0i | ≤ nγn} → 1.
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Summary: Two-step procedure of change-point estimation

First Step: Get a possibly overestimated locations estimator An from
the LASSO

argmin
θn

1

n

∥∥∥→Yn −Xnθn

∥∥∥2 + λn

n∑
i=1

‖θi‖ ,

Second Step: Select the best subset of change-points from An by the
Information Criterion

( ˆ̂m, ˆ̂t) = arg min
m∈(0,1,...,|An|),
t=(t1,...,tm)⊂An

IC(m, t) .

If 2|An| is not large, then all possible subsets can be evaluated.
Otherwise, Backward Elimination Algorithm can be used to obtain the
location estimates.

Consistency:

P{|A∗n| = m0} → 1 ,

and P{ max
1≤i≤m0

|t̂∗i − t0i | ≤ nγn} → 1.
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Computational Issues of Group LASSO

Two fast implementations of group LASSO in the first step:

argmin
θn

1

n

∥∥∥→Yn −Xnθn

∥∥∥2 + λn

n∑
i=1

‖θi‖ .

1 Exact Solution by block coordinate descent. (Yuan & Lin (2006),
Fu (1998)):

iteratively solving estimating equations
converges to the global optimum
stable and efficient

2 Approximate Solution by group Least Angle Regression (LARS).
(Erfon et al. (2004), Yuan & Lin (2006)):

add the “most correlated” covariate one by one.
computationally more efficient.
well approximates the solution of group LASSO in many cases.

When p = 1, LARS algorithm gives the exact solution of LASSO.
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Model Selection in each segment

A stationary AR(p) model is assumed in each segment.

The theoretical results hold if p is greater than the maximum order
among all segments.

In practice, a large p (e.g., p = 10) is used in the two-step estimation
procedure.

After the change-points are detected, standard model selection
procedure can be applied for each segment.

Since the convergence rate of change-point locations is faster than
n−1/2, the model selection has the same asymptotic properties as the
no-change-point case.
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Example 1. Compare to Davis, Lee and
Rodgriduez-Yam (2006)

True model:

Yt =

 0.9Yt−1 + εt , if 1 ≤ t ≤ 512 ,
1.69Yt−1 − 0.81Yt−2 + εt , if 513 ≤ t ≤ 768 ,
1.32Yt−1 − 0.81Yt−2 + εt , if 769 ≤ t ≤ 1024 .

Time Series

Time

0 200 400 600 800 1000
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0

−5
0

5
10

15
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Example 1. Compare to Davis, Lee and
Rodgriduez-Yam (2006)

True relative location of change-points = ( 512
1024 ,

768
1024) = (0.5, 0.75).

Replications: 200.

Number of Auto-PARM Two-Step
segments (%) Mean SE (%) Mean SE

3 96.0 0.500 0.007 100 0.500 0.012
0.750 0.005 0.750 0.011

4 4.0 0.496 0.004 0
0.566 0.108
0.752 0.003
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Example 2. Compare to Davis, Lee and
Rodgriduez-Yam (2006)

True model:

Yt =

{
0.75Yt−1 + εt , if 1 ≤ t ≤ 50 ,
−0.5Yt−1 + εt , if 51 ≤ t ≤ 1024 .

Time Series

Time

0 200 400 600 800 1000

−2
0
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4
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Example 2. Compare to Davis, Lee and
Rodgriduez-Yam (2006)

True relative location of change-points = ( 50
1024) = (0.0488).

Replications: 200.

Number of Auto-PARM Two-Step
segments (%) Mean SE (%) Mean SE

2 100 0.042 0.004 100 0.049 0.004
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Example 3. Long time series with many change-points

True model:

Yt =



0.9Yt−1 + εt, if 1 ≤ t ≤ t1,
1.69Yt−1 − 0.81Yt−2 + εt, if t1 ≤ t ≤ t2,
1.32Yt−1 − 0.81Yt−2 + εt, if t2 ≤ t ≤ t3,
0.7Yt−1 − 0.2Yt−2 + εt, if t3 ≤ t ≤ t4,
0.1Yt−1 − 0.3Yt−2 + εt, if t4 ≤ t ≤ t5,
0.9Yt−1 + εt, if t5 ≤ t ≤ t6,
1.32Yt−1 − 0.81Yt−2 + εt, if t6 ≤ t ≤ t7,
0.25Yt−1 + εt, if t7 ≤ t ≤ t8,
−0.5Yt−1 + 0.1Yt−2 + εt, if t8 ≤ t ≤ T.

Three scenarios of relative change-point locations.

τ =(0.1,0.2,0.3,0.4,0.5,0.6,0.75,0.8)
τ =(0.1,0.2,0.25,0.3,0.35,0.4,0.45,0.5)
τ =(0.1,0.2,0.25,0.3,0.5,0.8,0.9,0.95)
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Example 3. Long time series with many change-points

Scenario 1: τ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8);n = 10, 000.
Time Series
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Scenario 2: τ = (0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5);n = 20, 000.
Time Series
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Scenario 3: τ = (0.1, 0.2, 0.25, 0.3, 0.5, 0.8, 0.9, 0.95);n = 50, 000.
Time Series
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Example 3. Long time series with many change-points

Results from two-step estimation procedure. Replication=200.

Scenario 1 Scenario 2 Scenario 3
T 10000 20000 50000
Computing Time 4s 7s 18s
% of m̂ = 8 90 84 92

True Mean SE True Mean SE True Mean SE
t1/T 0.1 0.1022 0.0091 0.1 0.1001 0.0010 0.1 0.1020 0.0129
t2/T 0.2 0.2008 0.0012 0.2 0.1998 0.00042 0.2 0.1999 0.00018
t3/T 0.3 0.3001 0.0010 0.25 0.2499 0.00048 0.25 0.2500 0.00020
t4/T 0.4 0.3942 0.0088 0.3 0.2984 0.0032 0.3 0.2998 0.00039
t5/T 0.5 0.4999 0.0012 0.35 0.3501 0.00090 0.5 0.4999 0.00020
t6/T 0.6 0.5999 0.0010 0.4 0.4001 0.00081 0.8 0.7999 0.00026
t7/T 0.75 0.7501 0.0011 0.45 0.4501 0.00057 0.9 0.9000 0.00021
t8/T 0.8 0.7998 0.0016 0.5 0.4998 0.00070 0.95 0.9499 0.00044
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Electroencephalogram (EEG) Time Series

EEG is the recording of electrical activity along the scalps of a subject.

It measures voltage fluctuations resulting from ionic current flows
within the neurons of the brain.

use for medical diagnostics:
epilepsy
tumors
stroke
brain disorders . . .
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Electroencephalogram (EEG) Time Series

The following EEG is recorded from a female patient diagnosed with
left temporal lobe epilepsy.

Data collection:

Sampling rate: 100Hz,
Recording period: 5 minutes and 28 seconds,
Sample size: n=32,768.

Investigated by Ombao et al. (2000) and Davis, Lee and
Rodriguez-Yam (2006).

Results of Two-step LASSO procedure:
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Electroencephalogram (EEG) Time Series

Locations of change points (seconds)
1 2 3 4 5 6 7 8 9 10 11

Two-step 184.2 206.1 220.0 234.2 255.4 276.7 305.7 325.0 - - -
Auto-PARM 185.8 189.6 206.2 220.9 233.0 249.0 261.6 274.6 306.0 308.4 325.8

Estimated starting time for seizure:

Neurologist: t=185s.
Auto-PARM: t=185.8s.
LASSO Two-step: t=184.23s.
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Electroencephalogram (EEG) Time Series

Two-step Lasso procedure
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MDL+Genetic algorithm (Davis, Lee and Rodriguez-Yam (2005))
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Standard & Poor’s 500 Index

From Jan 2, 2004 to April 29, 2011.
Structural changes in Volatility.

−1
0

−5
0

5
10

Return

Index

SP
50

0

2004 2005 2006 2007 2008 2009 2010 2011

Applications of LASSO procedure for structural changes in volatility.
Two-step LASSO procedure assumes piecewise stationary time series
with an autoregressive structure.
Volatility is modeled by GARCH processes.
The square of the GARCH process is an ARMA process, which can in
turn be approximated by AR processes.
Thus, the LASSO procedure can be applied to the squares of the
log-return process of S&P500 series for change-point detection.

Chun Yip Yau (CUHK) LASSO for Change-point Estimation 27 March 2012 32 / 36



Standard & Poor’s 500 Index

Results:
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Standard & Poor’s 500 Index
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Interpretations of the three estimated change-points:
July 10, 2007

Standard and Poor’s placed 612 securities backed by subprime
residential mortgages on a credit watch preluded the panic of the
market.

September 15, 2008
Lehman Brothers Holdings incorporated filed for bankruptcy protection
triggered the financial crisis.

April 7, 2009
Quantitative Easing (QE) policy.
US Federal Reserve gradually purchased around $ 1 trillion debt,
Mortgage-backed securities and Treasury notes in the early 2009
stabilized the market.
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Conclusion

Two step change point estimation procedure.

First step: LASSO for screening out the change-points.
Second step: Change-point estimation by Information Criterion.

Consistency is proved for:

the estimated number of change-points.
the estimated locations of change-point.

Computational efficiency:

LASSO: efficient.
LARS approximation: highly efficient.
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Thank You!
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