LASSO for structural break estimation in time series

Chun Yip Yau

Department of Statistics
The Chinese University of Hong Kong
Research supported in part by HKSAR-RGC-GRF

27 March 2012

Joint with N.H. Chan (CUHK) and R.M. Zhang (Zhejiang University)

Content

(1) Introduction
(2) Structural break detection as a high-dimension regression problem
(3) Theoretical Results
(4) Simulation Studies
(5) Applications
(6) Conclusion

Piecewise Stationary Time Series

Time Series

- Interpreted as stationary time series with structural changes at $\left\{t_{1}, \ldots, t_{m}\right\}$.
- An intuitive model for non-stationary time series.
- Difficulty in estimation: The optimization

$$
\arg \min _{\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}} \sum_{i=1}^{m} L\left(t_{i}, t_{i+1}\right),
$$

requires $\binom{n}{m}$ evaluations of $L\left(t_{i}, t_{i+1}\right)$, the criterion function for the i-th segment $\left\{y_{t_{i}+1}, \ldots, y_{t_{i+1}}\right\}$.

Estimation of Piecewise Stationary Time Series

Literatures:

- Ombao, Raz, Von Sachs and Malow (2001): SLEX transformation (a family of orthogonal transformation) for segmentation.
- Davis, Lee and Rodriguez-Yam $(2006,2008)$: Minimum Description Length (MDL) criterion function and Genetic algorithm for the optimization

$$
\arg \min _{\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}} \sum_{i=1}^{m} M D L\left(t_{i}, t_{i+1}\right) .
$$

- Bayesian appraoches: (Lavielle (1998), Punskaya, Andrieu, Doucet and Fitzgerald (2002)).
- Some drawbacks:
- computationally intensive
- lack of theoretical justifications

The Structural Break Autoregressive (SBAR) Model

The SBAR model

$$
Y_{t}= \begin{cases}\beta_{1,1} Y_{t-1}+\beta_{1,2} Y_{t-2}+\ldots+\beta_{1, p} Y_{t-p}+\sigma_{1} \epsilon_{t}, & \text { if } 1 \leq t<\tau_{1}, \\ \beta_{2,1} Y_{t-1}+\beta_{2,2} Y_{t-2}+\ldots+\beta_{2, p} Y_{t-p}+\sigma_{2} \epsilon_{t}, & \text { if } \tau_{1} \leq t<\tau_{2}, \\ \ldots \ldots & \text { if } \tau_{m} \leq t<n,\end{cases}
$$

can be reformulated as a high-dimensional regression framework

$$
\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
\vdots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
\mathbf{Y}_{0}^{\mathrm{T}} & 0 & 0 & \ldots & 0 \\
\mathbf{Y}_{1}^{\mathrm{T}} & \mathbf{Y}_{1}^{\mathrm{T}} & 0 & \cdots & 0 \\
\mathbf{Y}_{2}^{\mathrm{T}} & \mathbf{Y}_{2}^{\mathrm{T}} & \mathbf{Y}_{2}^{\mathrm{T}} & \cdots & 0 \\
\vdots & & & & \\
\mathbf{Y}_{n-1}^{\mathrm{T}} & \mathbf{Y}_{n-1}^{\mathrm{T}} & \mathbf{Y}_{n-1}^{\mathrm{T}} & \cdots & \mathbf{Y}_{n-1}^{\mathrm{T}}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{\beta}_{1} \\
\mathbf{0} \\
\boldsymbol{\beta}_{2}-\boldsymbol{\beta}_{1} \\
\vdots \\
\boldsymbol{\beta}_{m+1}-\boldsymbol{\beta}_{m} \\
\mathbf{0}
\end{array}\right)+\left(\begin{array}{c}
\sigma_{1} \epsilon_{1} \\
\vdots \\
\sigma_{2} \epsilon_{\tau_{1}} \\
\vdots \\
\sigma_{k+1} \epsilon_{\tau_{k}} \\
\vdots \\
\sigma_{m+1} \epsilon_{n}
\end{array}\right)
$$

where

- $\mathbf{Y}_{t-1}^{\mathrm{T}}=\left(Y_{t-1}, Y_{t-2}, \ldots, Y_{t-p}\right)$,
- $\boldsymbol{\beta}_{k}^{\mathrm{T}}=\left(\beta_{k, 1}, \ldots, \beta_{k, p}\right)$.

An n-dimensional Regression Problem under Sparsity

Write

as

$$
\overrightarrow{\mathbf{Y}}_{n}=\mathbf{X}_{n} \boldsymbol{\theta}_{n}+\mathbf{e}_{n} .
$$

- Goal: Want a sparse solution for $\boldsymbol{\theta}_{n}$.
- The non-zero entries of $\boldsymbol{\theta}_{n}$ comprise the change-points.
- Location estimate: $\mathcal{A}_{n}:=\left\{\hat{t}_{1}, \ldots, \hat{t}_{\hat{m}}\right\}=\left\{t: \theta_{t} \in \boldsymbol{\theta}_{n}, \theta_{t} \neq 0\right\}$.
- Parameter estimate: $\hat{\boldsymbol{\beta}}_{k}=\sum_{j=1}^{\hat{t}_{k}} \theta_{j}$.

LASSO: sparse solution for regression problems

- Goal: Want a sparse solution for $\boldsymbol{\theta}_{n}$ for

$$
\overrightarrow{\mathbf{Y}}_{n}=\mathbf{X}_{n} \boldsymbol{\theta}_{n}+\mathbf{e}_{n}
$$

- LASSO perfectly suits this problem:
- obtain a sparse solution in a computationally efficient way.
- LASSO:

$$
\arg \min _{\boldsymbol{\theta}_{n}} \frac{1}{n}\left\|\overrightarrow{\mathbf{Y}}_{n}-\mathbf{X}_{n} \boldsymbol{\theta}_{n}\right\|^{2}+\lambda_{n} \sum_{i=1}^{n}\left\|\theta_{i}\right\|,
$$

where $\boldsymbol{\theta}_{n}=\left(\theta_{1}, \ldots, \theta_{n}\right), \theta_{k} \in \mathcal{R}^{p}$.

- Tibshirani (1996): LASSO $\longrightarrow \theta_{i} \in \Re$
- Yuan and Lin (2005): Group LASSO $\longrightarrow \theta_{i} \in \Re^{p}$
- The challenge: dependent data.

Assumptions

The true model
$Y_{t}= \begin{cases}\beta_{1,1}^{0} Y_{t-1}+\beta_{1,2}^{0} Y_{t-2}+\ldots+\beta_{1, p}^{0} Y_{t-p}+\sigma_{1}^{0} \epsilon_{t}, & \text { if } 1 \leq t<\tau_{1}^{0} \\ \beta_{2,1}^{0} Y_{t-1}+\beta_{2,2}^{0} Y_{t-2}+\ldots+\beta_{2, p}^{0} Y_{t-p}+\sigma_{2}^{0} \epsilon_{t}, & \text { if } \tau_{1}^{0} \leq t<\tau_{2}^{0} \\ \ldots \ldots & \\ \beta_{m_{0}+1,1}^{0} Y_{t-1}+\beta_{m_{0}+1,2}^{0} Y_{t-2}+\ldots+\beta_{m_{0}+1, p}^{0} Y_{t-p}+\sigma_{m_{0}+1}^{0} \epsilon_{t}, & \text { if } \tau_{m_{0}}^{0} \leq t<n\end{cases}$
LASSO:

$$
\arg \min _{\boldsymbol{\theta}_{n}} \frac{1}{n}\left\|\overrightarrow{\mathbf{Y}}_{n}-\mathbf{X}_{n} \boldsymbol{\theta}_{n}\right\|^{2}+\lambda_{n} \sum_{i=1}^{n}\left\|\theta_{i}\right\| .
$$

Assumptions:

- $\mathrm{H} 1:\left\{\varepsilon_{t}\right\}$ i.i.d $(0,1)$ and $\mathrm{E}\left|\varepsilon_{1}\right|^{4+\delta}<\infty$ for some $\delta>0$.
- H2: All characteristic roots of the AR polynomials are outside the unit circle and $\min _{1 \leq i \leq m_{0}+1}\left\|\boldsymbol{\beta}_{i}^{0}-\boldsymbol{\beta}_{i-1}^{0}\right\|>0$.
- H3: $\min _{1 \leq i \leq m_{0}+1}\left|\tau_{i}^{0}-\tau_{i-1}^{0}\right| /\left(n \gamma_{n}\right) \rightarrow \infty$ for some $\gamma_{n} \rightarrow 0$ with $n^{2}\left(n \gamma_{n}\right)^{-2-\delta / 2} \rightarrow 0$ and $\gamma_{n} / \lambda_{n} \rightarrow \infty$.

Theorem 1

Consistency of the change-point estimates when the number of change-points is known. Assume $\mathrm{H} 1, \mathrm{H} 2$ and H 3 , and assume that $\left|\mathcal{A}_{n}\right|=m_{0}$ is fixed in advance. If $\lambda_{n}=6 p C \sqrt{\log n / n}$ for some $C>1+\sqrt{1+2 b}, b=2\left(\max _{t} \mathrm{E} Y_{t}^{2}+1\right)$, then

$$
P\left\{\max _{1 \leq i \leq m_{0}}\left|\hat{t}_{i}-t_{i}^{0}\right| \leq n \gamma_{n}\right\} \rightarrow 1, \quad \text { as } n \rightarrow \infty
$$

where $\gamma_{n} \rightarrow 0$ with $n^{2}\left(n \gamma_{n}\right)^{-2-\delta / 2} \rightarrow 0$ and $\gamma_{n} / \lambda_{n} \rightarrow \infty$.

Remarks:

(1) It is not possible to estimate t_{i}^{0} consistently.
(2) γ_{n} is interpreted as the convergence rate for the relative change-point location $\xi_{i}^{0}=t_{i}^{0} / n$.
(3) If $\mathrm{E}\left|\varepsilon_{1}\right|^{q}<\infty$ for all $q>0$, then $\gamma_{n}=O\left(\frac{\log n}{n}\right)$.

When the number of change-points is unknown,

- the number of change-points will not be underestimated.
- for each true change-point τ_{k}, there exists an estimated change-point around its $n \gamma_{n}$ neighborhood.

Theorem 2

If H1, H2 and H3 holds, then as $n \rightarrow \infty$,

$$
P\left\{\left|\mathcal{A}_{n}\right| \geq m_{0}\right\} \rightarrow 1
$$

and

$$
P\left\{\max _{b \in \mathcal{A}} \min _{a \in \mathcal{A}_{n}}|b-a| \leq n \gamma_{n}\right\} \rightarrow 1,
$$

where $\gamma_{n} \rightarrow 0$ with $n^{2}\left(n \gamma_{n}\right)^{-2-\delta / 2} \rightarrow 0$ and $\gamma_{n} / \lambda_{n} \rightarrow \infty, \mathcal{A}$ is the set of true change-points, \mathcal{A}_{n} is the set of change-point estimates.

Two-step Estimation Procedure

- After applying LASSO, the true change-points are identified in a $n \gamma_{n}$ neighborhood, but the number of change-points may be overestimated, i.e. $\left|\mathcal{A}_{n}\right|>m_{0}$.
- It is natural to choose the best possible subset of \mathcal{A}_{n} as the estimated change-points, using an information criterion of the form

$$
I C(m, \mathbf{t})=\sum_{j=1}^{m+1} \sum_{t=t_{j-1}}^{t_{j}-1}\left(Y_{t}-\widehat{\widehat{\boldsymbol{\beta}}}_{j} \mathbf{Y}_{t-1}\right)^{2}+m \omega_{n}
$$

which is a sum of a goodness of fit measure and a penalty term, where $\widehat{\widehat{\boldsymbol{\beta}}}_{j}$ is the least squares estimator for the segment $\left\{t_{j-1}, \ldots, t_{j}-1\right\}$.

Two-step estimation procedure

Information criterion:

$$
I C(m, \mathbf{t})=\sum_{j=1}^{m+1} \sum_{t=t_{j-1}}^{t_{j}-1}\left(Y_{t}-\widehat{\widehat{\boldsymbol{\beta}}}_{j} \mathbf{Y}_{t-1}\right)^{2}+m \omega_{n}
$$

- Using the change-point estimate \mathcal{A}_{n} from LASSO, we estimate the number and locations of the change points by

$$
(\hat{\hat{m}}, \hat{\hat{\mathbf{t}}})=\arg \min _{\substack{m \in\left(0,1, \ldots,\left|\mathcal{A}_{n}\right|\right), \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right) \subset \mathcal{A}_{n}}} I C(m, \mathbf{t}) .
$$

- Examples:
- BIC of Yao (1988)
- MDL of Davis, Lee and Rodgriduez-Yam $(2006,2008)$
- Computational burden reduces from $\binom{n}{m}$ to $2^{\left|\mathcal{A}_{n}\right|}$.

Consistency of the change-point locations when the number of change-points is unknown:

$$
(\hat{\hat{m}}, \hat{\hat{\mathbf{t}}})=\arg \min _{\substack{m \in\left(0,1, \ldots,\left|\mathcal{A}_{n}\right|\right), \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right) \subset \mathcal{A}_{n}}} I C(m, \mathbf{t})
$$

Theorem 3

Assume that H1, H2 and H3 hold and assume that the penalty term ω_{n} satisfies $\lim _{n \rightarrow \infty} \omega_{n} /\left[8 m_{0} n \gamma_{n}\left(\max _{1 \leq i \leq n} \mathrm{E} Y_{i}^{2}\right)\right]>1$. Further assume that $t_{i}^{0}=\left[n \xi_{i}^{0}\right]$ with $\min _{1 \leq i \leq m_{0}}\left|\xi_{i}^{0}-\xi_{i-1}^{0}\right| \geq \varepsilon>0$. Then

$$
P\left\{\widehat{\hat{m}}=m_{0}\right\} \quad \rightarrow \quad 1
$$

and

$$
P\left\{\max _{1 \leq i \leq m_{0}} \widehat{\widehat{t}_{i}}-t_{i}^{0} \mid \leq n \gamma_{n}\right\} \quad \rightarrow \quad 1
$$

Two-step Estimation Procedure

When the number of change-points is unknown, the estimator is

$$
(\hat{\hat{m}}, \hat{\hat{\mathbf{t}}})=\arg \min _{\substack{m \in\left(0,1, \ldots,\left|\mathcal{A}_{n}\right|\right), \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right) \subset \mathcal{A}_{n}}} I C(m, \mathbf{t}) .
$$

- It requires $2^{\left|\mathcal{A}_{n}\right|}$ evaluations of the IC.
- If $2^{\left|\mathcal{A}_{n}\right|}$ is too large we can further simplify the computation by the backward elimination algorithm (BEA).
- BEA further reduces the computational order from $2^{\left|\mathcal{A}_{n}\right|}$ to $\left|\mathcal{A}_{n}\right|^{2}$.

Backward Elimination Algorithm (BEA)

- The BEA starts with the set of change-points \mathcal{A}_{n}, then
- removes the "most redundant" change-point that corresponds to the largest reduction of the $I C$.
- repeat successively until no further removal is possible.
(1) Set $K=\left|\mathcal{A}_{n}\right|, \mathbf{t}_{K}:=\left(t_{K, 1}, \ldots, t_{K, K}\right)=\mathcal{A}_{n}$ and $V_{K}^{*}=I C\left(K, \mathcal{A}_{n}\right)$.
(2) For $i=1, \ldots, K$, compute $V_{K, i}=I C\left(K-1, \mathbf{t}_{K} \backslash\left\{t_{K, i}\right\}\right)$. Set $V_{K-1}^{*}=\min _{i} V_{K, i}$.
(3) - If $V_{K-1}^{*}>V_{K}^{*}$, then the estimated locations of change-points are $\mathcal{A}_{n}^{*}=\mathbf{t}_{K}$.
- If $V_{K-1}^{*} \leq V_{K}^{*}$ and $K=1$, then $\mathcal{A}_{n}^{*}=\emptyset$. That is, there is no change-point in the time series.
- If $V_{K-1}^{*} \leq V_{K}^{*}$ and $K>1$, then set $j=\arg \min _{i} V_{K, i}$, $\mathbf{t}_{K-1}:=\mathbf{t}_{K} \backslash\left\{t_{K-1, j}\right\}$ and $K=K-1$. Go to step 2.

Backward Elimination Algorithm (BEA)

Example

- LASSO gives the estimate $\mathcal{A}_{n}=\left(\hat{t}_{1}, \hat{t}_{2}, \hat{t}_{3}\right)$.
- $V_{3}^{*}=I C\left(3, \mathcal{A}_{n}\right)=10$.

1. Removing one point:
i. $V_{3,1}=I C\left(2,\left(\hat{t}_{1}, \hat{t}_{2}\right)\right)=11$.
ii. $V_{3,2}=I C\left(2,\left(\hat{t}_{1}, \hat{t}_{3}\right)\right)=10.5$.
iii. $V_{3,3}=I C\left(2,\left(\hat{t}_{2}, \hat{t}_{3}\right)\right)=9$.

- $V_{2}^{*}=\min _{i} V_{3, i}=9<=V_{3}^{*}=10$, proceed for further reduction.

2. Removing one more point:
i. $V_{2,1}=I C\left(1,\left(\hat{t}_{2}\right)\right)=10$
ii. $V_{2,2}=I C\left(1,\left(\hat{t}_{3}\right)\right)=9.5$.

- $V_{1}^{*}=\min _{i} V_{2, i}=9.5>V_{2}^{*}=9$
- Conclude that $\hat{\hat{m}}=2, \hat{\hat{\mathbf{t}}}=\left(\hat{t}_{2}, \hat{t}_{3}\right)$.

Consistency of the change-point estimates when the number of change-points is unknown:

Theorem 4

Let $\mathcal{A}_{n}^{*}=:\left(\hat{t}_{i}^{*}, \ldots, \hat{t}_{\left|\mathcal{A}_{n}^{*}\right|}^{*}\right)$ be the estimate obtained from BEA. Under the conditions of Theorem 3, we have

$$
P\left\{\left|\mathcal{A}_{n}^{*}\right|=m_{0}\right\} \quad \rightarrow \quad 1
$$

and

$$
P\left\{\max _{1 \leq i \leq m_{0}}\left|\hat{t}_{i}^{*}-t_{i}^{0}\right| \leq n \gamma_{n}\right\} \quad \rightarrow \quad 1 .
$$

Summary: Two-step procedure of change-point estimation

- First Step: Get a possibly overestimated locations estimator \mathcal{A}_{n} from the LASSO

$$
\arg \min _{\boldsymbol{\theta}_{n}} \frac{1}{n}\left\|\overrightarrow{\mathbf{Y}}_{n}-\mathbf{X}_{n} \boldsymbol{\theta}_{n}\right\|^{2}+\lambda_{n} \sum_{i=1}^{n}\left\|\theta_{i}\right\|,
$$

- Second Step: Select the best subset of change-points from \mathcal{A}_{n} by the Information Criterion

$$
(\hat{\hat{m}}, \hat{\mathbf{t}})=\arg \min _{\substack{m \in\left(0,1, \ldots,\left|\mathcal{A}_{n}\right|\right), \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right) \subset \mathcal{A}_{n}}} I C(m, \mathbf{t}) \text {. }
$$

- If $2^{\left|\mathcal{A}_{n}\right|}$ is not large, then all possible subsets can be evaluated.
- Otherwise, Backward Elimination Algorithm can be used to obtain the location estimates.
- Consistency:

$$
\begin{aligned}
P\left\{\left|\mathcal{A}_{n}^{*}\right|=m_{0}\right\} & \rightarrow 1 \\
\text { and } \quad P\left\{\max _{1 \leq i \leq m_{0}}\left|\hat{t}_{i}^{*}-t_{i}^{0}\right| \leq n \gamma_{n}\right\} & \rightarrow 1 .
\end{aligned}
$$

Computational Issues of Group LASSO

Two fast implementations of group LASSO in the first step:

$$
\arg \min _{\boldsymbol{\theta}_{n}} \frac{1}{n}\left\|\overrightarrow{\mathbf{Y}}_{n}-\mathbf{X}_{n} \boldsymbol{\theta}_{n}\right\|^{2}+\lambda_{n} \sum_{i=1}^{n}\left\|\theta_{i}\right\| .
$$

1 Exact Solution by block coordinate descent. (Yuan \& Lin (2006), Fu (1998)):

- iteratively solving estimating equations
- converges to the global optimum
- stable and efficient

2 Approximate Solution by group Least Angle Regression (LARS). (Erfon et al. (2004), Yuan \& Lin (2006)):

- add the "most correlated" covariate one by one.
- computationally more efficient.
- well approximates the solution of group LASSO in many cases.
- When $p=1$, LARS algorithm gives the exact solution of LASSO.

Model Selection in each segment

- A stationary $\operatorname{AR}(p)$ model is assumed in each segment.
- The theoretical results hold if p is greater than the maximum order among all segments.
- In practice, a large p (e.g., $p=10$) is used in the two-step estimation procedure.
- After the change-points are detected, standard model selection procedure can be applied for each segment.
- Since the convergence rate of change-point locations is faster than $n^{-1 / 2}$, the model selection has the same asymptotic properties as the no-change-point case.

Example 1. Compare to Davis, Lee and Rodgriduez-Yam (2006)

- True model:

$$
Y_{t}= \begin{cases}0.9 Y_{t-1}+\epsilon_{t}, & \text { if } 1 \leq t \leq 512 \\ 1.69 Y_{t-1}-0.81 Y_{t-2}+\epsilon_{t}, & \text { if } 513 \leq t \leq 768 \\ 1.32 Y_{t-1}-0.81 Y_{t-2}+\epsilon_{t}, & \text { if } 769 \leq t \leq 1024\end{cases}
$$

Time Series

Example 1. Compare to Davis, Lee and Rodgriduez-Yam (2006)

- True relative location of change-points $=\left(\frac{512}{1024}, \frac{768}{1024}\right)=(0.5,0.75)$.
- Replications: 200.

Number of segments	Auto-PARM				Two-Step	
	$(\%)$	Mean	SE	$(\%)$	Mean	SE
3	96.0	0.500	0.007	100	0.500	0.012
		0.750	0.005		0.750	0.011
4	4.0	0.496	0.004	0		
		0.566	0.108			
		0.752	0.003			

Example 2. Compare to Davis, Lee and Rodgriduez-Yam (2006)

- True model:

$$
Y_{t}= \begin{cases}0.75 Y_{t-1}+\epsilon_{t}, & \text { if } 1 \leq t \leq 50 \\ -0.5 Y_{t-1}+\epsilon_{t}, & \text { if } 51 \leq t \leq 1024\end{cases}
$$

Time Series

Example 2. Compare to Davis, Lee and Rodgriduez-Yam (2006)

- True relative location of change-points $=\left(\frac{50}{1024}\right)=(0.0488)$.
- Replications: 200.

Number of segments	Auto-PARM			Two-Step		
	(\%)	Mean	SE	(\%)	Mean	SE
2	100	0.042	0.004	100	0.049	0.004

Example 3. Long time series with many change-points

- True model:

$$
Y_{t}= \begin{cases}0.9 Y_{t-1}+\epsilon_{t}, & \text { if } 1 \leq t \leq t_{1} \\ 1.69 Y_{t-1}-0.81 Y_{t-2}+\epsilon_{t}, & \text { if } t_{1} \leq t \leq t_{2} \\ 1.32 Y_{t-1}-0.81 Y_{t-2}+\epsilon_{t}, & \text { if } t_{2} \leq t \leq t_{3} \\ 0.7 Y_{t-1}-0.2 Y_{t-2}+\epsilon_{t}, & \text { if } t_{3} \leq t \leq t_{4} \\ 0.1 Y_{t-1}-0.3 Y_{t-2}+\epsilon_{t}, & \text { if } t_{4} \leq t \leq t_{5} \\ 0.9 Y_{t-1}+\epsilon_{t}, & \text { if } t_{5} \leq t \leq t_{6} \\ 1.32 Y_{t-1}-0.81 Y_{t-2}+\epsilon_{t}, & \text { if } t_{6} \leq t \leq t_{7} \\ 0.25 Y_{t-1}+\epsilon_{t}, & \text { if } t_{7} \leq t \leq t_{8} \\ -0.5 Y_{t-1}+0.1 Y_{t-2}+\epsilon_{t}, & \text { if } t_{8} \leq t \leq T\end{cases}
$$

- Three scenarios of relative change-point locations.
- $\boldsymbol{\tau}=(0.1,0.2,0.3,0.4,0.5,0.6,0.75,0.8)$
- $\boldsymbol{\tau}=(0.1,0.2,0.25,0.3,0.35,0.4,0.45,0.5)$
- $\boldsymbol{\tau}=(0.1,0.2,0.25,0.3,0.5,0.8,0.9,0.95)$

Example 3. Long time series with many change-points

- Scenario 1: $\boldsymbol{\tau}=(0.1,0.2,0.3,0.4,0.5,0.6,0.75,0.8) ; n=10,000$.

- Scenario 2: $\boldsymbol{\tau}=(0.1,0.2,0.25,0.3,0.35,0.4,0.45,0.5) ; n=20,000$.

- Scenario 3: $\boldsymbol{\tau}=(0.1,0.2,0.25,0.3,0.5,0.8,0.9,0.95) ; n=50,000$.

Example 3. Long time series with many change-points

Results from two-step estimation procedure. Replication=200.

	Scenario 1			Scenario 2			Scenario 3		
T	10000			20000			50000		
Computing Time	4s			7s			18s		
\% of $\hat{m}=8$	90			84			92		
	True	Mean	SE	True	Mean	SE	True	Mean	SE
t_{1} / T	0.1	0.1022	0.0091	0.1	0.1001	0.0010	0.1	0.1020	0.0129
t_{2} / T	0.2	0.2008	0.0012	0.2	0.1998	0.00042	0.2	0.1999	0.00018
t_{3} / T	0.3	0.3001	0.0010	0.25	0.2499	0.00048	0.25	0.2500	0.00020
t_{4} / T	0.4	0.3942	0.0088	0.3	0.2984	0.0032	0.3	0.2998	0.00039
t_{5} / T	0.5	0.4999	0.0012	0.35	0.3501	0.00090	0.5	0.4999	0.00020
t_{6} / T	0.6	0.5999	0.0010	0.4	0.4001	0.00081	0.8	0.7999	0.00026
t_{7} / T	0.75	0.7501	0.0011	0.45	0.4501	0.00057	0.9	0.9000	0.00021
t_{8} / T	0.8	0.7998	0.0016	0.5	0.4998	0.00070	0.95	0.9499	0.00044

Electroencephalogram (EEG) Time Series

- EEG is the recording of electrical activity along the scalps of a subject.
- It measures voltage fluctuations resulting from ionic current flows within the neurons of the brain.
- use for medical diagnostics:
- epilepsy
- tumors
- stroke
- brain disorders...

@ Mayo Foundation for Medical Education and Research. All rights reserved.

Electroencephalogram (EEG) Time Series

- The following EEG is recorded from a female patient diagnosed with left temporal lobe epilepsy.
- Data collection:
- Sampling rate: 100 Hz ,
- Recording period: 5 minutes and 28 seconds,
- Sample size: $n=32,768$.
- Investigated by Ombao et al. (2000) and Davis, Lee and Rodriguez-Yam (2006).
- Results of Two-step LASSO procedure:

Electroencephalogram (EEG) Time Series

	Locations of change points (seconds)									
	1	2	3	4	5	6	7	8	9	10
Two-step	184.2	206.1	220.0	234.2	255.4	276.7	305.7	325.0	-	-
Auto-PARM	185.8	189.6	206.2	220.9	233.0	249.0	261.6	274.6	306.0	308.4

- Estimated starting time for seizure:
- Neurologist: $t=185 \mathrm{~s}$.
- Auto-PARM: $t=185.8 \mathrm{~s}$.
- LASSO Two-step: $t=184.23 \mathrm{~s}$.

Electroencephalogram (EEG) Time Series

- Two-step Lasso procedure

- MDL+Genetic algorithm (Davis, Lee and Rodriguez-Yam (2005))

EEG time series (Davis et al.)

Standard \& Poor's 500 Index

- From Jan 2, 2004 to April 29, 2011.
- Structural changes in Volatility.

Return

- Applications of LASSO procedure for structural changes in volatility.
- Two-step LASSO procedure assumes piecewise stationary time series with an autoregressive structure.
- Volatility is modeled by GARCH processes.
- The square of the GARCH process is an ARMA process, which can in turn be approximated by AR processes.
- Thus, the LASSO procedure can be applied to the squares of the log-return process of S\&P500 series for change-point detection.

Standard \& Poor's 500 Index

Results:

Return

Squared Return

Standard \& Poor's 500 Index

Interpretations of the three estimated change-points:

- July 10, 2007
- Standard and Poor's placed 612 securities backed by subprime residential mortgages on a credit watch preluded the panic of the market.
- September 15, 2008
- Lehman Brothers Holdings incorporated filed for bankruptcy protection triggered the financial crisis.
- April 7, 2009
- Quantitative Easing (QE) policy.
- US Federal Reserve gradually purchased around $\$ 1$ trillion debt, Mortgage-backed securities and Treasury notes in the early 2009 stabilized the market.

Conclusion

- Two step change point estimation procedure.
- First step: LASSO for screening out the change-points.
- Second step: Change-point estimation by Information Criterion.
- Consistency is proved for:
- the estimated number of change-points.
- the estimated locations of change-point.
- Computational efficiency:
- LASSO: efficient.
- LARS approximation: highly efficient.

Thank You!

