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Monte Carlo methods

Let µ= π
Z a probability distribution, with π : S →R known and

normalization constant Z possibly unknown.

Examples

Gibbs density µ(x) ∝ exp(−βH(x)) for a Hamiltonian H and
inverse temperature β;

Bayesian posterior µ(θ) ∝∏N
i=1 f (xi|θ)π0(θ) for observations

(xi)N
i=1 and prior distribution π0.

Goal

Compute Eµ
[
ϕ(X)

]= ∫
Sϕ(x) dµ(x)

Monte Carlo method

Obtain samples (X1, . . . ,XK ) from the distribution µ

Estimate
∫
ϕ(x) dµ≈ 1

K

∑K
k=1ϕ(xk)
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Markov Chain Monte Carlo

Markov Chain Monte Carlo method

Construct a Markov chain with transition matrix P that has µ
as its invariant distribution.

Obtain a sample path (X1, . . . ,XK ) of P

Estimate

Eµ
[
ϕ(X)

]≈ 1

K

K∑
k=1

ϕ(Xk).

Examples

Metropolis-Hastings, Gibbs sampling, Glauber dynamics
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The challenge
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Reversibility

A Markov chain with transition density p(x,y) is reversible with
respect to π(x) if

π(x)p(x,y) = p(y,x)π(y) ∀x,y.

Other terminology: “satisfies detailed balance”, “symmetrizable”.

Symmetrizable

Let Pf (x) = ∫
p(x,y)f (y) dy and (f ,g)π := ∫

f (x)g(x)π(x). Then

reversibility ⇔ P = P?.

Key in correctness proof of Metropolis-Hastings.

Non-reversible processes are better!
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Example

p

1-p

q

1-q

r

1-r

Transition matrix P =
 0 p 1−p

1−q 0 q
r 1− r 0

.

Choose p, q and r such that ( 2
5 , 2

5 , 1
5 ) is invariant distribution.

The resulting transition matrix is

P =
 0 3

4 + 1
2γ

1
4 − 1

2γ
3
4 − 1

2γ 0 1
4 + 1

2γ
1
2 +γ 1

2 −γ 0

 .
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Example, continued

P =
 0 3

4 + 1
2γ

1
4 − 1

2γ
3
4 − 1

2γ 0 1
4 + 1

2γ
1
2 +γ 1

2 −γ 0

 .

Spectral gap: 1−max(|λ−|, |λ+|)
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Figure : Spectral gap as a function of γ

Difficult to relate to notion of mixing time in non-reversible case
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Example, continued

Mixing time

Total variation distance:
||µ−ν||TV := maxA⊂S |µ(A)−ν(A)| = 1

2

∑
x∈S |µ(x)−ν(x)|.

Define d(t) := maxx ||Pt(x, ·)−µ||, where µ is invariant for P

Mixing time: tmix(ε) := inf{t ≥ 0 : d(t) < ε}.
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Asymptotic variance

YT = 1

T

T∑
t=1

ϕ(Xt)−Eπϕ,

Asymptotic variance

σ2
ϕ = lim

T→∞TEx
[
Y 2

T

]
Theorem

Let P be a Markov transition matrix.
Let K be its self-adjoint part with respect to (·, ·)π.
Then σ2

ϕ,K ≥σ2
ϕ,P and there exists a ϕ for which strict inequality

holds if P 6= K .
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Non-reversible Metropolis-Hastings
[JB, Non-reversible Metropolis-Hastings, 2014]

Target distribution π.

Lemma

Let P ∈Rn×n Markov transition matrix. Define

Γ(x,y) =π(x)P(x,y)−π(y)P(y,x). (1)

(i) Γ is skew-symmetric.

(ii) π is invariant for P iff
∑

y Γ(x,y) = 0 for all x

(iii) P is reversible w.r.t. π iff Γ≡ 0.

Idea

Let Γ be a matrix satisfying (i) and (ii)

Construct a Markov chain P such that (1) holds.
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Non-reversible Metropolis-Hastings
[JB, Non-reversible Metropolis-Hastings, 2014]

Ingredients

Target distribution π.

Γ satisfying
(i) Γ is skew-symmetric.

(ii)
∑

y Γ(x,y) = 0 for all x

Proposal chain Q

Non-reversible Metropolis-Hastings

Propose state y according to Q(x, ·)
Accept with probability A(x,y) = min

(
1, Γ(x,y)+π(y)Q(y,x)

π(x)Q(x,y)

)
Resulting chain P satisfies Γ(x,y) =π(x)P(x,y)−π(y)P(y,x).
Therefore π is invariant for P!
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Non-reversible Metropolis-Hastings

Ingredients

π, Γ skew-symmetric with zero row sums, Q

Non-reversible Metropolis-Hastings

Propose y according to Q(x, ·), accept with probability

A(x,y) = min
(
1, Γ(x,y)+π(y)Q(y,x)

π(x)Q(x,y)

)
Claim: Γ(x,y) =π(x)P(x,y)−π(y)P(y,x)

Proof: Suppose Γ(x,y)+π(y)Q(y,x)
π(x)Q(x,y) > 1. Rearranging gives

Γ(x,y)+π(y)Q(y,x) >π(x)Q(x,y) ⇔π(y)Q(y,x) >−Γ(x,y)+π(x)Q(x,y)

⇔π(y)Q(y,x) > Γ(y,x)+π(x)Q(x,y)
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Remarks on NRMH

NRMH can construct ‘all’ Markov chains

Markov chain Q, with invariant distribution π and vorticity matrix

Γ(x,y) =π(x)Q(x,y)−π(y)Q(y,x).

With Q as proposal chain,

A(x,y) = min

(
1,
Γ(x,y)+π(y)Q(y,x)

π(x)Q(x,y)

)
= 1.

Compatibility requirement

A(x,y) = min

(
1,
Γ(x,y)+π(y)Q(y,x)

π(x)Q(x,y)

)
Require A ≥ 0. In particular

Γ(x,y) = 0 whenever Q(x,y) = 0.
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Vorticity matrices

Essential in non-reversible Metropolis-Hastings: matrices Γ ∈Rn×n

such that (i) Γ=−ΓT , (ii) Γ1= 0.

Lemma

(a) Let u,v ∈Rn satisfy u ⊥ v and u,v ⊥1. Then Γu,v := uvT −vuT

satisfies (i), (ii).

(b) Let u1,u2, . . . ,un−1 be an orthonormal base of 1⊥ in Rn and
write Γi,j := Γui,uj = uiuT

j −ujuT
i . Then Γi,j ⊥ Γk,l whenever

{i, j} 6= {k, l}.

Corollary

{Γi,j : i = 1, . . . ,n−1, j = 1, . . . , i−1} is an orthonormal base of V , so
|V | = 1

2 (n−1)(n−2).
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Compatibility

Graph G = (S,E); edges represent positive transition probabilities in
Q.

(i) Γ=−ΓT .
(ii) Γ1= 0, i.e.

∑n
j=1Γ(i, j) = 0 for all i = 1, . . . ,n.

(iii) Compatibility: Γ(i, j) = 0 whenever (i, j) is not an edge.

Proposition Let x,y ∈ S

Γ satisfying (i) - (iii) exists and Γ(x,y) > 0
⇔ G contains a cycle with (x,y) as an edge.

Cycle calculus Image: [Sun, Gomez, Schmidhuber]
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Example: n-cycle

Q =
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M = 3, β= 4.

(a) Classical Metropolis-Hastings (b) Non-reversible Metropolis-Hastings
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Numerical results

M β spectral gap NRMH MH mixing time NRMH MH

0 0 0.00814 0.00205 116 456
1 2 0.0132 0.00907 92 164
1 4 0.0205 0.0122 100 159
2 2 0.0141 0.00248 83 310
2 4 0.00703 0.000598 176 1189
3 2 0.0125 0.00375 91 275
3 4 0.00592 0.000943 188 1055

10
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classical MH

NRMH, approach (i)

NRMH, approach (ii)

Figure : Dependence of mixing time on n for M = 2 and β= 3.
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Example: Spin systems

Fundamental model in statistical physics, theoretical neuroscience
and machine learning

G = (V ,E) a finite graph

w : E →R interaction between vertices

h : V →R external field

S = {+,−}V set of possible spin configurations (state space)

H : S →R energy function

H(x) =− ∑
v1v2∈E

w(v1v2)x(v1)x(v2)− ∑
v∈V

h(v)σ(v), x ∈ S,

β ‘inverse temperature’

µβ(x) = exp(−βH(x))/Z Boltzmann distribution
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MCMC for spin systems

State space S = {+,−}n.

Markov chain on S: flipping one bit at a time.

Corresponds to Markov chain on the n-dim. hypercube

Proposal chain Q: random walk on hypercube.
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Compatible vorticity matrices for hypercube

Lemma

The dimension an of space of compatible vorticity matrices for
n-dimensional hypercube satisfies

an+1 = 2an +
(
2n −1

)
, a1 = 0,

with solution an = 1+ ( 1
2 n−1)2n.

Examples

Every face of the hypercube

Hamiltonian circuit (Gray code)

For A ∈Rn×n skew-adjoint,

ΓA(x,y) =
{

xi
∑n

j=1 aijxj if y equals x with bit i flipped,

0 otherwise.
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A long story short

Recall

A(x,y) = min

(
1,
Γ(x,y)+π(y)Q(y,x)

π(x)Q(x,y)

)
For given proposal chain Q, target distribution π, and compatible
vorticity matrix Γ0, for what range of γ is Γ= γΓ0 suitable?

Some (technical) results in estimating this range.

Only modest improvements in mixing time so far.

what is the effect of ‘vorticity’ on mixing time?
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Estimating mixing time

Very limited results on mixing time for (classical)
Metropolis-Hastings [Diaconis, Saloff-Coste, 1998]

Poincaré inequality: Does not capture improvement over
reversible chain

[James Fill (1991)]: Does not capture improvement over
reversible chain

Path coupling / optimal transport / discrete Ricci curvature:
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γ = 1/6 (exact)

γ = 1/6 (estimate)

γ = 0 (exact)
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Overview

Non-reversible chains are better (in some sense)...

... but so far Metropolis-Hastings created reversible chains.

Non-reversible Metropolis-Hastings removes this limitation

Use:

If you have a good (fast mixing) non-reversible chain, use it as
proposal chain in NRMH

Main challenge:

understanding mixing time for non-reversible chains

END
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Vorticity measures on general state spaces

(S,S ) measurable space.

P(x,dy) Markov transition kernel with invariant distribution π

Forward FP(dx,dy) :=π(dx)P(x,dy) and backward
BP(dx,dy) =π(dy)P(y,dx) ergodic flow

Vorticity measure

Γ(dx,dy) = FP(dx,dy)−BP(dx,dy).

Then Γ is a signed measure on S×S, satisfying

Γ(A×B) =−Γ(B×A) for all A,B ∈S ,

Γ(A,S) = 0 for all A ∈S .
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Non-reversible Metropolis-Hastings in general spaces

Let Γ be a signed measure on S×S, satisfying
Γ(A×B) =−Γ(B×A) for all A,B ∈S ,
Γ(A,S) = 0 for all A ∈S .

Let
Q(x,dy) be a proposal chain,
FQ(dx,dy) =π(dx)Q(x,dy),
BQ(dx,dy) =π(dy)Q(y,dx).
Symmetric structure: FQ and BQ equivalent (i.e. mutually
absolutely continuous)

Hastings Ratio

R(x,y) := dΓ

dFQ
(x,y)+ dBQ

dFQ
(x,y).

Acceptance probability

A(x,y) := min(1,R(x,y)).
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General state spaces; absolutely continuous case

Proposal chain Q(x,dy) = q(x,y)λ(dy), where λ is some
reference measure.

Target distribution π(dx) = ρ(x) dλ(x)

Symmetric structure: ρ(x)q(x,y) = 0 ⇔ ρ(y)q(y,x) = 0

γ : S×S →R, satisfying
γ(x,y) =−γ(y,x)∫

A×Sγ(x,y) λ(dx) λ(dy) = 0 for all A ∈S .
γ(x,y) = 0 whenever ρ(x)q(x,y) = 0.

Hastings ratio:

R(x,y) =
{

γ(x,y)+ρ(y)q(y,x)
ρ(x)q(x,y) , ρ(x)q(x,y) 6= 0,

1, ρ(x)q(x,y) = 0.
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Example: Ornstein Uhlenbeck process

dX(t) = AX(t) dt +B dW (t).

Reversible if and only if BBT AT = ABBT

Invariant distribution covariance satisfies
AQ∞+Q∞AT =−BBT

Wieldy expression available for vorticity density

To do: Relate to Lelièvre, Nier, Pavliotis
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Convergence to equilibrium

Different quantifications:

Let
d(t) := max

x
||Pt(x, ·)−µ(·)||TV.

The ε-mixing time is inf{t ≥ 0 : d(t) ≤ ε}.

spectral gap: 1−max{|λ| :λ ∈σ(P),λ 6= 1}

asymptotic variance:

σ2(ϕ) := lim
T→∞T var

(
1

T

T∑
t=1

ϕ(Xt)

)
.
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