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Goals of our Research

Explaining biological functions underlying
important diseases.

Supporting better diagnostic and medical
Treatments.

Developing novel statistical techniques of
genetics analysis.

Providing the genetics community with advanced
analysis tools called superlink online.

Developping infra structure abilities for high
performance computing for geneticists.



Spectrum of Statistical Techniques

Techniques

Input

Association studies

Random healthy and
affected individuals.

Mapping by Admixture
Linkage Disequilibrium

Admixed affected
individuals such as
African-Americans

Genetic Linkage Analysis

Healthy and affected
individuals from a
pedigree.

Output: LOCATION OF PREDISPOSING GENES




Admixture Mapping

Inferring Ancestries Effectively &
Efficiently in Admixed Populations
with Linkage Disequilibrium

In press for the Journal of Computational Biology

Technion, Israel Sivan Bercovici and Dan Geiger




Outline

Admixture mapping (MALD)

Inference of ancestry
Panel construction [Genome Research, Recomb]
Ancestry inference [JCB, to appear]
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Disease Examples
8

Table 1 | Diseases with different risks in Africans and Europeans*

Disease or related Population relative 95% Confidence References
trait risk (African vs interval
European)

Lower relative risk in African-Americans

Hepatitis C clearance 019 (0.10-0.28) 48
HIV vertical 0.30 (0.10-0.90) 49
transmission

Multiple sclerosis 0.50 n.dl. 50
Atrial fibrillation 0.51 (0.31-0.76) 51
Coronary artery disease 0.75 (0.60-0.95) 52
Carctid artery disease 0.62 (0.46-0.82) 52
Osteoporosis/BMDH* Lowers n.a. 53,54
Higher relative risk in African-Americans

Lupus nephritis 3.13 (1.21-8.09) 55
with systemic lupus

enythematosus

Myeloma 314 (2.00-4.93) 56
Dementia 3.21 (2.18—4.73) 57
Prostate cancer 2.73 (2.13-3.52) 56
Hypertensive heart 2.80 (2.03-3.86) 56
disease

“MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES” (Smith
& O’Brien, Nature Reviews Genetics, 2005)



Disease Examples
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Table 1 | Diseases with different risks in Africans and Europeans*

Disease or related Population relative 95% Confidence References
trait risk (African vs interval
European)

Lower relative risk in African-Americans

Hepatitis C clearance 019 (0.10-0.28) 48
HIV vertical 0.30 (0.10-0.90) 49
transmission

tiple sclerosis 0.50 n.d. 50

0.51 : 51
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W . 52

e Multiple sclerosis 0.50 =

Higher relative risk in African-Americans

Lupus nephritis 2 ] (1.21-8.09) 55
with systemic lupus

enythematosus

Myeloma 3.14 (2.00-4.93) 56
Dementia 3.21 (2.18-4.73) 57
Prostate cancer 2.73 (2.13-3.52) 56
Hypertensive heart 2.80 (2.03-3.86) 56
disease

“MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES” (Smith
& O’Brien, Nature Reviews Genetics, 2005)
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& O’Brien, Nature Reviews Genetics, 2005)



End Stage Renal Disease (ESRD)

ESRD: causes chronic loss of normal kidney function.

Dialysis: removing waste substances from the blood replacing kidneys.
(http://www.nhlbi.nih.gov/health/dci/Diseases/Cad/CAD_Whatls.html)

This 1s a complex disease. Aoy of e Kidooy
Prevalence: ~0.15% 1n Israel and the US
FERR =14
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Expected Mutual Information (EMI)
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Ancestry Inference
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Efficient Inference




Most Probable Ancestry



. Linkage Diseguilibrium Models

Model #0 Model #1 Model #2




Results (error %)
224 |
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End Stage Renal Disease (ESRD)

ESRD: causes chronic loss of normal kidney function.

Aratomy of the Kidrwey

RESULT': At Karl Skorecky’s lab we scanned merely ~400
affected and were able to locate a suspect gene for ESRD.




Ancestry Inference - Summary
|24

- Probabilistic framework for ancestry inference
Better choice of markers

Supports realistic LD models
Efficient



SPEEDING UP HMM
ALGORITHMS FOR GENETIC
LINKAGE ANALYSIS VIA CHAIN

REDUCTIONS OF THE STATE SPACE

To be presented at ISMB 2009

Dan Geiger, Christopher Meek & Ydo Wexler




Find the location 6 that maximizes the LOD score
(main computational goal):

Z(©)=log,, [Pr(datal®) / Pr( data| no linkage)].




Typical Results of Analysis
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The American Journal of Human Genetics 82, 1114-1121, May 2008



Family Pedigree
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The Likelihood function
| 29 |

P(datal6)=" - Z‘Zln [Eg (%1 pa)
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Hidden Markov Models (HMMs)

Transmlssmn
P(S/S,. 1)
Emission
Observed P(X(IS)

Lander Green Algorithm



HMM Computations

Forward-backward, Viterbi, likelihood of data
All take O(L\S\2 + cL\S\)
Example (likelihood of evidence):

P(data) = Z:P(s1 )P(x1 1S, =, )Z:P(S2 =s5,18 =5, )P(x2 1S, = Sz)"'

...ZP(SL | SL_l)P(xL | SL)

St

If ISl 1s large computation is slow
SOFTWARE: GeneHunter, Alegro, Merlin
GOAL: reduce the size of S



State space reduction

Divide states of S into equivalence classes [s]
Sum over one representative per class

Example:

P(data) = [ZP [Sl xl N [Sl [ZP [Sz]l S, = [Sl])P(x2 1§, = [Sz])
l 2 ZP [SL]l[SL 1 (xLl[SL])

[SL

Correctness ?



Condition I — Emission Probabilities

- The single slot likelihood given a hidden state s 1s
equal for all states in the class [s]

If s, s’ in the same class then

P(xl. | 5)= P(xl. | s')

|

Vse[s] P(xl. [s])= P(xl. | 5)



Condition II-Transmission Probabilities

Define the transition probability from a state s’ to
the class [s] by P(s]!s') ZP sls')

If s*, s” in the same class then P([s]1s')= P((s]ls")
P([s]1[s'])= P((s]Is)

Complexity 1s quadratic in number of classes, not
in number of states.




Factorial HMMs

i

o State-space is now S, =(S/,..
o Complexity 0(L|S|log|S|+cL|S|
o Ghahramani & Jordan

- Homogeneously Factored HMM
o transition P, (sl.j | s/ 1) is equal for all j



Simplitying assumptions

Binary variable (selectors)
A selector 1s either ON or OFF

Symmetric transition — probability to switch states

P(sl.j =01ls/, = )=¢9

P(s/ =115/, =0)=8



Counting partition
A state space reduction for factored HMMs

Selectors are grouped together
A cluster C with r selectors
Equivalence class [j] = all states with j selectors ON

c(j,r)=r/j(r—j) states become one state
Each cluster r+1 states
Still factored HMM

Thm: Counting Partitions satisty Condition 11



Example

We just care how many bulbs are ON

The probability of getting from 3 bulbs ON to 4 bulb
ON doesn’t depend on the bulbs 1dentity

4 4
4 4

¢ 4
¢ 4

¢ 4



Complexity

State space for a cluster reduces from 2' to r+1

If all selectors are 1n one cluster the complexity
pecomes quadratic in r and linear in the length.

If each selector has a cluster then no savings.



HMM for linkage analysis

Individuals have a pair of selectors at each location
Modeled as a homogenously factored HMM
Assumptions (binary, symmetry) hold

The state space is 22
n is the number of non-founders in the pedigree
GeneHunter, Allegro, Merlin (and superlink)

Fast for small pedigrees, impossible for larger
pedigrees



Chain reductions

- Pedigrees that contain many people for which there
1S no genetic data

Recent generations are measured

Chains from common ancestors to individuals with

data
can be shared
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Chain reductions

Theorem: The selectors for individuals in valid
chains can be clustered via the Counting Partition;
Condition I 1s satisfied as well.



Example: g-degree cousins
|43

- 2 founder that matter (4 possible sources)

i
i
3 chains with no
information
!

Information only
for the last
generation




Example: g-degree cousins (cont.)

4
0 # informative meioses 4+t+u+z

1 1inheritance vector size D

- New state space 2'-7-u-z




Chain (loop) reductions

| 45 |
1 2 chains that share a common source

No other chain out of this source

1 The selectors 1in the 2 chains can be clustered
together




Chain (loop) reductions

2 chains that share a common source

No other chain out of this source

The selectors 1n the 2 chains can be clustered
together

We only care whether g,, g,

got the same source




Results

Pedigree for studying cold-inducing sweating

syndrome
State space 279 (not feasible)

Reduced state space = 232 (still not feasible, but better)
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Results

m . ° .
- Pedigree for pituitary adenoma

State space 227 (not feasible)

Approximations were used (Albers et.al.)
Reduced state space = 218#3*4*5 (feasible)




Results

- Computed across
6000 loci

o1 Performs as
should 1n theory
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Sample size effect
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