Graphical Models for Gene Mapping

 Fresh Results
Speaker: Dan Geiger Israel Institute of Technology Haifa, Israel

Goals of our Research

b- Explaining biological functions underlying important diseases.
h- Supporting better diagnostic and medical treatments.
a Developing novel statistical techniques of genetics analysis.
sll Providing the genetics community with advanced analysis tools called superlink online.
s- Developping infra structure abilities for high performance computing for geneticists.

Spectrum of Statistical Techniques

Techniques	Input
Association studies	Random healthy and affected individuals.
Mapping by Admixture Linkage Disequilibrium	Admixed affected individuals such as African-Americans
Genetic Linkage Analysis	Healthy and affected individuals from a pedigree.

Output: LOCATION OF PREDISPOSING GENES

Admixture Mapping

 Inferring Ancestries Effectively \& Efficiently in Admixed Populations with Linkage DisequilibriumIn press for the Journal of Computational Biology

Outline

\square Admixture mapping (MALD)
\square Inference of ancestry
\square Panel construction [Genome Research, Recomb]
\square Ancestry inference [JCB, to appear]

Admixed populations

\square Individuals originated from several ancestral populations
\square African Americans
\square Latinos

Admixed individual

Disease Examples

Table 1 \mid Diseases with different risks in Africans and Europeans*			
Disease or related trait	Population relative risk (African vs European)	95% Confidence interval	References
Lower relative risk in African-Americans			
Hepatitis C clearance	0.19	$(0.10-0.38)$	48
HIV vertical transmission	0.30	$(0.10-0.90)$	49
Multiple sclerosis	0.50	n.d.	50
Atrial fibrillation	0.51	$(0.31-0.76)$	51
Coronary artery disease	0.75	$(0.60-0.95)$	52
Carotid artery disease	0.62	n.a.	52
Osteoporosis/BMD \ddagger	Lower§	$(1.21-8.09)$	53,54
Higher relative risk in African-Americans	55		
Lupus nephritis with systemic lupus erythematosus	3.13	$(2.00-4.93)$	56
Myeloma	$(2.18-4.73)$	56	
Dementia	3.14	$(2.13-3.52)$	56
Prostate cancer	2.73	$(2.03-3.86)$	56
Hypertensive heart disease	2.80		56

[^0]
Disease Examples

[^1]
Disease Examples

Table 1 \| Diseases with different risks in Africans and Europeans*			
Disease or related trait	Population relative risk (African vs European)	95% Confidence interval	References

[^2]
End Stage Renal Disease (ESRD)

11
ESRD: causes chronic loss of normal kidney function.
Dialysis: removing waste substances from the blood replacing kidneys. (http://www.nhlbi.nih.gov/health/dci/Diseases/Cad/CAD_WhatIs.html)

This is a complex disease.
Prevalence: $\sim 0.15 \%$ in Israel and the US ERR = 1.4

Expected Mutual Information (EMI)

13

$\mathbb{E} I\left(Q_{x} ; J\right)=\sum_{\pi} P(\pi) \cdot I\left(Q_{x} ; J \mid \pi\right)$

Computational Shortcut

$$
\begin{aligned}
& \mathbb{E} I\left(Q_{x} ; J\right)=\sum_{\pi} P(\pi) \cdot I\left(Q_{x} ; J \mid \pi\right) \\
& E M I\left(Q_{x} ; J\right)=\sum_{l \in L} \sum_{r \in R} P_{(l, r)} \cdot I\left(Q_{x} ; J_{[l, r]}\right)
\end{aligned}
$$

Panel power

Inferring Ancestry

Linkage Disequilibrium

Ancestry Inference

Efficient Inference

19

$$
P\left(Q_{x} \mid J\right)=\sum_{\pi} P\left(Q_{x} \mid \pi, J\right) \cdot P(\pi \mid J)
$$

$$
P\left(Q_{x} \mid J\right)=\frac{1}{P(J)} \sum_{l \in L} \sum_{r \in R}
$$

$$
\underbrace{P\left(J_{l, r} \mid Q_{x}, \pi_{l, r}\right)} \cdot P\left(\pi_{l, r}\right) \cdot P\left(Q_{x}\right) \cdot P\left(J_{\cdot, l}\right) \cdot P\left(J_{r, \cdot}\right)
$$

Most Probable Ancestry

$$
\hat{Q}=\underset{Q, \pi}{\operatorname{argmax}} P(Q, \pi \mid J)
$$

Linkage Disequilibrium Models

Results (error \%)

Method	0	1	2
Post	4.4655%	0.6%	0.24%
MAP	4.11%	0.29%	0.16%

End Stage Renal Disease (ESRD)

ESRD: causes chronic loss of normal kidney function.

RESULT: At Karl Skorecky's lab we scanned merely ~400 affected and were able to locate a suspect gene for ESRD.

Ancestry Inference - Summary

\square Probabilistic framework for ancestry inference
\square Better choice of markers
\square Supports realistic LD models
\square Efficient

SPEEDING UP HMM ALGORITHMS FOR GENETIC LINKAGE ANALYSIS VIA CHAIN REDUCTIONS OF THE STATE SPACE

To be presented at ISMB 2009

The basic gene mapping principle

Find the location θ that maximizes the LOD score (main computational goal):
$Z(\theta)=\log _{10}[\operatorname{Pr}($ data $\mid \theta) / \operatorname{Pr}($ data no linkage $)]$.

Typical Results of Analysis

The American Journal of Human Genetics 82, 1114-1121, May 2008

Family Pedigree

The Likelihood function

$$
\begin{aligned}
& P(\text { data } \mid \theta)=\sum_{x_{i}} \cdot \sum_{x_{n}} \prod_{x_{1} \ldots x_{n}} \Psi\left(x_{i}, \ldots, x_{j}\right) \\
& \sum_{x_{1}}^{x_{1}=1}-\sum_{x_{2}} \cdots \sum_{x_{0}} \prod_{x_{2}, x_{n}} \Psi^{x_{i}=1}\left(x_{i}, \ldots, x_{j}\right) \\
& +=3 \\
& \hline=\sum_{x_{2}} \cdots \sum_{x_{n}} \prod_{x_{2}, x_{0}} \Psi^{x_{i}=3}\left(x_{i}, \ldots, x_{j}\right)
\end{aligned}
$$

Hidden Markov Models (HMMs)

HMM Computations

\square Forward-backward, Viterbi, likelihood of data

- All take $O\left(L|S|^{2}+c L|S|\right)$
\square Example (likelihood of evidence):

$$
\begin{array}{r}
P(\text { data })=\sum_{s_{1}} P\left(s_{1}\right) P\left(x_{1} \mid S_{1}=s_{1}\right) \sum_{s_{2}} P\left(S_{2}=s_{2} \mid S_{1}=s_{1}\right) P\left(x_{2} \mid S_{2}=s_{2}\right) \cdots \\
\cdots \sum_{s_{L}} P\left(s_{L} \mid s_{L-1}\right) P\left(x_{L} \mid s_{L}\right)
\end{array}
$$

\square If ISI is large computation is slow
\square SOFTWARE: GeneHunter, Alegro, Merlin
\square GOAL: reduce the size of S

State space reduction

\square Divide states of S into equivalence classes [s]
\square Sum over one representative per class
\square Example:

$$
\begin{array}{r}
P(\text { data })=\sum_{\left[s_{1}\right]} P\left(\left[s_{1}\right]\right) P\left(x_{1} \mid S_{1}=\left[s_{1}\right]\right) \sum_{\left[s_{2}\right]} P\left(S_{2}=\left[s_{2}\right] \mid S_{1}=\left[s_{1}\right]\right) P\left(x_{2} \mid S_{2}=\left[s_{2}\right]\right) \\
\cdots \sum_{\left[s_{L}\right]} P\left(\left[s_{L}\right] \mid\left[s_{L-1}\right]\right) P\left(x_{L} \mid\left[s_{L}\right]\right)
\end{array}
$$

\square Correctness ?

Condition I - Emission Probabilities

\square The single slot likelihood given a hidden state s is equal for all states in the class [s]
\square If s, s^{\prime} in the same class then

$$
P\left(x_{i} \mid s\right)=P\left(x_{i} \mid s^{\prime}\right)
$$

$$
\forall s \in[s] \quad P\left(x_{i} \mid[s]\right)=P\left(x_{i} \mid s\right)
$$

Condition II-Transmission Probabilities

\square Define the transition probability from a state s' to the class [s] by $P\left([s] \mid s^{\prime}\right)=\sum_{s \in[s]} P\left(s \mid s^{\prime}\right)$
\square If $\mathrm{s}^{\prime}, \mathrm{s}$ " in the same class then $P\left([s] \mid s^{\prime}\right)=P\left([s] \mid s^{\prime \prime}\right)$

$$
P\left([s] \mid\left[s^{\prime}\right]\right)=P\left([s] \mid s^{\prime}\right)
$$

\square Complexity is quadratic in number of classes, not in number of states.

Factorial HMMs

\square State-space is now $S_{i}=\left(S_{i}^{1}, \ldots, S_{i}^{k}\right)$
\square Complexity $O(L|S| \log |S|+c L|S|)$

- Ghahramani \& Jordan
\square Homogeneously Factored HMM
- $\operatorname{transition} P_{j}\left(s_{i}^{j} \mid s_{i-1}^{j}\right)$ is equal for all j

Simplifying assumptions

\square Binary variable (selectors)
\square A selector is either ON or OFF
\square Symmetric transition - probability to switch states

■ $P\left(s_{i}^{j}=0 \mid s_{i-1}^{j}=1\right)=\theta$

- $P\left(s_{i}^{j}=1 \mid s_{i-1}^{j}=0\right)=\theta$

Counting partition

A state space reduction for factored HMMs

\square Selectors are grouped together
\square A cluster C with r selectors
\square Equivalence class $[\mathrm{j}]=$ all states with j selectors ON
$\square c(j, r)=r!/ j!(r-j)!\quad$ states become one state
\square Each cluster $\mathrm{r}+1$ states
\square Still factored HMM
\square Thm: Counting Partitions satisfy Condition II

Example

\square We just care how many bulbs are ON
\square The probability of getting from 3 bulbs ON to 4 bulb ON doesn't depend on the bulbs identity

Complexity

\square State space for a cluster reduces from 2^{r} to $\mathrm{r}+1$
\square If all selectors are in one cluster the complexity becomes quadratic in r and linear in the length.
\square If each selector has a cluster then no savings.

HMM for linkage analysis

\square Individuals have a pair of selectors at each location
\square Modeled as a homogenously factored HMM
\square Assumptions (binary, symmetry) hold
\square The state space is $2^{2 n-f}$
$\square \mathrm{n}$ is the number of non-founders in the pedigree
\square GeneHunter, Allegro, Merlin (and superlink)
\square Fast for small pedigrees, impossible for larger pedigrees

Chain reductions

\square Pedigrees that contain many people for which there is no genetic data
\square Recent generations are measured
\square Chains from common ancestors to individuals with data

Chain reductions

\square Theorem: The selectors for individuals in valid chains can be clustered via the Counting Partition; Condition I is satisfied as well.

Example: g-degree cousins

$\square 2$ founder that matter (4 possible sources)

Example: g-degree cousins (cont.)

\# informative meioses $4+t+u+z$$\square$ inheritance vector size $2^{4+t+u+z}$
\square New state space $2^{7} \cdot t \cdot u \cdot z$

Chain (loop) reductions

$\square 2$ chains that share a common source
\square No other chain out of this source
\square The selectors in the 2 chains can be clustered together

Chain (loop) reductions

$\square 2$ chains that share a common source
\square No other chain out of this source
\square The selectors in the 2 chains can be clustered together
\square We only care whether g_{1}, g_{2} got the same source

Results

\square Pedigree for studying cold-inducing sweating syndrome
\square State space 2^{50} (not feasible)
\square Reduced state space $=2^{32}($ still not feasible, but better $)$

Results

\square Pedigree for pituitary adenoma
\square State space 2^{27} (not feasible)
\square Approximations were used (Albers et.al.)
\square Reduced state space $=2^{18 * 3 * 4 * 5}$ (feasible)

Results

\square
Computed across 6000 loci
\square Performs as should in theory

Acknowledgements

Karl Skorecki
Liran Shlush
Alan Templeton
Walter Wasser
Guennady Yudkovsky
Mark Silberstein
Assaf Schuster

Thank You

Markers: 4

Markers: 5

Markers: 10

Markers: 43

Markers: 130

Density Effect

Sample Size Effect (ERR 1.6)

[^0]: "MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES" (Smith \& O'Brien, Nature Reviews Genetics, 2005)

[^1]: "MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES" (Smith \& O'Brien, Nature Reviews Genetics, 2005)

[^2]: "MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES" (Smith \& O'Brien, Nature Reviews Genetics, 2005)

