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Goals of our Research

Explaining biological functions underlying 
important diseases.
Supporting better diagnostic and medical 
treatments. 
Developing novel statistical techniques of 

b

h

Developing novel statistical techniques of 
genetics analysis.
Providing the genetics community with advanced 
analysis tools called superlink online.
Developping infra structure abilities for high 
performance computing for geneticists.
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Spectrum of  Statistical Techniques

Techniques Input

Association studies Random healthy and 
affected individuals. 

Mapping by Admixture Admixed affected Mapping by Admixture 
Linkage Disequilibrium

Admixed affected 
individuals such as 
African-Americans

Genetic Linkage Analysis Healthy and affected 
individuals from a 
pedigree.

Output: LOCATION OF PREDISPOSING GENES
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Admixture Mapping
Inferring Ancestries Effectively & 

Efficiently in Admixed Populations 

with Linkage Disequilibriumwith Linkage Disequilibrium

Sivan Bercovici and Dan GeigerTechnion, Israel

In press for the Journal of Computational Biology
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� Admixture mapping (MALD)

� Inference of ancestry

� Panel construction [Genome Research, Recomb]

Outline

� Panel construction [Genome Research, Recomb]

� Ancestry inference [JCB, to appear]
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Admixed populations

� Individuals originated from several ancestral 

populations

� African Americans

� Latinos



Admixed individual
African

European

Admixture

80%, 20%

Cases Controls

MALD has 

three steps
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Disease Examples

“MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES” (Smith 
& O’Brien, Nature Reviews Genetics, 2005)
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Disease Examples

“MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES” (Smith 
& O’Brien, Nature Reviews Genetics, 2005)
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Disease Examples

“MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES” (Smith 
& O’Brien, Nature Reviews Genetics, 2005)
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End Stage Renal Disease (ESRD)

ESRD: causes chronic loss of normal kidney function. 
Dialysis: removing waste substances from the blood replacing kidneys. 
(http://www.nhlbi.nih.gov/health/dci/Diseases/Cad/CAD_WhatIs.html)

This is a complex disease.
Prevalence: ~0.15% in Israel and the USPrevalence: ~0.15% in Israel and the US
ERR = 1.4



Admixed 

chromosome

Parent

GrandfatherGrandmother

Child  Haplotype

PAR 

Point

Recombination 

Point

3 PAR Blocks
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1Q 2Q 3Q

Expected Mutual Information (EMI)

1,1J 1,2J 1,3J 1,4J 2,1J 2,2J 3,1J 3,2J 3,3J

block 1 block 3block 2
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Computational Shortcut

1,4J 2,1J 2,2J 3,1J

2Q

1,1J 1,2J 1,3J 3,2J 3,3J

block 2
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Inferring Ancestry

xQ ?



1,1J 1,2J 1,3J 1,4J 2,1J 2,2J
3,1J 3,2J 3,3J

1Q 2Q 3Q

Linkage Disequilibrium
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Ancestry Inference

2Q

1,4J 2,1J 2,2J 3,1J

block

1,1J 1,2J 1,3J 3,2J 3,3J
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Efficient Inference
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Most Probable Ancestry



21

Linkage Disequilibrium Models

1,1J 1,2J 1,3J 1,4J 2,1J 2,2J 3,1J 3,2J 3,3J

1Q 2Q 3Q

2,2J

Model #0 Model #1 Model #2
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Results (error %)
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End Stage Renal Disease (ESRD)

ESRD: causes chronic loss of normal kidney function. 

RESULT: At Karl Skorecky’s lab we scanned merely ~400 
affected and were able to locate a suspect gene for ESRD. 
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� Probabilistic framework for ancestry inference

� Better choice of markers

� Supports realistic LD models

� Efficient

Ancestry Inference - Summary

� Efficient
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SPEEDING UP HMM 

ALGORITHMS FOR GENETIC 

LINKAGE ANALYSIS VIA CHAIN 
REDUCTIONS OF THE STATE SPACEREDUCTIONS OF THE STATE SPACE

Dan Geiger, Christopher Meek & Ydo Wexler Microsoft Research

To be presented at ISMB 2009
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The basic gene mapping principleThe basic gene mapping principle

M1 M2 M3 M4D1

θ

Find the location θ that maximizes the LOD score 
(main computational goal):

Z(θ)=log10 [Pr(data|θ) / Pr( data| no linkage)].
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Typical Results of AnalysisTypical Results of Analysis
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Family Pedigree
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The Likelihood function
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Hidden Markov Models (HMMs)

….

Transmission

P(St|St-1)
Hidden

Emission

P(Xt|St)Observed

Lander Green Algorithm
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HMM Computations

� Forward-backward, Viterbi, likelihood of data

� All take 

� Example (likelihood of evidence):

( )ScLSLO +
2

� If |S| is large computation is slow

� SOFTWARE: GeneHunter, Alegro, Merlin

� GOAL: reduce the size of S

( ) ( ) ( ) ( )∑ ∑ =====
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State space reduction

� Divide states of S into equivalence classes [s]

� Sum over one representative per class

� Example:

� Correctness ?

[ ]( ) [ ]( ) [ ] [ ]( ) [ ]( )
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Condition I – Emission Probabilities

� The single slot likelihood given a hidden state s is 

equal for all states in the class [s]

� If s, s’ in the same class then

( ) ( )'|| sxPsxP ii =

( ) ( )sxPsxPss ii |][|][ =∈∀
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Condition II-Transmission Probabilities

� Define the transition probability from a state s’ to 

the class [s] by

� If s’, s’’ in the same class then

( ) ( )∑
∈

=
][

'|'|][
ss

ssPssP

( ) ( )''|]['|][ ssPssP =� If s’, s’’ in the same class then

� Complexity is quadratic in number of classes, not 

in number of states.

( ) ( )''|]['|][ ssPssP =

( ) ( )'|][]'[|][ ssPssP =
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Factorial HMMs

….

….

Emission
( )21,| ttt SSXP

� State-space is now

� Complexity                              

� Ghahramani & Jordan

� Homogeneously Factored HMM

� transition                    is equal for all j( )j

i

j

ij ssP 1| −

),,( 1 k

iii SSS K=

( )ScLSSLO +log
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Simplifying assumptions

� Binary variable (selectors)

� A selector is either ON or OFF

� Symmetric transition – probability to switch states

�

�
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Counting partition

A state space reduction for factored HMMs

� Selectors are grouped together

� A cluster C with r selectors

� Equivalence class [j] = all states with j selectors ON

states become one state( ) ( )!!/!, jrjrrjc −=� states become one state

� Each cluster r+1 states

� Still factored HMM

� Thm: Counting Partitions satisfy Condition II

( ) ( )!!/!, jrjrrjc −=
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Example

� We just care how many bulbs are ON

� The probability of getting from 3 bulbs ON to 4 bulb 

ON doesn’t depend on the bulbs identity 
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Complexity

� State space for a cluster reduces from 2r to r+1

� If all selectors are in one cluster the complexity 

becomes quadratic in r and linear in the length.

� If each selector has a cluster then no savings.� If each selector has a cluster then no savings.
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HMM for linkage analysis

� Individuals have a pair of selectors at each location

� Modeled as a homogenously factored HMM

� Assumptions (binary, symmetry) hold

� The state space is 22n-f
� The state space is 22n-f

� n is the number of non-founders in the pedigree

� GeneHunter, Allegro, Merlin (and superlink)

� Fast for small pedigrees, impossible for larger 

pedigrees



41

Chain reductions

� Pedigrees that contain many people for which there 

is no genetic data

� Recent generations are measured

� Chains from common ancestors to individuals with � Chains from common ancestors to individuals with 

data

Source that 

can be shared

Data available
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Chain reductions

� Theorem: The selectors for individuals in valid 

chains can be clustered via the Counting Partition; 

Condition I is satisfied as well.
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Example: g-degree cousins

� 2 founder that matter (4 possible sources)

3 chains with no 

information

Information only 

for the last 

generation
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Example: g-degree cousins (cont.)

� # informative meioses 

� inheritance vector size

� New state space

zut +++4

zut +++42

zut ⋅⋅⋅72
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Chain (loop) reductions

� 2 chains that share a common source

� No other chain out of this source

� The selectors in the 2 chains can be clustered � The selectors in the 2 chains can be clustered 

together
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Chain (loop) reductions

� 2 chains that share a common source

� No other chain out of this source

� The selectors in the 2 chains can be clustered � The selectors in the 2 chains can be clustered 

together

� We only care whether g1, g2

got the same source
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Results

� Pedigree for studying cold-inducing sweating 
syndrome

� State space 250 (not feasible)

� Reduced state space = 232 (still not feasible, but better)
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Results

� Pedigree for pituitary adenoma
� State space 227 (not feasible)

� Approximations were used  (Albers et.al.)

� Reduced state space = 218*3*4*5 (feasible)

m
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Results

� Computed across 

6000 loci

� Performs as 

should in theoryshould in theory

m=0
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Thank YouThank You
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