Graphical Models for Gene Mapping Fresh Results

Speaker: Dan Geiger Israel Institute of Technology Haifa, Israel

Technion, Israel

in collaboration with five Israeli Hospitals, Microsoft Research, and coll<u>eagues</u>

Goals of our Research

- b Explaining biological functions underlying important diseases.
- h Supporting better diagnostic and medical treatments.
- a Developing novel statistical techniques of genetics analysis.
- Providing the genetics community with advanced analysis tools called superlink online.
- Developping infra structure abilities for high performance computing for geneticists.

Spectrum of Statistical Techniques

3

Techniques	Input
Association studies	Random healthy and affected individuals.
Mapping by Admixture Linkage Disequilibrium	Admixed affected individuals such as African-Americans
Genetic Linkage Analysis	Healthy and affected individuals from a pedigree.

Output: LOCATION OF PREDISPOSING GENES

Admixture Mapping Inferring Ancestries Effectively & Efficiently in Admixed Populations with Linkage Disequilibrium

In press for the Journal of Computational Biology

Technion, Israel

Sivan Bercovici and Dan Geiger

Outline

□ Admixture mapping (MALD)

- □ Inference of ancestry
 - Panel construction [Genome Research, Recomb]
 - Ancestry inference [JCB, to appear]

Admixed populations

Individuals originated from several ancestral populations

3~

- African Americans
- Latinos

Disease Examples

Table 1 Discases with unreferent risks in Arricans and Europeans			
Disease or related trait	Population relative risk (African vs European)	95% Confidence interval	References
Lower relative risk in A	frican-Americans		
Hepatitis C clearance	0.19	(0.10–0.38)	48
HIV vertical transmission	0.30	(0.10–0.90)	49
Multiple sclerosis	0.50	n.d.	50
Atrial fibrillation	0.51	(0.31–0.76)	51
Coronary artery disease	0.75	(0.60–0.95)	52
Carotid artery disease	0.62	(0.46–0.82)	52
Osteoporosis/BMD [‡]	Lower§	n.a.	53,54
Higher relative risk in A	African-Americans		
Lupus nephritis with systemic lupus erythematosus	3.13	(1.21–8.09)	55
Myeloma	3.14	(2.00–4.93)	56
Dementia	3.21	(2.18–4.73)	57
Prostate cancer	2.73	(2.13–3.52)	56
Hypertensive heart disease	2.80	(2.03–3.86)	56

Table 1 Diseases with different risks in Africans and Europeans*

"MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES" (Smith & O'Brien, *Nature Reviews Genetics*, 2005)

Disease Examples

Table 1 | Diseases with different risks in Africans and Europeans*

Disease or related trait	Population relative risk (African vs European)	95% Confidence interval	References
Lower relative risk in A	frican-Americans		
Hepatitis C clearance	0.19	(0.10–0.38)	48
HIV vertical transmission	0.30	(0.10–0.90)	49
Multiple sclerosis	0.50	n.d.	50
Atrial flocillation	0.51	(0.31-0.76)	51
Coronary artery disease	0.75	(0.60-0.95)	52
Carotid altery c Mul	tinla sclarosis	. (50 52
Osteoporosis	uple solerosis	, (3,54
Higher relative risk in African-Americans			
Higher relative risk in A	African-Americans		
Lupus nephritis with systemic lupus erythematosus	African-Americans 3.13	(1.21–8.09)	55
Lupus nephritis with systemic lupus erythematosus Myeloma	African-Americans 3.13 3.14	(1.21-8.09) (2.00-4.93)	55
Higher relative risk in A Lupus nephritis with systemic lupus erythematosus Myeloma Dementia	African-Americans 3.13 3.14 3.21	(1.21–8.09) (2.00–4.93) (2.18–4.73)	55 56 57
Higher relative risk in A Lupus nephritis with systemic lupus erythematosus Myeloma Dementia Prostate cancer	African-Americans 3.13 3.14 3.21 2.73	(1.21–8.09) (2.00–4.93) (2.18–4.73) (2.13–3.52)	55 56 57 56

"MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES" (Smith & O'Brien, *Nature Reviews Genetics*, 2005)

Disease Examples

Table 1 Diseases with different fisks in Africans and Europeans			
Disease or related trait	Population relative risk (African vs European)	95% Confidence interval	References
Lower relative risk in A	African-Americans		
Hepatitis C clearance	0.19	(0.10–0.38)	48
HIV vertical transmission	0.30	(0.10–0.90)	49
Multiple sclerosis	0.50	n.d.	50
Atrial fibrillation	0.51	(0.31–0.76)	51
Coronary artery disease	0.75	(0.60–0.95)	52
Carotid artery	etato cancor	0	73 52
Osteoporosis/E	state cancer		3,54
Higher relative risk in .	African-Americans		
Lupus nephritis with systemic lupus erythematosus	3.13	(1.21-8.09)	55
Myeloma	3.14	(2.00–4.93)	56
Dementia	3.21	(2.18–4.73)	57
Prostate cancer	2.73	(2.13–3.52)	56
Hypertensive heart disease	2.80	(2.03–3.86)	56

Table 1 Discourses with different ricks in Africans and Europeans*

"MAPPING BY ADMIXTURE LINKAGE DISEQUILIBRIUM: ADVANCES, LIMITATIONS AND GUIDELINES" (Smith & O'Brien, *Nature Reviews Genetics*, 2005)

End Stage Renal Disease (ESRD)

11

ESRD: causes chronic loss of normal kidney function. Dialysis: removing waste substances from the blood replacing kidneys. (http://www.nhlbi.nih.gov/health/dci/Diseases/Cad/CAD_WhatIs.html)

This is a <u>complex disease</u>. Prevalence: $\sim 0.15\%$ in Israel and the US ERR = 1.4

Expected Mutual Information (EMI)

$$\mathbb{E}I(Q_x; J) = \sum P(\pi) \cdot I(Q_x; J|\pi)$$

Linkage Disequilibrium

Ancestry Inference

18

$$Efficient Inference$$

$$P(Q_x|J) = \sum_{\pi} P(Q_x|\pi, J) \cdot P(\pi|J)$$

$$P(Q_x|J) = \frac{1}{P(J)} \sum_{l \in L} \sum_{r \in R} P(J_{l,r}|Q_x, \pi_{l,r}) \cdot P(\pi_{l,r}) \cdot P(Q_x) \cdot P(J_{\cdot,l}) \cdot P(J_{r,\cdot})$$

Most Probable Ancestry

$\hat{Q} = \operatorname*{argmax}_{Q,\pi} P(Q,\pi|J)$

Linkage Disequilibrium Models

21

Results (error %)

Method	0	1	2
Post	4.4655~%	0.6~%	0.24~%
MAP	$4.11 \ \%$	0.29~%	0.16~%

End Stage Renal Disease (ESRD)

23

ESRD: causes chronic loss of normal kidney function.

<u>RESULT</u>: At Karl Skorecky's lab we scanned merely ~400 affected and were able to locate a suspect gene for ESRD.

Ancestry Inference - Summary

- Probabilistic framework for ancestry inference
 - Better choice of markers
 - Supports realistic LD models
 - Efficient

SPEEDING UP HMM ALGORITHMS FOR GENETIC LINKAGE ANALYSIS VIA CHAIN REDUCTIONS OF THE STATE SPACE

To be presented at ISMB 2009

Microsoft Research

Dan Geiger, Christopher Meek & Ydo Wexler

The basic gene mapping principle

Find the location Θ that maximizes the LOD score (main computational goal):

 $Z(\theta) = \log_{10} [Pr(data|\theta) / Pr(data| no linkage)].$

Typical Results of Analysis

The American Journal of Human Genetics 82, 1114-1121, May 2008

Family Pedigree

The Likelihood function

Hidden Markov Models (HMMs)

HMM Computations

31

- Forward-backward, Viterbi, likelihood of data ■ All take $O(L|S|^2 + cL|S|)$
- □ Example (likelihood of evidence):

$$P(data) = \sum_{s_1} P(s_1) P(x_1 | S_1 = s_1) \sum_{s_2} P(S_2 = s_2 | S_1 = s_1) P(x_2 | S_2 = s_2) \cdots \sum_{s_L} P(s_L | s_{L-1}) P(x_L | s_L)$$

- □ If |S| is large computation is slow
- □ SOFTWARE: GeneHunter, Alegro, Merlin
- □ GOAL: reduce the size of S

State space reduction

32

Divide states of S into equivalence classes [s]

- □ Sum over one representative per class
- □ Example:

$$P(data) = \sum_{[s_1]} P([s_1]) P(x_1 | S_1 = [s_1]) \sum_{[s_2]} P(S_2 = [s_2] | S_1 = [s_1]) P(x_2 | S_2 = [s_2])$$

$$\cdots \sum_{[s_L]} P([s_L] | [s_{L-1}]) P(x_L | [s_L])$$

□ Correctness ?

Condition I – Emission Probabilities

33

The single slot likelihood given a hidden state s is equal for all states in the class [s]
If s, s' in the same class then

 $P(x_i | s) = P(x_i | s')$ $\bigvee s \in [s] \quad P(x_i | [s]) = P(x_i | s)$

Condition II-Transmission Probabilities

34

- □ Define the transition probability from a state s' to the class [s] by $P([s] | s') = \sum_{s \in [s]} P(s | s')$
- □ If s', s'' in the same class then P([s]|s') = P([s]|s'')P([s]|[s']) = P([s]|s')
- Complexity is quadratic in <u>number of classes</u>, not in number of states.

Factorial HMMs

- $\Box \text{ State-space is now } S_i = (S_i^1, \dots, S_i^k)$
- $\Box \quad \text{Complexity } O(L|S|\log|S|+cL|S|)$
 - Ghahramani & Jordan
- Homogeneously Factored HMM ■ transition $P_j(s_i^j | s_{i-1}^j)$ is equal for all *j*

Simplifying assumptions

Binary variable (selectors)
 A selector is either ON or OFF
 Symmetric transition – probability to switch states

$$\square P(s_i^{j} = 0 | s_{i-1}^{j} = 1) = \theta$$

$$\square P(s_i^{j} = 1 | s_{i-1}^{j} = 0) = \theta$$

Counting partition

A state space reduction for factored HMMs

□ Selectors are grouped together
 □ A cluster C with r selectors
 □ Equivalence class [j] = all states with j selectors ON
 □ c(j,r)=r!/j!(r-j)! states become one state
 □ Each cluster r+1 states

- Still factored HMM
- □ Thm: *Counting Partitions* satisfy Condition II

Example

38

- □ We just care how many bulbs are ON
- The probability of getting from 3 bulbs ON to 4 bulb ON doesn't depend on the bulbs identity

Complexity

□ State space for a cluster reduces from 2^{r} to r+1

- □ If all selectors are in one cluster the complexity becomes quadratic in r and linear in the length.
- □ If each selector has a cluster then no savings.

HMM for linkage analysis

- □ Individuals have a pair of selectors at each location
- □ Modeled as a homogenously factored HMM
 - Assumptions (binary, symmetry) hold
- \Box The state space is 2^{2n-f}
 - n is the number of non-founders in the pedigree
 - GeneHunter, Allegro, Merlin (and superlink)
- Fast for small pedigrees, impossible for larger pedigrees

Chain reductions

41

- Pedigrees that contain many people for which there is no genetic data
 - Recent generations are measured
 - Chains from common ancestors to individuals with data

Chain reductions

 Theorem: The selectors for individuals in valid chains can be clustered via the Counting Partition; Condition I is satisfied as well.

Example: g-degree cousins

43

□ 2 founder that matter (4 possible sources)

Example: g-degree cousins (cont.)

informative meioses 4+t+u+z
 inheritance vector size 2^{4+t+u+z}
 New state space 2⁷ · t · u · z

Chain (loop) reductions

2 chains that share a common source
No other chain out of this source

The selectors in the 2 chains can be clustered together

Chain (loop) reductions

2 chains that share a common source
No other chain out of this source

- The selectors in the 2 chains can be clustered together
- We only care whether g₁, g₂
 got the same source

Results

47

Pedigree for studying cold-inducing sweating syndrome

■ State space 2⁵⁰ (not feasible)

• Reduced state space = 2^{32} (still not feasible, but better)

Results

Pedigree for pituitary adenoma

- State space 2²⁷ (not feasible)
- Approximations were used (Albers et.al.)
- Reduced state space = $2^{18*}3*4*5$ (feasible)

Results

- Computed across6000 loci
- Performs as should in theory

Acknowledgements

Karl Skorecki Liran Shlush Alan Templeton Walter Wasser Guennady Yudkovsky

Mark Silberstein Assaf Schuster 51

Thank You

Density Effect

Sample Size Effect (ERR 1.6)

