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Advantages of Discrete Bayesian Networks

Bayesian networks are useful:

for representing many models elegantly, expressively and formally.

to graphically query their selected independence implications.

as a framework for embellishing to a full probability model.

as an interface between that probability model and its algebraic
speci�cation.

for guiding fast propagation algorithms, conjugate learning.and model
selection

for extending models into causal structures.
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Limitations of Bayesian Networks

However!

models speci�ed using dependence relations between a preferred set
of measurement variables.

BN�s not entirely natural for representing models explaining how
things might happen.

BN�s do not represent the sample space in any way: often critical to
estimation and selection issues.

can only express certain types of probabilistic symmetry.

the extensions to causal models are fragile and rather restrictive.
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Advantages of an Event Tree

The most natural expression of a model describing how things happen.

Does not need a preferred set of measurement variables a priori.

Explicitly represents the event space of a model, e.g. levels of
variables.

Asymmetries of the model space explicitly represented.

Framework for probabilistic embellishment,estimation, selection and
algebraic descriptions.

Causal hypotheses much more richly expressed than in their BN
analogues.
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Example of an Event Tree

die full recovery
v7 v11

% survive %
up v3 ! v8|{z} ! v12

hostile % partial
v0 ! v1 ! v4 ! v10

& down & die full recovery
benign v2 v9|{z} ! v13

# & up survive &
down v6 v5 v14

partial
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Limitations of Events Trees

However!

Event trees of even moderately sized models are big!

No inherent, topological expression of conditional independences.

No non-trivial interrogation algorithms about dependence available.

Do not provide a particularly e¢ cient framework for propagation and
learning.
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Chain Event Graphs

Typically topologically much simpler than event trees but still
describe how things happen.

Their paths represent fully the structure of the sample space.

Expresses rich variety of dependence structures to be graphically
queried.

Embellish to a probability model and its associated algebraic rep.

Like BNs provides a framework for fast propagation and conjugate
learning.

Almost as expressive of causal hypotheses as the event tree.
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Constructing a CEG

Event tree ! Staged tree ! CEG [by positions and stages]

Start with an event tree

Convert it into a staged tree

Then transform into a chain event graph by pooling positions and
stages together
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Example of a CEG

Elicit stages: i.e. partition of situations with the same associated
distribution

u0 = fv0g, u1 = fv1, v2g, u2 = fv3, v4g,
u3 = fv8, v9g, u∞ = fleavesg

Deduce positions: i.e. partition of situations with subsequent
isomorphic trees

w0 = fv0g,w1 = fv1g,w2 = fv2g,w3 = fv3, v4g,
w4 = fv8, v9g,w∞ = fleavesg

Each position has an associated �oret: that position and its
emanating edges.
Edges in �orets of positions in the same stage are colored to convey
isomorphism.
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Example of an Event Tree

die full recovery
v7 v11

% survive %
up v3 ! v8|{z} ! v12

hostile % partial
v0 ! v1 ! v4 ! v10

& down & die full recovery
benign v2 v9|{z} ! v13

# & up survive &
down v6 v5 v14

partial
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Example of a CEG

Draw CEG with vertices as positions
and undirected edges between stages.

w3(3, 4)
+ %%� #survive &

w1(1) w4(8, 9) � w∞
hostile " � + %%�
w0(0) ! w2(2)
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Some Results about CEG�s - Smith and Anderson(2008)

Theorem
If the random variables X1,X2, . . . ,Xn with known sample spaces are fully
expressed as a BN, G, or as a context speci�c BN G, and you know its
CEG, C, then the random variables X1,X2, . . . ,Xn and all their conditional
independence structure together with their sample spaces can be retrieved
from C.

Theorem
Downstream q Upstreamj w�Cut

Theorem
Children q Upstreamju�Cut
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Example of a CEG with Cuts

� � � � � ! �
% % % & &&

� � � � � ! � � � � �
& % j & % %

� ! � � � ! �

Downstream Y (z) independent of upstream X (z) given cut Z = z .Cuts
need not be orthogonal. So can construct dependence through functional
relationships.

X (z) � ! � Y (z)
% & &&

� � � � z ! � � � � �
& % & % %

� � ! �
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Towards Separation theorems: Thwaites and Smith(2009)

The results above suggest that the there might be a necessary and
su¢ cient separation theorem about rv�s measurable with respect to
the sigma �eld represented in the coloured graph.

But what are the random variables to which such results apply and
what form do the conditional independence statements take?

The intrinsic variables about which such theorems apply are vectors of
�oret and incidence variables.

Peter Thwaites and I have now proved various results of this type
about regular CEG�s.

Results analogous to arc reversal results in BN�s allow us to identify
the equivalence classes of CEGs.

Note that the topology of the CEG allow us to identify variables that
are intrinsic.
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Snake Bite Example

X1 s Bitten by snake, X2 s Carry and apply perfect antidote,X3 sDie
tomorrow..

die live
live " % %

N � !
antid. " % die

� no antid. live
bite " %

� ! N !
no bite die

endangered
� ! �
" & &&
w0 ! N � w∞

unthreatened

X s not bitten/ bitten but apply antidote, Y s (= X3) live/die, Z s
unthreatened/endangered.
So from the CEG preferred variables exhibiting the conditional
independence can be deduced from graph.
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Probabilities on the gene CEG

Embellish a CEG with probabilities just as in a tree.

Note that the positions in the same stage have the same associated
edge probabilities.

Probabilities of atoms calculated by producting up edge probabilities
on each root to leaf path.

w3(3, 4)
π11 %%π12 #π22 π21 &

w1(1) w4(8, 9)
π31
π32 � w∞

π01 " � π11 %%π12

w0(0) π02 ! w2(2)
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Probabilities and Algebra of CEG�s

Each stage u has an associated simplex of probabilities
fπi ,u : 1 � i � lugassociated with its emanating edges in the CEG
In our �rst example lu = 2 and the root to sink probabilities are given
by

p(v5) = π20π21 p(v6) = π20π11
p(v7) = π10π11π12 p(v10) = π10π21π12

p(v11) = π10π11π22π13 p(v12) = π10π11π22π23
p(v13) = π10π21π22π23 p(v14) = π10π21π22π13

The probability of seeing of a value of a random variable on this space
is the sum of these monomials. Note that the 8�vector of atomic
probabilities is constrained to lie in a 4 (rather than 7) dimensional
space.

Unlike the BN of the generating monomials need not be multilinear or
homogeneous - in above they range from degree 2 to 4.
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Conjugate Bayesian Inference on CEG�s

Because the likelihood separates, the class of regular CEG�s admits
simple conjugate learning.

Explicitly the likelihood under complete random sampling is given by

l(π) = ∏
u2U

lu(πu)

lu(πu) = ∏
i2u

π
x (i ,u)
i ,u

where x(i , u) is the number of units entering stage u and proceeding
along edge labelled (i , u). and ∑i πu,i = 1

Independent Dirichlet priors D(α(u)) on the vectors πu leads to
independent Dirichlet D(α�(u)) posteriors where

α�(i , u) = α(i , u) + x(i , u)
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Conjugate Bayesian Inference on CEG�s

Prior stage �oret independence is a generalisation of local and global
independence in BNs. Just as in Geiger and Heckerman(1997), �oret
independence, together with appropriate Markov equivalence
characterises this product Dirichlet prior (see Freeman and Smith,
2009).

Just like for BNs, non - ancestral sampling of a CEG data destroys
conjugacy, but inference is no more di¢ cult than for a BN.
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Learning the topology of a CEG

.

Choosing appropriate priors on model space and modular parameter
priors over CEGs, for any CEG log marginal likelhood score is linear in
stage components.

Explicitly for α = (α1, . . . , αk ), let s(α) = log Γ(∑k
i=1 αi ) and

t(α) = ∑k
i=1 log Γ(αi )

Ψ(C ) = log p(C ) = ∑
u2C

Ψu(c )

Ψu(c ) = ∑ s(α(i , u))� s(α�(i , u)) + t�(α(i , u))� t(α(i , u))

Conjugacy and linearity implies e.g. MAP model selection using AHC
or weighted MAX SAT is simple and fast over the albeit vast space
class of CEG�s (see Freeman and Smith,2009).

Can use to embellish BN search to include context speci�c BNs.
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Causal Bayesian Networks

Recall that for causal BNs

Variables not downstream of X , a manipulated node, are una¤ected by
the manipulation.
X is set to the manipulated value x̂ with probability 1.
E¤ect on downstream variables is identical to ordinary conditioning.

But many manipulations don�t follow these rules, e.g. �Whenever a
unit is in set A of positions, take it to another position B�.
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Causal CEGs

This can be implemented on a CEG by making paths through a
position w pass along a designated edge to a designated position w 0,
retaining all other �oret distributions elsewhere.

Similarly to Bayesian Networks:

Probabilities of edges not after w are unchanged.
An edge from w to w 0 forces w 0 after w .
Downstream probabilities after w 0 are unchanged.

Generalizations of Pearl�s Backdoor Theorem can be proven
Riccomagno et al(2008).

Uses topology of the CEG to determine when the Bayes estimate of the
e¤ect of a manipulation is consistent, given partially observed data
from the corresponding unmanipulated CEG.
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Conclusions

A CEG provides a useful graphical generalization of the BN, retaining
all of the advantages of a BN other than compactness. These include
model representation, support for interrogation, framework for fast
propagation, conjugate analysis and fast model selection.

It provides a much better framework than a BN for representing and
analyzing the consequences of causal hypotheses.

The increased expressiveness of CEG�s are especially useful in
applications in biology, education and forensic science.

THANK YOU FOR YOUR ATTENTION!!
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Formal de�nitions of stages and positions

Two nodes v , v 0 are in the same stage u exactly when X (v),X (v 0)
have the same distribution under a bijection ψu(v , v

0), where

ψu(v , v
0) : X(v) = E (F (v , T )) �! X(v 0) = E (F (v 0, T ))

In other words, the two nodes have identical probability distributions
on their edges.

Two nodes v , v 0 are in the same position w exactly when there exists
a bijection φw (v , v

0) from Λ(v ,T ), the set of paths in the tree from
v to a leaf node, to Λ(v 0,T ),the set of paths from v 0 to a leaf node,
such that all edges in all the paths are coloured, and that the
sequence of colors in any path is the same as that in the path under
the bijection.
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Formal de�nition of a staged tree

A staged tree is a tree with stage set L(T ) and edges coloured as
follows:

When v 2 u 2 L(T ), but u contains only one node, all edges
emanating from v are left uncoloured
When u contains more than one node, all edges emanating from v are
coloured, such that two edges e(v , v�), e(v 0, v 0�) have the same
colour if and only if ψu(e(v , v�)) = e(v 0, v 0�)
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Formal De�nition of a Probability Graph

The probability graph of a staged tree is a directed graph, possibly
with some coloured edges. Each node represents a set of nodes from
the probability tree in the same position in the staged tree

Its edges are constructed as follows:

For each position w , choose a representative node v(w). For each
edge from v(w) to v 0(w 0), construct a single edge e(w ,w 0), where
w 0 = w∞ if v 0 is a leaf node in the tree; otherwise w 0 is the position of
v 0.
The colour of the edge is the colour of the edge between v and v 0.

So the number of edges in the probability tree is the same as in the
staged tree.
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A formal de�nition of the CEG

The chain event graph is the mixed graph with

the same nodes as the probability graph;
the same directed edges as the probability graph; and
undirected edges drawn between di¤erent positions that are at the
same stage

The colors of the edges are also inherited from the probability graph
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Manifest polynomials, identi�ability and independence

Conditional independences appear as usual in terms of factorization.
Thus

π�121 (p(v5), p(v10), p(v14), p(v13))

= π�111 (p(v6), p(v7), p(v11), p(v12))

= (π20,π10π12,π10π22π13,π10π22π23)

so that under the appropriate identi�cation of events (as can be read
from the CEG)

X (�)ä rest

Now suppose we learn the distribution of a variable determining
whether or not the organism survives unharmed. This probability is
simply the value of a polynomial: π20 + π10π22π13. The �ats of this
polynomial within the model space above, de�ne the conditioned
model space.
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