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Paternity: Is individual A the father of individual B?

Immigration: Is A the mother of B? Are A and B related at all? If
so, how?

Crime: Did person A contribute to a given stain, found at the
scene of the crime? Who contributed to the stain?

Disaster: Was A among the individuals found in a grave? How
many of a named subset of individuals were in the
grave? Who were found in a grave?
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Terminology
STR markers
Inheritance of DNA

An area on a chromosome is a locus.

The DNA composition, i.e. a particular sequence of the four bases,
represented by the letters A, C, G and T, on a given locus is an
allele.

A locus thus corresponds to a (random) variable and an allele to
its realised state.

A DNA marker is a known locus where the alleles can be identified
in the laboratory.

A genotype of an individual at a locus is an unordered pair of
alleles. One allele comes from the father and one from the mother,
but one cannot easily distinguish which is which.
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Terminology
STR markers
Inheritance of DNA

Short Tandem Repeats (STR) are markers with alleles given by
integers. If an STR allele is 5, a certain word (e.g. CAGGTG) is
repeated exactly 5 times at that locus:

...CAGGTGCAGGTGCAGGTGCAGGTGCAGGTG...

A DNA profile is typically a list of genotypes at 10-11 known STR
markers.
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Terminology
STR markers
Inheritance of DNA

The homologous chromosome pairs are inherited through the
process of forming gametes, known as meiosis:

Maternal
Paternal

A 10 8 11

B 8 6 14

Gamete 2
Gamete 1

A

10 8

11

B

8 6

14
A child receives one randomly chosen gamete from each parent to
form a new homologous pair.

For forensic markers, we can assume independence of alleles within
and across markers, as they are located on different chromosomes.
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Example of Bayesian network
Object Oriented Networks

Bayesian network is
I Directed Acyclic Graph (DAG)
I Nodes V represent (random) variables Xv , v ∈ V
I Specify conditional distributions of children given parents:

p(xv | xpa(v))
I Joint distribution is then p(x) =

∏
v∈V p(xv | xpa(v))

I Algorithm transforms network into junction tree so p(xv | xA)
can be efficiently computed for all v ∈ V and A ⊆ V by
probability propagation.

Variant calculates revised probabilities p∗(xv ) after likelihood
evidence

p∗(x) ∝
∏
v∈V

p(xv | xpa(v))
∏
a∈A

La(x).
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Example of Bayesian network
Object Oriented Networks

� � �

�

�

�

a, b and c (graph) parents of d ; f (graph) child of d and e.

p(x) = p(xa)p(xb)p(xc)p(xd | x{a,b,c})p(xe)p(xf | x{d ,e}).
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Example of Bayesian network
Object Oriented Networks

I O-O networks have a hierarchical structure where a node can
represents a network

I Objects are instances of BNs of certain class

I Objects have input and output nodes, and also ordinary nodes

I Instances of a given class have identical conditional probability
tables for non-input nodes

I Objects are connected by arrows from output nodes to input
nodes. These arrows represent identity links whereas arrows
between ordinary nodes represent probabilistic dependence.
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Example of Bayesian network
Object Oriented Networks
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Example of Bayesian network
Object Oriented Networks

Pedigree as OOBN

OOBN for a pedigree from study of Werner’s syndrome. Each
node is itself a BN describing reproductive mechanism.
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Example of Bayesian network
Object Oriented Networks

Founders

The BN for each founder in a pedigree.
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Example of Bayesian network
Object Oriented Networks

Children

The BN for each child in a pedigree.
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Example of Bayesian network
Object Oriented Networks

Meiosis

The BN for each meiosis in a pedigree. The fair coin is an
inheritance indicator.
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

I DNA profiles of mother, a child, and a male individual, known
as the putative father. Denote this evidence by E .

I Query Q to be investigated :

Is the putative father equal to the true father?

I Weight of evidence reported as a likelihood ratio:

L =
P(E |Q = true)

P(E |Q = false)
.
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

I Make BN with P(E |Q = true) determined by laws of
inheritance and P(E |Q = false) assuming random genes of
putative father.

I Let P(Q = true) = P(Q = false) so we have

L =
P(E |Q = true)

P(E |Q = false)
=

P(Q = true |E )

P(Q = false |E )

and compute the latter by probability propagation.

We can make a network for each independent marker and multiply
likelihood ratios, or we can make a network incorporating all
markers at once.

Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems



Outline
Forensic identification

Genetics
Bayesian networks

Paternity
Body identification

Mixtures
Using peak areas for mixtures

Results
Discussion and further work

References

Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

OOBN for paternity case: single marker

Each node represents itself a Bayesian network.Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Allele

This class represents a randomly chosen alleleSteffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Faircoin

Represents a coin, used to choose allele under meiosisSteffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Meiosis

Represents the transmission of allele through meiosisSteffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Who is the father?

Is the allele from the putative father or random?
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Genotype

Observation of the smallest and largest allele
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Expanded OOBN
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Results

Mother: (15, 16), child: (15, 19), male: (19, 19);
L = 92.03/7.97 = 11.55.
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Brother of pf: (19, 19); L = 86.25/13.75 = 6.27.
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Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Possible mutation in transmission of alleles
Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems



Outline
Forensic identification

Genetics
Bayesian networks

Paternity
Body identification

Mixtures
Using peak areas for mixtures

Results
Discussion and further work

References

Classical paternity case
Indirect evidence: only brother available
Incorporaring mutation

Mutation in male germline

L = 91.83/8.17 = 11.24.Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Identification of a single dead body is not very different for
paternity cases.
For example, if a missing person is known to be a specific member
of a family (e.g. the father of two children) and DNA profiles can
be found for the body, the mother, and the two children, a minor
modification of the paternity network yields the solution.
Problems of identification involving more than one body, such as in
mass graves and in disasters are more difficult because of their
complexity.
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Unidentified body

Is the body father of the two children? Same data as for paternity.
Second child (16, 19); L = 95.51/4.49 = 21.27.
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Weir’s example

In criminal cases it is not uncommon to find traces where the DNA
is a mixture of contributions from several individuals.
This happens for example in rape cases, where a vaginal swab
typically will contain DNA from the victim as well as the
perpetrator, and possibly also from a consensual partner.
But it is also common e.g. in robberies, where a balaclava is found
on the scene of the crime; these have often been used by several
persons.
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Weir’s example

Marker

Profile LDLR GYPA HBGG D7S8 Gc

trace: B AB AB AB ABC

victim: B AB AB AB AC

suspect: B A A A B

pA 0.433 0.538 0.566 0.543 0.253

pB 0.567 0.462 0.429 0.457 0.195

pC 0 0 0.005 0 0.552

Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems



Outline
Forensic identification

Genetics
Bayesian networks

Paternity
Body identification

Mixtures
Using peak areas for mixtures

Results
Discussion and further work

References

Weir’s example

Mixture net for all markers

Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems



Outline
Forensic identification

Genetics
Bayesian networks

Paternity
Body identification

Mixtures
Using peak areas for mixtures

Results
Discussion and further work

References

Weir’s example

One founder for every marker

Different allele probabilities for the 5 markers. Here Gc.Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Weir’s example

Who contributed to the mixture?

Either a specified individual or a random alleleSteffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems



Outline
Forensic identification

Genetics
Bayesian networks

Paternity
Body identification

Mixtures
Using peak areas for mixtures

Results
Discussion and further work

References

Weir’s example

Mixing the DNA

This network mixes DNA from 4 alleles, i.e. two persons.Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Weir’s example

Network for markers

An instance of this network tells the story.Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Weir’s example

Results from all markers
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Mixture profiles
Excerpt of FSS laboratory prepared data
Gamma model for peak weights
Dirichlet for relative weights
Objectives of analysis
OOBN networks for two DNA traces

Two-person DNA mixture profile

Marker vWA with allele repeat number {15, 17, 18}, peak area and
peak height.

Result of PCR analysis.
Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Mixture profiles
Excerpt of FSS laboratory prepared data
Gamma model for peak weights
Dirichlet for relative weights
Objectives of analysis
OOBN networks for two DNA traces

DNA profile on 10 markers + Amelogenin
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Mixture profiles
Excerpt of FSS laboratory prepared data
Gamma model for peak weights
Dirichlet for relative weights
Objectives of analysis
OOBN networks for two DNA traces

Data from a 1:1 mixture of two individuals p1 and p2.

Marker Alleles Peak area Rel. Weight p1 gt p2 gt

D2 17 37624 0.573 17 17

23 9742 0.148 23

25 18316 0.279 25

D3 14 56692 0.344 14

15 55256 0.335 15

16 52793 0.321 16

D8 8 43569 0.412 8

9 17423 0.165 9

13 16227 0.154 13

14 28488 0.269 14

A DNA profile gives information on: allele repeat number and
corresponding peak area.

The peak weight Wa is the peak area at allele a multiplied by its
allele number, the latter to correct for preferential amplification.
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Mixture profiles
Excerpt of FSS laboratory prepared data
Gamma model for peak weights
Dirichlet for relative weights
Objectives of analysis
OOBN networks for two DNA traces

Consider a mixture made up from individuals i ∈ I .

I The (pre-amplification) proportions of DNA θ = {θi , i ∈ I}
are assumed constant across markers,

I the weight Wia roughly proportional to the amount of DNA of
type a possessed by individual i ;

I Wa is the sum of the allele a weights of all contributors.
I Wia, are independent for fixed θ and Gamma distributed:

Wia ∼ Γ(ργinia, η), where

I γi = γθi is the amount of DNA from individual i in mixture;
I θi is the proportion of DNA (fraction) from individual i ;
I nia is the number of alleles of type a carried by individual i ;
I η determines scale and ρ is the amplification factor.
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OOBN networks for two DNA traces

Ra denotes relative weights Ra = W+a/W++ so

{Ra, a ∈ A} ∼ Dir(ρBa, a ∈ A),

where Ba = γ
∑

i θinia is the weighted allele number and
B+ =

∑
a Ba = 2γ is twice the total amount of DNA γ.

Note η disappears and

E(Ra) = µa = Ba/B+ =
∑

i

θinia/2

and
V(Ra) = µa(1− µa)/(ρB+ + 1) = σ2µa(1− µa).

We used σ2 = 0.01 which conforms with values of a minor/major
peak area ratio reported in the literature.
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Evidential calculation

Population gene frequencies are assumed to be known. The
evidence is for example:

E = {sgt, vgt, mixture profile},
where sgt,vgt are genotypes of a suspect and a victim.

The hypotheses are for example

H0 : s&v , H1 : U&v .

The weight of the evidence is the likelihood ratio:

LR =
Pr(E |H0)

Pr(E |H1)
=

Pr(H0 | E)

Pr(H1 | E)

Pr(H1)

Pr(H0)
.

Choose uniform prior to make calculation simple.Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems
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Separation of DNA profiles

Identifying the genotype of each of the possibly unknown
contributors to the mixture.

Calculate either
P{sgt | vgt,mixture}

or
P{p1gt, p2gt |mixture}

and find most probable combination.

Important in investigative phase.

So is evidential calculation which can be used to decide whether it
is worthwhile to search for supporting evidence against a suspect.
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Master network for two DNA traces

Steffen Lauritzen University of Oxford Graphical Models for Forensic Identification Problems



Outline
Forensic identification

Genetics
Bayesian networks

Paternity
Body identification

Mixtures
Using peak areas for mixtures

Results
Discussion and further work

References

Mixture profiles
Excerpt of FSS laboratory prepared data
Gamma model for peak weights
Dirichlet for relative weights
Objectives of analysis
OOBN networks for two DNA traces

Marker network for two DNA traces
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Representation of evidence in peak areas

Data on peak areas are thus for each marker m of the form

Ra = ra, a ∈ A.

Associated evidence is represented in the form of a likelihood
function on the unknown mean vector µa, a ∈ A as

L ∝
∏
a∈A

r 2ργµa−1
a

Γ(2ργµa)
∝
∏
a∈A

r
µa(σ−2−1)
a

Γ {µa(σ−2 − 1)}
.

where we have used that Ba = 2γµa and σ2 = (ρB+ + 1)−1.

Thus the joint likelihood evidence factorizes into evidence for each
allele a separately.
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Representing evidence from peak areas

The following likelihood evidence is inserted in the mean nodes and
propagated throughout the network

La ∝ (r
µa(σ−2−1)
a )/Γ

(
µa(σ−2 − 1)

)
.
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Profile separation: single mixture trace T1
Combining a pair of two-person mixtures
Combining a pair of three-person mixtures

Prepared mixture in 1:1 ratio which is hard to separate. (Effective
fraction θ 6= 0.5)? Predicted genotypes of p1 and p2 correct on
all 11 markers (excerpt).

Marker p1 gt p2 gt Prob.

D2 17 25 17 23 0.458

D3 14 16 15 15 0.815

D8 8 14 9 13 0.647

D16 9 11 11 11 0.608
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Profile separation: single mixture trace T1
Combining a pair of two-person mixtures
Combining a pair of three-person mixtures

Incorrect identifications in red.

T1 only 1:1? T2 only 1:1 T1 & T2

Correct on all 9 out of 11 markers all

D2 0.4582 0.3838 0.6956

D3 0.8152 0.4854 0.8531

D8 0.6471 0.4831 0.7357

D16 0.6078 0.7534 0.7877

Note the increase in probabilities for D3, which was incorrectly
identified when analysing T2 by itself.
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Profile separation: single mixture trace T1
Combining a pair of two-person mixtures
Combining a pair of three-person mixtures

Assuming common contributors, using the profile of one
contributor in all three separations.

T1 only 1:1:1 T2 only 1:2:5 T1 & T2

Correct on 3 out of 14 11 out of 14 all

D2 0.178 1.000 1.000

D3 0.285 0.768 0.987

D5 0.432 0.190 0.883

D16 0.171 0.299 0.967

Note the increase in probabilities for the profiles on markers D5
and D16, none of which were correctly identified with a single
mixture analysis.
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I Identification and separation problems can be solved in the
same network.

I All uncertainties associated with the analysis are quantified.

I Modularity and flexibility of the OOBN allows easy extension
to similar but different situations.

I Sensitivity to the scaling factors γ, σ2 used to model variation
in amplification and measurement processes. Calibration
needed.

I Need to incorporate artifacts such as stutter peaks and
drop-outs. Recent work shows success in this.
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same network.

I All uncertainties associated with the analysis are quantified.

I Modularity and flexibility of the OOBN allows easy extension
to similar but different situations.

I Sensitivity to the scaling factors γ, σ2 used to model variation
in amplification and measurement processes. Calibration
needed.

I Need to incorporate artifacts such as stutter peaks and
drop-outs. Recent work shows success in this.
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