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Outline
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◮ Pedigree reonstrution algorithm
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◮ Conlusions.



�Standard� Bayesian network learning: simplest ase



�Standard� Bayesian network learning: simplest ase
◮ A set of disrete random variables {Xi }



�Standard� Bayesian network learning: simplest ase
◮ A set of disrete random variables {Xi }
◮ A omplete dataset of independent �ases� on these variables



�Standard� Bayesian network learning: simplest ase
◮ A set of disrete random variables {Xi }
◮ A omplete dataset of independent �ases� on these variables
◮ A node ordering (X1,X2, · · · ,Xn )



�Standard� Bayesian network learning: simplest case

I A set of discrete random variables {Xi }

I A complete dataset of independent �cases� on these variables
I A node ordering (X1,X2, · · · ,Xn)

If G denotes the set of DAGs consistent with node ordering, then
for g ∈ G the log-likelihood decomposes and is readily maximized
using marginal counts:

log L̂g =
∑

i

∑
xi ,xpa(i:g)

nxi ,xpa(i :g)
log

nxi ,xpa(i :g)

nxpa(i:g)
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�Standard� Bayesian network learning: simplest ase
◮ Choose g to maximize likelihood by seleting node-parent setsindependently for eah node.
◮ Usually arry out a stepwise searh, adding potential parentsgreedily for maximum inrease likelihood. (Reentdevelopments have allowed full enumerative searh for n up toaround 30 variables.)
◮ Usually fast beause of ordering and omplete data.
◮ Usually apply some ut-o� when testing to add parents, toprevent always obtaining the omplete graph.

◮ Using marginal likelihood with deomposable Dirihlet prior onparameters avoids need for ut-o�.
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Data used for pedigree reonstrution
◮ Assumed population frequenies of STR (short tandem repeat)alleles of marker system.
◮ Geneti pro�le information on individuals, onsisting ofgenotypes.
◮ Sex of individuals.
◮ Age information, if available.



Example: single STR marker, no mutation
Individual gt sex age possible possibleparent of ? parents of ? (5,8) M 3 no nop1 (6,4) M 2 no nop2 (5,9) F 8 y y (with p4)p3 (5,12) M 12 y nop4 (7,8) M 7 y y (with p2 or p5)p5 (5,7) F 12 y y (with p4)
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Learning a pedigree network in this representation is aninomplete-data/ latent variable problem, beause the pg and mgvalues are not observed.
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Representation by gt triples gtgt
gtNo hidden/latent variable nodes: omplete data problem.



Representation by gt triples gtgt
gtNo hidden/latent variable nodes: omplete data problem.Simplify problem further by not inluding expliitly unmeasuredparents or anestors.



Pedigree reonstrution algorithm
Say an individual is observed if their genotype is known.Restrit pedigree searh with the following onstraints:

◮ Any hild of an observed individual is observed.
◮ An unobserved parent has only one hild, and that hild isobserved.
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The pedigree likelihoodL(gt(X ); g) =
∏x P(gt(x )| gt(pa(x : g)))Under the restritions, the pedigree likelihood fatorizes into threetypes of terms.1. Terms in whih pa(x : g) has two (observed) individuals ofopposite sex.2. Terms in whih pa(x : g) has one individual, (and thus x hasone observed and one unobserved founder).3. Terms in whih pa(x : g) = ∅, (and thus x is an observedfounder).



Both parents are observedMendelian inheritane: (a , b, ,d distint alleles). Non-zero values:P(gtj (xi ) = (a ,a)| gtj (m) = (a ,a), gtj (f ) = (a ,a))=1P(gtj (xi ) = (a ,a)| gtj (m) = (a ,a), gtj (f ) = (a , b))=0.5P(gtj (xi ) = (a ,a)| gtj (m) = (a , b), gtj (f ) = (a , b)) =0.25P(gtj (xi ) = (a ,a)| gtj (m) = (a , b), gtj (f ) = (a , )) =0.25P(gtj (xi ) = (a , b)| gtj (m) = (a ,a), gtj (f ) = (b, b)) =1P(gtj (xi ) = (a , b)| gtj (m) = (a ,a), gtj (f ) = (a , b)) =0.5P(gtj (xi ) = (a , b)| gtj (m) = (a , b), gtj (f ) = (a , b)) =0.5P(gtj (xi ) = (a , b)| gtj (m) = (a , b), gtj (f ) = (b, )) =0.25P(gtj (xi ) = (a , b)| gtj (m) = (a , ), gtj (f ) = (b, )) =0.25P(gtj (xi ) = (a , b)| gtj (m) = (a , ), gtj (f ) = (b,d)) =0.25



One or other of m or f is unobserved, but not both.Taking f = ∅, there are several distint ases to onsider:P(gtj (xi ) = (a ,a)| gtj (m) = (a ,a)) = p(a)P(gtj (xi ) = (a ,a)| gtj (m) = (a , b)) = p(a)/2P(gtj (xi ) = (a ,a)| gtj (m) = (b, )) = 0P(gtj (xi ) = (a , b)| gtj (m) = (a ,a)) = p(b)P(gtj (xi ) = (a , b)| gtj (m) = (a , b)) = (p(a) + p(b))/2P(gtj (xi ) = (a , b)| gtj (m) = (a , )) = p(b)/2P(gtj (xi ) = (a , b)| gtj (m) = (,d)) = 0where p(a) is the frequeny of the allele a in the population, et.Ditto for m = ∅.



Both parents unobserved
Under Hardy-Weinberg equilibrium:P(gtj (xi ) = (a ,a)) = p(a)2P(gtj (xi ) = (a , b)) = 2p(a)p(b)
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Reonstrution algorithm
◮ Sort individuals by age
◮ For eah individual, �nd a list of possible mothers
◮ For eah individual, �nd a list of possible fathers
◮ For preeding two lists, �nd a list of possible(mother,father)pairs for eah individual.
◮ For eah individual, �nd ombination of possible parents tomaximize ontribution to the likelihood.



Comparison to �standard� struture learningBoth standard and pedigree DAG learning (an) use deomposablesoring funtions.In pedigree learning:
◮ Fewer DAGs to searh through�number of (graphial) parentsis limited to at most two nodes, and in that ase, of oppositesex.
◮ Parent-hild geneti onstraints redue the set quite drastially.
◮ Probability tables are known, they do not need estimation�sono need for ad-hod ut-o� parameter: an searh for themaximum likelihood DAG
◮ �Getting more data� means genotyping the individuals onfurther STR markers.



Orienting ars (no age information)
◮ Without age information, annot tell from a parent-hild pairwhih is the parent using the genotype information.
◮ If both parents are available, an tell whih is the hild.

q
p p q

 p
p qp p

q



Enumeration: How big is the problem?
◮ Order individuals by age, oldest �rst: s(1), s(2), . . . , s(n)

◮ Let f (i) denote denote the number of females up to but notinluding s(i) (ie, older than s(i))
◮ Let m(i) denote the number of males up to but not inludings(i).
◮ So f (1) = m(1) = 0.



1. s(i) has no parents represented in the previous set ofindividuals. This an happen in only one way.2. s(i)'s mother but not father is represented in the previous setof individuals. This an happen in f (i) ways.3. s(i)'s father but not mother is represented in the previous setof individuals. This an happen in m(i) ways.4. Both of s(i)'s parents are represented in the previous set ofindividuals. This an happen in f (i)m(i) ways.Number of pedigrees on m males and f females ism+f∏i=1 (1 + f (i))(1 +m(i))



Example: mm�m
i 1 2 3 4 5s(i) m m f f mm(i) 0 1 2 2 2f (i) 0 0 0 1 2

(1 + f (i))(1 +m(i)) 1 2 3 6 9whih leads to there being 1× 2× 3× 6× 9 = 324 possiblepedigrees.



Reurrene relationLet Af ,m denote the number of pedigrees with f females and mmales in whih the individuals are totally ordered (in unspei�edway) by age.Set Af ,−1 = A−1,m = 0. Then A0,0 = 1, andAf ,m = f (1 +m)Af −1,m +m(1 + f )Af ,m−1Speial ases: A0,m = m !, Af ,0 = f !
(a)f
m

(b)f
m

()m
f

(d)m
f



Total numbers of aged ordered pedigrees: A(f ,m)mf 0 1 2 30 1 1 2 61 1 4 22 1562 2 22 264 36243 6 156 3624 869764 24 1368 57168 22491365 120 14400 1030320 635284806 720 177840 21035520 19664294407 5040 2530080 482227200 666334771208 40320 40844160 12308647680 24646047552009 362880 738823680 347109960960 9913907001600010 3628800 14816390400 10739259417600 4319958361420800An,n = O (4n (n !)4) ???



De�ne Bf ,m by Af ,m = f !m !Bf ,m , thenBf ,m = (1 +m)Bf −1,m + (1 + f )Bf ,m−1mf 0 1 2 3 40 1 1 1 1 11 1 4 11 26 572 1 11 66 302 11913 1 26 302 2416 156194 1 57 1191 15619 1561905 1 120 4293 88234 13103546 1 247 14608 455192 97381147 1 502 47840 2203488 663184748 1 1013 152637 10187685 423281535



Enumerating single sex pedigrees
◮ n males or n females
◮ eah has at most one parent
◮ there are no loops
◮ =⇒ pedigree is a tree or forest
◮ =⇒ number of pedigree on n labelled males/females is thesame as number of trees on n + 1 labelled verties: Cayley'sformula

(n + 1)n−1Eg n = 2 :

111 222



Enumerating single sex pedigrees
◮ n males or n females
◮ eah has at most one parent
◮ there are no loops
◮ =⇒ pedigree is a tree or forest
◮ =⇒ number of pedigree on n labelled males/females is thesame as number of trees on n + 1 labelled verties: Cayley'sformula

(n + 1)n−1Eg n = 2 :

111 222
root rootroot



Simulation
◮ Average from 1000 simulated networks
◮ Eah network generated had 10 males and 10 females pergeneration
◮ 40 generations (making a pedigree of 800 individuals).
◮ For eah network, data on individuals for 1, 2, 3, . . . , 15markers were simulated.



SimulationAverages of perentage of nodes having inorret parents.Triangles/Squares/Cirles represent individuals for whih noparents/exatly one parent/at most one parent respetively wereidenti�ed orretly. X-axis denotes number of markers used.
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Croidura russala: Greater white-toothed shrew



Bakground information
◮ Small mammal
◮ Monogamous mating yle
◮ Can breed after an average of 75 days old gestate for 28 days.
◮ Live up to four years (in aptivity)
◮ Average of 3.5 litters per year



Data kindly supplied by Caroline Reuter, Imperial College
◮ Data obtained in the �eld over the period 1997-2001.
◮ 890 individuals
◮ Sex on most, but not all
◮ Year, and for some day, of birth (for known parents)
◮ 227 individuals born same year as a parent
◮ 12 geneti markers (some inomplete)
◮ Two software systems used for verifying parentage analysis:Probmax and Cervus.
◮ Geographi and other non-geneti information additionallyused to hek parentage assignment.



After leaning
◮ Remove individuals with inomplete sex or genotypeinformation
◮ Remove individuals whose parentage assignment wasinompatible assuming no mutation.
◮ This left 813 individuals.



Summary of pedigree searhRankings of true parentage sores among those found to bepossible parents.Ranking Count Ranking Count1 599 11 42 99 12 13 33 13 04 26 14 25 11 15 16 11 16 07 3 17 18 6 18 29 1 19 010 2 20 121 10



Rankings of orret parentage sores
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Summary
◮ Brief omparison of Bayesian network and pedigree networklearning.
◮ A brief look at ounting pedigrees.
◮ A simple pedigree reonstrution algorithm

◮ Applied to simulated pedigrees of 800 individuals
◮ Applied to a real dataset of over 800 wild shrews.



Possible future work
◮ Relax no-mutation.
◮ Relax or eliminate total ordering onstraint
◮ Relax absene of unobserved individuals
◮ Introdue FST orretions.
◮ Priors over strutural elements.



Thank you for listening




