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Causal networks in biology

Complex control mechanisms

Networks are ideal for representation of
complexity

Network entities and wiring are real, not only
conceptual or figment of imagination

Obtaining suitable data is difficult, but rapid
advances are made:

Single cell experiments
Flow cytometry
Lab robots
Microfluidic devices
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Choices for network models

Data type type: discrete/continuous/mixed,
linear/nonlinear, . . . ?

Steady state assumption or dynamic
time-series ?
Network structure known, partially known or
needs to be inferred?
Statistics on the parameters required?

Major complication 1: suspect hidden variables

Major omplication 2: cyclic causal dependencies
are circular: A → B, B → C, C → A
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Inference strategies for network structure

Scoring
Probabilistic score measuring how well data
are represented by graph
Search strategy for high scoring networks

Independence constraints
Independence oracle provides information on
statistical indepence of variables
Graph algorithm reconstructs network from
independence relations

SEM immune response – p.4/33



Standard Bayesian network

 D

A

C

B

E

A probability distribution
factors with or is
represented by a directed
acyclic graph (DAG) if

P(X1, . . . , Xn)

=
∏

i

P(Xi|parents(Xi))

That is, the total probability is given
by probabilities on “families”

P(A, . . . , E) = P(A)P(B)P(C|A,B)P(D|A)P(E|D)
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Bayesian complexity control

Scoring network S using data D = (D1, . . . , Dn)

Bayesian approach to network likelihood
p(D | S): integrate out unknown parameters:

p(D | S) =

∫

p(D | θ, S)p(θ) dθ

Inbuilt cross validation :

p(D | S) = p(D1 | S) p(D2 | D1, S)

· · · p(Dn | D1, . . . Dn−1, S)

Predict data set Di using D1, . . . , Di−1 for training
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Bayesian scoring

Given a candidate Bayesian network B on n nodes
and data D, the probability of B is evaluated locally

p(B|D) =
p(B)

p(D)

n
∏

i=1

p(D(parentsi, nodei)|B)

p(D(parentsi)|B)

p(D(X)|B) multivariate t-distribution from
integrating over regression parameters and
covariances in Normal-Wishart distribution
p(B) is a prior on networks , independent
knowledge about networks can be incorporated here

Details in papers by D Geiger and D Heckerman
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Search strategies for scoring methods

Local moves : remove, add arc, revert direction
(test for acyclicity!)

Due to factoring property only local score
evalution needed
Hill climbing : select a random node, calculate
best move around this node
For greedy methods multiple start from random
networks important!

MCMC-MH sampling from posterior of network
probabilities using local moves
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Constraint based: PC algorithm

Start with complete graph

Determine conditional independencies

Remove edges between conditionally
independent variables

Determine v-structures (unmarried parents), they
provide directions on edges

Propagate direction of edges

TetradIV implementation (with many more
algorithms)
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Application: differentiation of mouse ES cells

Pluripotent: can differentiate into cell types

NOS network (Nanog, Oct4, Sox2) main TFs
which promote and maintain pluripotency (some
other genes modifiers, eg Wnt)

Low or very high Oct4 : loss of pluripotency

Low Nanog : high rate of differentiation

Little known about topology or dynamics of NOS
network

SEM immune response – p.10/33



Flow cytometry

Fluorescent protein (FP) as reporter

Integration of FP into genome

Estimate induction of protein from FP intensity

1000s of single cell measurements in one sample

Easy : intensity distribution in a sample

Complicated : tracking of single cells

Sorting : pick out low or high intensity
subpopulation and reculture
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FACS sorting for low-Nanog ESCs
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Low-Nanog cells
with GFP reporter
for Nanog binding
cultured for 24 hrs
and 96 hrs

Experiments by
Tibor Kalmar, Penny
Hayward, and
Alfonso
Martinez-Arias
(Cambridge
University)
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Stochastic DE model for Nanog-Oct4

dN = (αN +
βnN

2

k2
N +N 2

−
δO1.5

k1.5
O +O1.5

N − γNN)dt

+D1 dB1(t)

dO = (αO + βOON − γOO)dt+D2 dB2(t)
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Trajectory of Nanog-Oct4

Nanog
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dt
= 0

dN

dt
= 0

There is a stable
equilibrium at the
intersection of
nullclines

Noise pushes system
away from equilibrium

A certain percentage
of cell population is
kept at low Nanog,
susceptible to
differentiation signals
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Other players in Nanog system?

Nanog

Fgf5

Oct

Gapdh

Pecam1

Stella

Rex1

Sox2

GFP Gbx2

Bayesian score PC (Tetrad IV)

Single-cell PCR
data on 82 cells,
log(amount RNA)

GFP under Stella
promoter control
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Bayesian networks for biological systems

Plus:
Mature theory, easy to apply

Efficient fast implementation of inference
algorithms possible

Easy to communicate to biologists

Causal interpretation for biological control
mechanisms not too farfetched

Minus:
No feedback loops

No simple (Bayesian) scoring method when
latent variables are present
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Schistosomiasis
Caused by parasite Schistosoma mansonii

Effects: fever, inner bleeding, liver damage

200 Mill at any one time, 1 Million death/year,
widespread in tropical subtropical, Africa, Brazil

Complex life cycle: larvae hatch from eggs in
water, grow in snails, released in water again,
picked up through skin by humans, through
bloodstream in lungs, liver, vessels around gut,
lay eggs, excreted

Hard to recognise by immune system

Treatment: praziquantel attacks worm tegument
which makes it easily recognisable by immune
system
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Immune response
Macrophage digest (bits of) invader, present it to
T-helper cells

T-helper cells sensitive to presented antigen,
multiply and release cytokines: interleukines (IL)

Interleukines (especially IL-4, IL-5, IL-6) stimulate
B-lymphocyte production

B-lymphocytes produces immunoglobulines, IgG,
IgM, IgE (Y shaped)

Igs stick to parasite, enable formation of
membrane attack complex, or attract
macrophages with cytolytic activities

Some T-helper cells go in resting state for quick
future response to infection (acquired immunity)
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Data
460 infected individuals in study in Uganda (lab
of David Lunn, Cambridge)

Recorded: age, sex, infection intensity as
measured by egg count in faeces, level of IgE

Treated with drug that attacks worm tegument,
triggering strong immune response

Cytokines, interleukines, IGs measured 24h after
treatment (stage A)

Cytokines, interleukines, IGs measured 9 weeks
after treatment (stage B)

Infection intensity after 2 years by egg count

Large number of missing data (20% of entries)
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Structural Equation Model (SEM)

Variables x and regression coefficients A

x = Ax+ ǫ, ǫ ∼ N(0,Ψ)

Might have circular dependencies among variables
(nonrecursive). Some variables might be latent or
unobserved.

Assume (I − A) invertible, then

x = (I − A)−1ǫ

with covariance

Var(x) = (I − A)−1Ψ((I − A)−1)T
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Estimation

With J projection matrix and Jx observed variables,
covariance induced on data is

C = Var(x) = J(I − A)−1Ψ((I − A)−1)TJT

ML minimisation of Gaussian −2 log likelihood

log |C|+
∑

i

xT
i C

−1xi+const = log |C|+trace(SC−1)+const

where S is the covariance matrix for centered data
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Model fit, comparison

Model chi-square χ2
M = (N − 1)(−2 loglik)

Estimation for misspecification of model

δ̂ = χ2
M − df

Popular measures of model fit:

RMSEA =

√

δ̂/(df(N − 1))

CFI = 1 − δ̂M/δ̂B

δ̂B for the base model (no arcs).

Also AIC, BIC etc
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Estimation for Schistosoma data

Time order on variables: pretreatment, 24h post
treatment, 9 weeks post treatment, 2 years post
treatment
Prior knowledge on some expected relationships

Latent variables of major interest, general
immune response 24h (IMMA) and 9 weeks
(IMMB)

Missing data imputed by multiple imputation
(MICE): random generation of missing values
from predictive distribution based on regression
on other variables
All estimates on collection of random data tables,
need to be summarised properly

SEM immune response – p.23/33



SEM model
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Traditional vs Bayesian approach

Signifiance via p-values with special heuristics for
multiple imputation, probabilities preferred

Proper credible intervals preferred to confidence
intervals
Model comparison via heuristic fit criteria,
uncorrected ML unsuitable for (automated) model
search
Missing values are a pain, need to be imputed
before SEM construction
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Bayesian approach

SEM model

X = AX + ǫ′1, ǫ ∼ N(0, diag(ψ1, . . . , ψk))

with priors

(A(k))P(k)
∼ N(0, ǫkλI), X

(i)

H(i) ∼ N(0,ΦH(i))

ψk ∼ Gamma(α, β), Φ ∼ Wishart(R, ρ)

H(i) is a binary indicator vector which value/variable
is missing in data column i in X. Similarly, indicator
vector P (k) for predictors of kth variable, F indicator
for fixed values in A.
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Conjugate analysis for coefficientsA

XP
(k) = XP(k),•, VA,k = (λ−1I +XP

(k)(X
P
(k))

′)−1

mA,k = VA,kX
P
(k)(X(k) − (A(k))F(k)

(X(k))F(k)
)′

(A(k))P(k)
∼ N(mA,k, ψkVA,k)

Posterior for ψ−1
k

βk = β +
1

2
(X(k)(X(k))

′ −m′
A,kVA,kmA,k)

αk = α+ n/2

ψ−1
k ∼ Gamma(αk, βk)
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Conjugate analysis for missing values inX

For the posterior for X note that

(I − A)•,H(i) X
(i)

H(i) = −(I − A)•,1−H(i) X
(i)

1−H(i) + ǫ′1

it is easy to see that therefore

VX,i = (Φ−1
H(i) + ((1 − A)•,H(i))′ Ψ−1

H(i)(1 − A)•,H(i))−1

mX,i = −VX,i ((1 − A)•,H(i))′ Ψ−1
H(i)(1 − A)•,1−H(i)X

(i)

1−H(i)

X
(i)
H ∼ N(mX,i, VX,i)

For Φ we use all the X data

Φ−1 ∼ Wishart(XX ′ +R, n+ ρ)
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Posterior for arcs

Adding new parents to a node k is expanding the
basis of the regression.

Standard conjugate regression analysis gives
posterior odds ratio

rk =
|VA,k,1| β

−αk,1

k,1 Γ(αk,1)

|VA,k,0| β
−αk,0

k,0 Γ(αk,0)

1

π(p1−p0)/2

where p1 − p0 is the number of added predictors
(arcs)
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Gibbs sampler

Initialise A, X, structure (eg from traditional SEM
analysis), then repeat:

Draw coefficients A from posterior conditioned on
structure (P matrix) and complete data X

Draw missing values or hidden variables from
posterior conditioned on structure and A

Draw individual arcs from posterior conditioned
on rest

Results on SEM structure very similar to previous
analysis, similar means and sds.

P (IgE(B) → final egg count) = 0.87
(p-value around 0.045)
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Feedback loops

x1 = ax2 + ǫ1

x2 = bx1 + ǫ2

Real world interpretation: after random ǫ is set, a
rapid equilibrium reached

Schisto study: ǫ random but persistent influences for
each individual, on a slower time scale than
equilibrium of components of immune system

Problem with simple regression: predictor (eg x2) is
correlated to error ǫ1 via x1
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Simple regression

B = (I − A)−1 =

(

1 −a
−b 1

)−1

=
1

1 − ab

(

1 a
b 1

)

var(X) = B

(

σ2
1 0
0 σ2

2

)

BT

=
1

(1 − ab)2

(

σ2
1 + a2σ2

2 bσ2
1 + aσ2

2

bσ2
1 + aσ2

2 b2σ2
1 + σ2

2

)

β̂1 =
cov(x1, x2)

var(x2)
=
bσ2

1 + aσ2
2

b2σ2
1 + σ2

2

=
b+ a

b2 + 1

Simple regression doesn’t work with feedback loops!
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Conclusions

Networks immensly helpful for understanding
complex biological control processes

In practice not too much difference between
frequentist and Bayesian approaches

Main headache in (static) network modelling:
circular dependencies

SEM immune response – p.33/33


	Causal networks in biology
	Choices for network models
	Inference strategies for network structure
	Standard Bayesian network
	Bayesian complexity control
	Bayesian scoring
	Search strategies for scoring methods
	Constraint based: PC algorithm
	Application: differentiation of mouse ES cells
	Flow cytometry
	FACS sorting for low-Nanog ESCs
	Stochastic DE model for Nanog-Oct4
	Trajectory of Nanog-Oct4
	Other players in Nanog system?
	Bayesian networks for biological systems
	Schistosomiasis
	Immune response
	Data
	Structural Equation Model (SEM)
	Estimation
	Model fit, comparison
	Estimation for Schistosoma data
	SEM model
	Traditional vs Bayesian approach
	Bayesian approach
	Conjugate analysis for coefficients $A$
	Conjugate analysis for missing values in $X$
	Posterior for arcs
	Gibbs sampler
	Feedback loops
	Simple regression
	Conclusions

