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Agglomerative Hierarchical Clustering

with wild type. We interpret these data to suggest that both

de novo ABA biosynthesis induced by T3E delivery and PP2C

activities collaborate to regulate pathogenicity.

ABA attenuates callose deposition associated with

basal defence

The susceptible phenotype of the ABA hypersensitive abi1-

suppressor mutants correlated with enhanced chlorosis and

formation of water-soaked lesions on leaves 3–4 dpi (days

post-infection) (Figure 4A). A hallmark of basal defence to

attempted bacterial and fungal penetration is the deposition

of callose in paramural deposits. We used aniline blue stain-

ing (Keshavarzi et al, 2004) to monitor callose deposition

at the cellular level (Figure 4B). Compared with wild-type

leaves challenged with DC3000 at 12 hpi (Figure 4Ba), both

abi1-sup5 (data not shown) and abi1-sup7 (Figure 4Bb) were

completely devoid of callose-associated fluorescence. By

contrast, the ABA-insensitive mutants abi1-1 (Figure 4Bc),

abi2-1 and the 35SHHAB1 line (Figure 4Bd) showed augmen-

ted callose deposition, although no significant differences

in the response were detected in mutant leaves following

challenge with DC3000hrpA� (data not shown). Next, mock-

(Figure 4Be) and ABA-treated (Figure 4Bf) leaves were com-

pared following virulent DC3000 challenge. As predicted, less

callose-associated fluorescence was detected in ABA-treated

plants 12 hpi after DC3000 challenge than in control inocu-

lated leaves (compare Figure 4Be with 4Bf).

ABA suppression of genes involved in basal defense

We have shown that effectors delivered intracellularly are

able to downregulate certain PAMP-induced genes (PIGs; de

Torres et al, 2006; Truman et al, 2006). To examine whether

ABA itself contributes to suppression of these basal defence

components, we used RNA blot and RT–PCR to examine the

expression level of two PIGs suppressed by T3Es, FRK1

(flagellin-induced receptor kinase 1) and the glycerol kinase

encoding NHO1 (Kang et al, 2003; Truman et al, 2006) in

ABA-insensitive mutants challenged with DC3000 or

DC3000hrpA�. Figure 5 shows that suppression of both

FRK1 (Figure 5A and B) and NHO1 (Figure 5A and C) is

delayed in both abi1-1 and abi2-1 (ABA-insensitive) back-

grounds. The effects of the abi1-1 and abi1-2 mutations

appear to be to stabilise the relative amounts of defence

transcripts. We are therefore unable to determine whether

the delayed suppression of defence transcripts is due to

enhanced innate immunity or an inability to activate suppres-

sion mechanisms. Whichever mechanism is operative, the

elevated basal defence transcripts in the compatible inter-

action are consistent with the enhanced resistance to virulent

DC3000 as shown in Figure 2.

Expression of the bacterial effector AvrPtoB in planta

increases ABA levels

Conditional expression of the conserved P. syringae effector

AvrPtoB increases susceptibility to DC3000hrpA�, suppresses

callose deposition and dramatically suppresses PIG tran-

scripts (de Torres et al, 2006). Using transgenic plants carry-

ing avrPtoB under the control of a dexamethasone (Dex)-

activated promoter, we examined NCED3, NHO1 and FRK1

transcripts in response to MgCl2 or DC3000hrpA� inocula-

tions following Dex induction by RNA blot (Figure 6A) or RT–

PCR (Figure 6B). As expected, Dex-treated leaves suppressed

induction of NHO1 and FRK1 by DC3000hrpA�. However,

avrPtoB expression induced NCED3 irrespective of the inocu-

lation, suggesting that AvrPtoB alone can modify ABA signal-

ling responses (Figure 6A and B). Notably, the levels of

NCED3 mRNA induced by Dex are B5–6 times the levels

obtained in a compatible interaction.

Consistent with these data, Dex treatment of DexHavrPtoB

transgenic plants resulted in a significant increase in ABA

levels within 6 h of application (Figure 6C), confirming that

AvrPtoB activity alone can induce ABA synthesis. In conjunc-

Figure 2 Hierarchal clustering of T3E-responsive transcripts shows a strong overlap with abiotic stresses. (A) The 880 probesets identified
previously as significantly differentially expressed in response to T3Es at 12 hpi were clustered using GeneChip expression data from the
AtGenExpress consortium. Experiments reporting the effects of cold, drought, salt stress, osmotic stress (mannitol) and ABA application were
included as well as additional time points reporting T3E activity. All data sets were normalised and interpreted using the GCRMA function of
the Bioconductor microarray analysis package (http://www.bioconductor.org/). Hierarchical clustering was applied using an uncentred
correlation and complete linkage clustering. Genes induced relative to their control are coloured red, those suppressed are coloured green,
whereas genes unchanged in their expression levels are coloured black. Cluster i, genes sharing strong similarity to regulatory networks
induced by abiotic stresses, in particular, osmotic stress. Cluster ii, all the Clade A PP2Cs originally identified in Table I are highlighted in blue.
Cluster iii, genes suppressed by both T3E and abiotic stresses. Cluster iv, genes suppressed by T3E but induced by abiotic stresses. (B) Venn
diagram showing the commonality between transcripts differentially induced by T3Es and those strongly induced by ABA or MeJA application.
SAM (Tusher et al, 2001) was used to identify genes induced by DC3000 relative to DC3000hrpA� or DC3000hrcC at 6, 12 and 24 hpi from two
independent but similar experiments, with a minimum fold change of 2 and a false discovery rate of less than 5%. ABA- and MeJA-induced
genes were identified solely on fold change taking the average of two replicates.

Abscisic acid signalling pathway
M de Torres-Zabala et al

The EMBO Journal VOL 26 | NO 5 | 2007 &2007 European Molecular Biology Organization1438

Torres-Zabala et al. EMBO Journal (2007) 26, 1434–1443
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Finite Mixture Model

xi N

zi
j J

Figure 1: A graphical model depiction of a finite mixture model with J mixture components and N data
items. Circles represent variables, and arrows denote dependencies among variables. Vectors are depicted
with bold type, and observed variables are shown inside shaded circles. Rectangles represent plates, or
repeated sub-structures in the model.

⇒ p(zi = j | z−i,α, J) ∝
n−i

j + α/J

N − 1 + α
(1)

Here, z−i denotes the assignments of all data excluding data point i, and n−i
j denotes the number of data

points assigned to component j excluding data point i. The second line of the derivation follows simply
from Bayes’ theorem. The final line of the derivation follows from conjugacy between the Dirichlet prior on
the weights and the multinomial distribution on the assignment variables. Thus, the density function under
the integral is that of a non-symmetrical Dirichlet distribution, allowing us to derive the final closed form
expression.

2.1.2 Infinite mixture models and Dirichlet Processes

In this subsection we show how the Dirichlet Process arises as a prior for infinite mixture models.
Figure 2 depicts an infinite mixture model using standard graphical model notation with plates. As can

be seen from the figure, the model is almost structurally identical to the finite version. The distinguishing
feature is that the weight and parameter vectors are now infinite dimensional.

The challenge with this model is then to define an appropriate prior for the infinite dimensional pa-
rameters and weights. As with any mixture model, the infinite dimensional weights must sum to one.
A probability distribution that generates such weights is the stick-breaking distribution, denoted Stick(α),
where α is a scaling or concentration parameter (discussed in more detail below). This distribution is defined
constructively. Intuitively, we imagine starting with a stick of unit length and breaking it at a random point.
We retain one of the pieces, and break the second piece again at a random point. This process is repeated
infinitely, producing a set of random weights that sum to one with probability one [60]. To be more precise,

6

π|α, J ∼ Dirichlet(·|α/J)
θj |H ∼ H(·)

zi |π ∼ Multinomial(·|π)
xi |zi = j , θ ∼ F (·|θj)
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the jth weight πj is constructed as:
π′j | α ∼ Beta(1,α)

πj = π′j

j−1∏

l=1

(1− π′l)

The infinite mixture model can be constructed using the stick-breaking distribution as a prior on the mix-
ture weights and the base distribution H as a prior on the component parameters. This can be summarized
as:

π | α ∼ Stick(α)

θj | H ∼ H(·)

zi | π ∼ Multinomial(· | π)

xi | zi = j,θ ∼ F (· | θj)

Note that this construction produces a vector π with a countably infinite number of dimensions, whose
components all sum to one, and H is sampled independently a countably infinite number of times to generate
the mixture component parameter values.

xi N

zi

a

j

Figure 2: A graphical model depiction of the infinite mixture model. Circles represent variables, and arrows
denote dependencies among variables. Vectors are depicted with bold type, and observed variables are
shown inside shaded circles. Rectangles represent plates, or repeated sub-structures in the model.

To establish the connection between Dirichet Processes and the model described above, we consider the
distribution over all possible component parameter values for the infinite mixture model. This distribution

7

π|α ∼ Stick(α)
θj |H ∼ H(·)

zi |π ∼ Multinomial(·|π)
xi |zi = j , θ ∼ F (·|θj)

Rasmussen, Advances in Neural Information Processing Systems 12. 2000:554–560.
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Infinite Mixture Model as Dirichlet Process Mixture

The limit of an infinite number of components corresponds to a
Dirichlet Process Prior

G(φ) =
∑∞

j=1 πjδ(φ− θj)
G | α,H ∼ DP(α,H)

Used as clustering model for gene expression profiles:
Medvedovic and Sivaganesan, Bioinformatics, vol. 18, 1194–1206,

2002.
Wild et al. 3rd International Conference on Systems Biology,

Stockholm, Sweden, 2002.
Rasmussen et al. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 2007. [http://doi.ieeecomputersociety.

org/10.1109/TCBB.2007.70269].

http://doi.ieeecomputersociety.org/10.1109/TCBB.2007.70269
http://doi.ieeecomputersociety.org/10.1109/TCBB.2007.70269
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Bayesian Hierarchical Clustering (Heller and
Ghahramani 2005)

A Bayesian way to do hierarchical clustering where
marginal likelihoods are used to decide which merges are
advantageous
A novel fast bottom-up way of doing approximate inference
in a Dirichlet Process mixture model (e.g. an infinite
Gaussians mixture model)
BHC is virtually identical to traditional hierarchical
clustering except that instead of distance it uses marginal
likelihoods to decide on merges.
R/Bioconductor implementation forthcoming (Savage et al.,
submitted)
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x (i)
j ∼ Multinomial(·|θj) (-2)
θj ∼ Dirichlet(·|αj)

1 Underexpressed - negative tail
2 Unchanged
3 Overexpressed - positive tail
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BHC clustering of A. thaliana expression data

X
6h

.D
C

30
00

X
12

h.
D

C
30

00

X
24

h.
D

C
30

00

X
3h

.o
sm

ot
ic

X
6h

.o
sm

ot
ic

X
12

h.
os

m
ot

ic

X
24

h.
os

m
ot

ic

X
30

m
.d

ro
ug

ht

X
1h

.s
al

t

X
1h

.o
sm

ot
ic

X
1h

.d
ro

ug
ht

X
24

h.
dr

ou
gh

t

X
12

h.
dr

ou
gh

t

X
3h

.d
ro

ug
ht

X
6h

.d
ro

ug
ht

X
1h

.c
ol

d

X
15

m
.d

ro
ug

ht

X
30

m
.c

ol
d

X
30

m
.o

sm
ot

ic

X
30

m
.s

al
t

X
12

h.
co

ld

X
24

h.
co

ld

X
3h

.c
ol

d

X
6h

.c
ol

d

X
24

h.
sa

lt

X
12

h.
sa

lt

X
3h

.s
al

t

X
6h

.s
al

t

X
3h

.A
B

A

X
30

m
.A

B
A

X
1h

.A
B

A

−3566.324

−164.282

●

−58.747

●

−8.657

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

−4350.38

−587.68

●

−35.23
●

−1995.18

−370.39

−45.14
●

−199.65●

−1028.06

−98.54
●

−315.07

−21.54
●

−95.05●



Background and Motivation
Bayesian Hierarchical Clustering

Integrating Transcription Factor Binding Data
Results

Outline

1 Background and Motivation

2 Bayesian Hierarchical Clustering

3 Integrating Transcription Factor Binding Data

4 Results



Background and Motivation
Bayesian Hierarchical Clustering

Integrating Transcription Factor Binding Data
Results

Hierarchical Dirichlet Process

xti

T
Nt

a

zti

t

a

j

0
1

0

Figure 3: A graphical model depiction of the Hierarchical Dirichlet Process represented as an infinite mix-
ture model. Circles represent variables, and arrows denote dependencies among variables. Vectors are de-
picted with bold type, and observed variables are shown inside shaded circles. Rectangles represent plates,
or repeated sub-structures in the model.

Dirichlet Process, i.e., G | α0,H ∼ DP(α0,H). Recall that we can write this sample as:

G(ψ) =
∞∑

j=1

β0
j δ(ψ − θj)

Here, θj are drawn i.i.d. from the base distribution H , and β0 | α0 ∼ Stick(α0).
We next form a second DP using the sample G itself as a base distribution, i.e., we construct DP(α1, G).

We then generate i.i.d. samples from this DP for each of the T sub-models, i.e., Gt | α1, G ∼ DP(α1, G).
Each sample can be written as:

Gt(ψ) =
∞∑

j=1

πtjδ(ψ − θj)

Notice that these distributions must necessarily be non-zero only at the same points θj as G is. We have now
constructed a set of T dependent infinite mixture models, where each model has separate (but dependent)
weights πt and shared component parameters θ.

It can be shown that the weights πt can be constructed via a stick-breaking process using the top-level

9

G0|α0,H ∼ DP(α0,H)
Gj |α0,G0 ∼ DP(α0,G0)

Teh et al. JASA, 2006.
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Arabidopsis data (278 genes)Arabidopsis data (278 genes)

Discretised gene expression
(31 experiments)

TF binding site counts
(56 PSSMs)
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Gene Expression Data Model

Marginal likelihood for a single mixture component:

P(D|M) =
∏

i

Γ(Bi)

Γ(Ni + Bi)

∏
k

Γ(nik + βik )

Γ(βik )

Bi =
∑

k

βik ,Ni =
∑

k

nik

i indexes over features (experiments)
k indexes over discrete data categories
βik are the Dirichlet prior hyperparameters
(naïve Bayes data model with optional hyperparameter fitting)
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Transcription Factor Binding Site Data Model

Marginal likelihood for a single mixture component:

P(D|M) =
Γ(B)

Γ(N + B)

∏
i

Γ(ni + βi)

Γ(βi)

B =
∑

i

βi ,N =
∑

i

ni

i indexes over features (TF binding motifs)
βi are the Dirichlet prior hyperparameters
(‘bag of words’ data model (Teh et al. ) with optional hyperparameter
fitting)
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HDP-like prior

Let xji be the observed response for i-th gene in the j-th context.
We introduce an extra latent variable ri for each gene with

p(ri = 1) = w , p(ri = 0) = 1− w .

If ri = 1 then θi = (θ1i , θ2i) ∼ G3 (fused)
If ri = 0 then θ1i ∼ G1 and θ2i ∼ G2 are conditionally
independent (unfused)
This defines 3 contexts. Unlike the HDP, we have

G1 ∼ DP(α0,G
(1)
0 ),G2 ∼ DP(α0,G

(2)
0 ),G3 ∼ DP(α0,G0)

where G(j)
0 represents the marginal distribution of φj under G0.
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Graphical Model
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Results (I) - Fused Genes
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Results (II) Gene grouping Matrix
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Results (III) - Genes which ‘move’

At1g53580: hydroxyacylglutathione hydro-
lase
tobacco EIN3-like motif -
2 other genes (of 13) have this motif

04/15/2009 02:43 PMM00502.png 605×110 pixels

Page 1 of 1https://portal.biobase-international.com/build_t/idb/1.0/html/gifs/matrixlogos/M00502.png

At5g53870: plastocyanin-like domain
(copper ion binding)
Arabidopsis thaliana AG motif -
4 other genes (of 13) have this motif

04/15/2009 03:01 PMM01133.png 1280×110 pixels

Page 1 of 1https://portal.biobase-international.com/build_t/idb/1.0/html/gifs/matrixlogos/M01133.png
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Results (IV) Gene Ontology Term Enrichment

Negative regulation of cellular
process

3.0 *10-23 of 41

Regulation of response to
stimulus

2.0 *10-23 of 41

Regulation of signal transduction8.5 *10-33 of 41

Negative regulation of abscisic
acid mediated signalling

6.7 *10-32 of 41B

External encapsulating structure8.8*10-63 of 4

Plant-type cell wall3.4*10-63 of 4A
GO termP-valuenGenescluster
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