Transcriptional modules in *A. thaliana* stress responses: an application of Bayesian data fusion

David L. Wild

Systems Biology Centre, University of Warwick

April 15, 2009

イロト イポト イヨト イヨト

Background and Motivation

2 Bayesian Hierarchical Clustering

Integrating Transcription Factor Binding Data

- Bayesian Hierarchical Clustering
- Integrating Transcription Factor Binding Data

Background and Motivation

Bayesian Hierarchical Clustering Integrating Transcription Factor Binding Data Results

Arabidopsis thaliana

<ロト <回 > < 注 > < 注 > 、

ъ

- Can we find sensible sub-sets of genes from which to infer regulatory networks?
- Does co-expression equal co-regulation?
- Can we identify "transcriptional modules" (sets of gene regulated by a common set of transcription factors)?

- Can we find sensible sub-sets of genes from which to infer regulatory networks?
- Does co-expression equal co-regulation?
- Can we identify "transcriptional modules" (sets of gene regulated by a common set of transcription factors)?

- Can we find sensible sub-sets of genes from which to infer regulatory networks?
- Does co-expression equal co-regulation?
- Can we identify "transcriptional modules" (sets of gene regulated by a common set of transcription factors)?

- Can we find sensible sub-sets of genes from which to infer regulatory networks?
- Does co-expression equal co-regulation?
- Can we identify "transcriptional modules" (sets of gene regulated by a common set of transcription factors)?

Agglomerative Hierarchical Clustering

Torres-Zabala et al. EMBO Journal (2007) 26, 1434-1443

Background and Motivation

Bayesian Hierarchical Clustering Integrating Transcription Factor Binding Data Results

Finite Mixture Model

$$\begin{aligned} \pi | \alpha, J &\sim \textit{Dirichlet}(\cdot | \alpha / J) \\ \theta_j | H &\sim H(\cdot) \\ \mathsf{z}_i | \pi &\sim \textit{Multinomial}(\cdot | \pi) \\ \mathsf{x}_i | \mathsf{z}_i &= j, \theta &\sim \mathsf{F}(\cdot | \theta_j) \end{aligned}$$

イロト イポト イヨト イヨト

æ

Background and Motivation

Bayesian Hierarchical Clustering Integrating Transcription Factor Binding Data Results

Infinite Mixture Model

$$\begin{aligned} \pi | \alpha &\sim \textit{Stick}(\alpha) \\ \theta_j | H &\sim H(\cdot) \\ \textbf{z}_i | \pi &\sim \textit{Multinomial}(\cdot | \pi) \\ \textbf{x}_i | \textbf{z}_i &= j, \theta \sim F(\cdot | \theta_j) \end{aligned}$$

Rasmussen, Advances in Neural Information Processing Systems 12. 2000:554-560.

ヘロト 人間 とくほとく ほとう

æ

Infinite Mixture Model as Dirichlet Process Mixture

The limit of an infinite number of components corresponds to a Dirichlet Process Prior $G(\phi) = \sum_{j=1}^{\infty} \pi_j \delta(\phi - \theta_j)$ $G \mid \alpha, H \sim DP(\alpha, H)$

Used as clustering model for gene expression profiles: Medvedovic and Sivaganesan, *Bioinformatics*, vol. 18, 1194–1206, 2002. Wild et al. *3rd International Conference on Systems Biology*

Wild et al. 3rd International Conference on Systems Biology, Stockholm, Sweden, 2002.

Rasmussen et al. *IEEE/ACM Transactions on Computational Biology* and Bioinformatics 2007. [http://doi.ieeecomputersociety. org/10.1109/TCBB.2007.70269].

- 2 Bayesian Hierarchical Clustering
- Integrating Transcription Factor Binding Data

4 Results

Bayesian Hierarchical Clustering (Heller and Ghahramani 2005)

- A Bayesian way to do hierarchical clustering where marginal likelihoods are used to decide which merges are advantageous
- A novel fast bottom-up way of doing approximate inference in a Dirichlet Process mixture model (e.g. an infinite Gaussians mixture model)
- BHC is virtually identical to traditional hierarchical clustering except that instead of distance it uses marginal likelihoods to decide on merges.
- R/Bioconductor implementation forthcoming (Savage et al., submitted)

Bayesian Hierarchical Clustering (Heller and Ghahramani 2005)

- A Bayesian way to do hierarchical clustering where marginal likelihoods are used to decide which merges are advantageous
- A novel fast bottom-up way of doing approximate inference in a Dirichlet Process mixture model (e.g. an infinite Gaussians mixture model)
- BHC is virtually identical to traditional hierarchical clustering except that instead of distance it uses marginal likelihoods to decide on merges.
- R/Bioconductor implementation forthcoming (Savage et al., submitted)

Bayesian Hierarchical Clustering (Heller and Ghahramani 2005)

- A Bayesian way to do hierarchical clustering where marginal likelihoods are used to decide which merges are advantageous
- A novel fast bottom-up way of doing approximate inference in a Dirichlet Process mixture model (e.g. an infinite Gaussians mixture model)
- BHC is virtually identical to traditional hierarchical clustering except that instead of distance it uses marginal likelihoods to decide on merges.
- R/Bioconductor implementation forthcoming (Savage et al., submitted)

ヘロト ヘ戸ト ヘヨト ヘヨト

Bayesian Hierarchical Clustering (Heller and Ghahramani 2005)

- A Bayesian way to do hierarchical clustering where marginal likelihoods are used to decide which merges are advantageous
- A novel fast bottom-up way of doing approximate inference in a Dirichlet Process mixture model (e.g. an infinite Gaussians mixture model)
- BHC is virtually identical to traditional hierarchical clustering except that instead of distance it uses marginal likelihoods to decide on merges.
- R/Bioconductor implementation forthcoming (Savage et al., submitted)

Gene Expression Data

(-2)

э

- Underexpressed negative tail
- 2 Unchanged
- Overexpressed positive tail

Gene Expression Data

(-2)

э

- Underexpressed negative tail
- Output Description 10 Control 10 Control
 - Overexpressed positive tail

Gene Expression Data

$$egin{array}{rcl} x_j^{(i)} &\sim & Multinomial(\cdot| heta_j) \ heta_j &\sim & Dirichlet(\cdot|lpha_j) \end{array}$$

(-2)

< 🗇 ▶

ヨトメヨト

э

- Underexpressed negative tail
- Output Description 10 Control 10 Control
- Overexpressed positive tail

BHC clustering of A. thaliana expression data

Outline

- 2 Bayesian Hierarchical Clustering
- Integrating Transcription Factor Binding Data

4 Results

Hierarchical Dirichlet Process

$\begin{array}{l} \mathsf{G}_{0}|\alpha_{0}, \textit{H} \sim \textit{DP}(\alpha_{0},\textit{H})\\ \mathsf{G}_{j}|\alpha_{0},\textit{G}_{0} \sim \textit{DP}(\alpha_{0},\textit{G}_{0}) \end{array}$

Teh et al. JASA, 2006.

ъ

Arabidopsis data (278 genes)

(ロ) (四) (三) (三) (三) (三) (○)

Gene Expression Data Model

Marginal likelihood for a single mixture component:

$$P(D|M) = \prod_{i} \frac{\Gamma(B_{i})}{\Gamma(N_{i} + B_{i})} \prod_{k} \frac{\Gamma(n_{ik} + \beta_{ik})}{\Gamma(\beta_{ik})}$$

$$B_i = \sum_k eta_{ik}, N_i = \sum_k n_{ik}$$

ヘロト ヘアト ヘヨト ヘ

i indexes over features (experiments) *k* indexes over discrete data categories β_{ik} are the Dirichlet prior hyperparameters (naïve Bayes data model with optional hyperparameter fitting)

Transcription Factor Binding Site Data Model

Marginal likelihood for a single mixture component:

$$P(D|M) = rac{\Gamma(B)}{\Gamma(N+B)} \prod_i rac{\Gamma(n_i + eta_i)}{\Gamma(eta_i)}$$

$$B = \sum_{i} \beta_{i}, N = \sum_{i} n_{i}$$

i indexes over features (TF binding motifs) β_i are the Dirichlet prior hyperparameters (*'bag of words'* data model (Teh et al.) with optional hyperparameter fitting)

HDP-like prior

Let x_{ji} be the observed response for *i*-th gene in the *j*-th context. We introduce an extra latent variable r_i for each gene with

$$p(r_i = 1) = w, \qquad p(r_i = 0) = 1 - w.$$

If $r_i = 1$ then $\theta_i = (\theta_{1i}, \theta_{2i}) \sim G_3$ (fused) If $r_i = 0$ then $\theta_{1i} \sim G_1$ and $\theta_{2i} \sim G_2$ are conditionally independent (unfused)

This defines 3 contexts. Unlike the HDP, we have

$$G_1 \sim \mathsf{DP}(lpha_0, G_0^{(1)}), G_2 \sim \mathsf{DP}(lpha_0, G_0^{(2)}), G_3 \sim \mathsf{DP}(lpha_0, G_0)$$

where $G_0^{(j)}$ represents the marginal distribution of ϕ_j under G_0 .

Graphical Model

э

Outline

2 Bayesian Hierarchical Clustering

Integrating Transcription Factor Binding Data

Results (I) - Fused Genes

(日) (四) (三) (三) (三) (三) (○) (○)

Results (II) Gene grouping Matrix

Results (III) - Genes which 'move'

At1g53580: hydroxyacylglutathione hydrolase tobacco EIN3-like motif -

2 other genes (of 13) have this motif

At5g53870: plastocyanin-like domain

(copper ion binding) Arabidopsis thaliana AG motif -

other genes (of 13) have this motif 4

ATG-ASCT

ヘロト ヘアト ヘヨト ヘ

Results (IV) Gene Ontology Term Enrichment

cluster	nGenes	P-value	GO term
A	3 of 4	3.4*10 ⁻⁶	Plant-type cell wall
	3 of 4	8.8*10 ⁻⁶	External encapsulating structure
В	2 of 41	6.7 *10 ⁻³	Negative regulation of abscisic acid mediated signalling
	3 of 41	8.5 *10 ⁻³	Regulation of signal transduction
	3 of 41	2.0 *10-2	Regulation of response to stimulus
	3 of 41	3.0 *10 ⁻²	Negative regulation of cellular process

Conclusions

- HDP-based models useful for biological data integration
- New biological insights ?
- Extensions to graphical model formalism needed for 'conditional' graphical models?

Conclusions

HDP-based models useful for biological data integration

- New biological insights ?
- Extensions to graphical model formalism needed for 'conditional' graphical models?

Conclusions

- HDP-based models useful for biological data integration
- New biological insights ?
- Extensions to graphical model formalism needed for 'conditional' graphical models?

イロト イポト イヨト イヨト

Conclusions

HDP-based models useful for biological data integration

イロト イポト イヨト イヨト

- New biological insights ?
- Extensions to graphical model formalism needed for 'conditional' graphical models?

Acknowledgments

- Richard Savage
- Jim Griffin (Kent) and Zoubin Ghahramani (Cambridge)
- Sascha Ott and Richard Hickman (Warwick)
- Murray Grant and Bill Truman (Exeter)

• Funded by EPSRC EP/F027400/1 (Life Science Interface)

Acknowledgments

Richard Savage

- Jim Griffin (Kent) and Zoubin Ghahramani (Cambridge)
- Sascha Ott and Richard Hickman (Warwick)
- Murray Grant and Bill Truman (Exeter)
- Funded by EPSRC EP/F027400/1 (Life Science Interface)

Acknowledgments

- Richard Savage
- Jim Griffin (Kent) and Zoubin Ghahramani (Cambridge)
- Sascha Ott and Richard Hickman (Warwick)
- Murray Grant and Bill Truman (Exeter)
- Funded by EPSRC EP/F027400/1 (Life Science Interface)

Acknowledgments

- Richard Savage
- Jim Griffin (Kent) and Zoubin Ghahramani (Cambridge)
- Sascha Ott and Richard Hickman (Warwick)
- Murray Grant and Bill Truman (Exeter)
- Funded by EPSRC EP/F027400/1 (Life Science Interface)

Acknowledgments

- Richard Savage
- Jim Griffin (Kent) and Zoubin Ghahramani (Cambridge)
- Sascha Ott and Richard Hickman (Warwick)
- Murray Grant and Bill Truman (Exeter)

• Funded by EPSRC EP/F027400/1 (Life Science Interface)

イロト イポト イヨト イヨト

Acknowledgments

- Richard Savage
- Jim Griffin (Kent) and Zoubin Ghahramani (Cambridge)
- Sascha Ott and Richard Hickman (Warwick)
- Murray Grant and Bill Truman (Exeter)
- Funded by EPSRC EP/F027400/1 (Life Science Interface)