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The sad state of statistical testing in science

• Significance testing using p-values is by far the dominant method of

testing in science.

• Its standard uncritical use is viewed by many as being the major source

of the problems of reproducibility of science.

• Everyone is talking about it:

– articles in all the major science journals;

– changes in editorial policy (the journal Basic and Applied Social

Psychology banned p-values);

– the recent ASA position statement about p-values and discussion.

• My view: none of the discussion matters unless, as a profession, we can

agree on an alternative to p-values.
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The p-value Controversy

• Concerns with use of p-values trace back to at least Berkson (1937).

• Concerns are recurring in many scientific literatures:

Environmental sciences: http://www.indiana.edu/∼stigtsts/

Social sciences: http://acs.tamu.edu/∼bbt6147/

Wildlife science: http://www.npwrc.usgs.gov/perm/hypotest/

http://www.cnr.colostate.edu/∼anderson/null.html

• An example - articles and books in social sciences: Rozeboom, 60;

Edwards, Lindman, and Savage, 63; Morrison and Henkel, 70; Carver, 78; Meehl,

78; Shaver, 85; Oakes, 86; Kupersmid, 88; Rosnow and Rosenthal, 89; Cohen, 90,

94; Rosenthal, 91; Thompson, 93, 94, 98, 99; Volume 51 (No.4) of J. of

Experimental Education; Schmidt, 96 (APA presidential address); Hunter, 97;

Schmidt and Hunter, 97; Harlow, Mulaik and Steiger, 97; Levin, 98; APA task force

• Numerous works specifically focus on comparing the Fisher and N-P

approaches (e.g., Lehmann, 1993 JASA: The Fisher, N-P Theories of Testing

Hypotheses: One Theory or Two?)
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The Major Problem: p-values are misinterpreted

• Few non-statisticians understand p-values, most erroneously thinking

they are some type of error probability, Bayesian or frequentist;

they are neither!

– A survey 30 years ago:

∗ “What would you conclude if a properly conducted, randomized

clinical trial of a treatment was reported to have resulted in a

beneficial response (p < 0.05)?

1. Having obtained the observed response, the chances are less than 5%

that the therapy is not effective.

2. The chances are less than 5% of not having obtained the observed

response if the therapy is effective.

3. The chances are less than 5% of having obtained the observed

response if the therapy is not effective.

4. None of the above.

∗ We asked this question of 24 physicians ... Half ... answered

incorrectly, and all had difficulty distinguishing the subtle differences...

∗ The correct answer to our test question, then, is 3.”
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“This isn’t right. This isn’t even wrong.” –Wolfgang Pauli, on a

submitted paper

∗ Actual correct answer: The chances are less than 5% of having

obtained the observed response or any more extreme response if

the therapy is not effective.

• But, is it fair to count ‘possible data more extreme than the actual

data’ in the evidence against the null hypothesis?

Jeffreys (1961): “An hypothesis, that may be true, may be rejected

because it has not predicted observable results that have not occurred.”

• Matthews (1998): “The plain fact is that 70 years ago Ronald Fisher

gave scientists a mathematical machine for turning baloney into

breakthroughs, and flukes into funding.”

• When testing precise hypotheses, true error probabilities (Bayesian or

frequentist) are much larger than p-values.

– Later examples.

– Applet (of Jarad Niemi) at https://jaradniemi.shinyapps.io/pvalue/
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Replacing p-values and fixed error probability
frequentist testing with unified Bayesian/frequentist

rejection odds

• Review of why Bayesian hypothesis testing and the common usage of

p-values are incompatible.

• Review of why Bayesian hypothesis testing and fixed error probability

frequentist testing are incompatible.

• Why use of rejection odds can unify Bayesian and frequentist testing.
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A Key Issue: Is the precise hypothesis being tested plausible?

A precise hypothesis is an hypothesis of lower dimension than the

alternative, H0 : µ = 0 versus H1 : µ 6= 0 (or H0 : |µ| < ǫ versus H1 : |µ| > ǫ).

A precise hypothesis is plausible if it has a reasonable prior probability of

being true. H0 : “the Higgs boson has spin 0” is plausible.

Example: Let θ denote the difference in mean treatment effects for cancer

treatments A and B, and test H0 : θ = 0 versus H1 : θ 6= 0.

Scenario 1: Treatment A = standard chemotherapy

Treatment B = standard chemotherapy + steroids

Scenario 2: Treatment A = standard chemotherapy

Treatment B = a new radiation therapy

H0 : θ = 0 is plausible in Scenario 1, but not in Scenario 2; in the latter

case, instead test H0 : θ < 0 versus H1 : θ > 0.
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Plausible precise null hypotheses:

• H0 : Gene A is not associated with Disease B.

• H0: There is no psychokinetic effect.

• H0: Vitamin C has no effect on the common cold.

• H0: A new HIV vaccine has no effect.

• H0: Cosmic microwave background radiation is isotropic.

• H0 : Males and females have the same distribution of eye color.

• H0 : Pollutant A does not cause disease B.

Implausible precise null hypotheses:

• H0 : Small mammals are as abundant on livestock grazing land as on

non-grazing land

• H0 : Bird abundance does not depend on the type of forest habitat

they occupy

• H0 : Children of different ages react the same to a given stimulus.
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Bayesian hypothesis testing and the common usage of
p-values are incompatible

9



Contemporary Issues in Hypothesis Testing CRiSM, Univ. Warwick, Sept. 16, 2016✬

✫

✩

✪

Hypotheses and data:

• Alvac had shown no effect

• Aidsvax had shown no effect

Question: Would Alvac as a primer and Aidsvax as a booster work?

The Study: Conducted in Thailand with 16,395 individuals from the

general (not high-risk) population:

• 74 HIV cases reported in the 8198 individuals receiving placebos

• 51 HIV cases reported in the 8197 individuals receiving the treatment
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The test that was performed:

• Let p1 and p2 denote the probability of HIV infection in the placebo

and treatment populations, respectively.

• Test H0 : p1 = p2 versus H1 : p1 > p2

• Normal approximation okay, so

z =
p̂1 − p̂2

√

σ̂{p̂1−p̂2}
=

.009027− .006222

.001359
= 2.06

is approximately N(θ, 1), where θ = (p1 − p2)/(.001359).

Test H0 : θ = 0 versus H1 : θ > 0, based on z.

• Observed z = 2.06, so the p-value is 0.02.
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Bayesian analysis:

Posterior odds of H1 to H0 = [Prior odds of H1 to H0]×B10(z) ,

where

B10(z) = Bayes factor of H1 to H0 = ‘data-based odds of H1 to H0’

=
average likelihood of H1

likelihood of H0 for observed data
=

∫

1√
2π

e−(z−θ)2/2π(θ)dθ

1√
2π

e−(z−0)2/2
,

For z = 2.06 and π(θ) = Uniform(0, 2.95), the nonincreasing prior most

favorable to H1,

B10(2.06) = 5.63 (the p-value is 0.020, commonly misinterpreted as 50 : 1 odds)

(The actual subjective ‘study team’ prior yielded B∗
10(2.06) = 4.0, and the

maximum Bayes factor over all possible priors is ez
2/2 = 8.35.)
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Bayesian hypothesis testing and fixed α level testing are
not compatible

• Fixed α level testing, i.e.

– pre-experimentally choosing a rejection region R

(e.g., R = (1.645,∞) in the vaccine example)

with Type I error probability α = Pr(R | H0),

– and reporting the error as α, no matter where the data is in R,

is a valid frequentist procedure (as opposed to use of the p-value as the

error probability, which is not a valid frequentist procedure).

• But it is an unconditional frequentist procedure and conditionally

seems silly to a Bayesian, e.g. reporting the same α = 0.05

– when z = 1.645 (where 0.05 is a serious underestimate of the actual

conditional error)

– or z = 5 (where 0.05 is a serious overestimate of the actual

conditional error).
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Possible unification of frequentist and Bayesian testing

Setup (for now a mix of frequentist and Bayes):

We observe data x from the density f(x | θ) and wish to test

H0 : θ = θ0 (or H0 : |θ − θ0| < ǫ) versus H1 : θ 6= θ0 (or H1 : |θ − θ0| > ǫ) .

• Suppose a rejection region R is specified.

• Let α = Pr(R | θ0) and (1− β(θ)) = Pr(R | θ) be the Type I error and

power corresponding to the rejection region R.

• Let π0 and π1 = 1− π0 be the prior probabilities of H0 and H1.

• Let π(θ) be the prior density of θ under H1 (this could just be a point

mass at a point θ′ for which power is to be evaluated).

– Then (1− β̄) =
∫

(1− β(θ))π(θ)dθ is the average power wrt the

prior π(θ) (equals [1− β(θ′)] if power at a point is used).

– And m(x) =
∫

f(x | θ)π(θ)dθ is the marginal likelihood of the data

x under the prior π(θ) (equals f(x | θ′) for a point mass prior).
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Pre-experimental analysis (not new):

The pre-experimental probability of incorrectly rejecting H0 is then π0α,

while the pre-experimental probability of correctly rejecting H0 is π1(1− β̄).

Definition: The pre-experimental odds of correct to incorrect rejection of

H0 are

Opre =
π1

π0
×

(1− β̄)

α

≡ OP × Rpre

≡ [prior odds of H1 to H0]× [rejection odds of H1 to H0] .

Reporting of the rejection odds, Rpre, recognizes the crucial role of power
in understanding the strength of evidence in rejecting, and does so in a
simple way (reducing the evidence to a single number).

average power 0.05 0.25 0.50 0.75 1.0 0.01 0.25 0.50 0.75 1.0

type I error 0.05 0.05 0.05 0.05 0.05 0.01 0.01 0.01 0.01 0.01

Rpre 1 5 10 15 20 1 25 50 75 100
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Example: Genome-wide Association Studies (GWAS)

• Early genomic epidemiological studies almost universally failed to

replicate (estimates of the replication rate are as low as 1%), because

they were doing extreme multiple testing at non-extreme p-values.

• A very influential paper in Nature (2007) by the Wellcome Trust Case

Control Consortium proposed the cutoff p < 5× 10−7.

– Found 21 genome/disease associations; 20 have been replicated.

• The frequentist Bayesian argument for the cutoff:

– They wanted an experiment with Opre, the pre-experimental odds

of a true to false positive, equal to 10 : 1.

– They assessed OP , the prior odds of a true to false positive, to be
1

100,000 . (This is their implementation of Bayesian control for multiple

testing; OP could, instead, have been estimated from the data.)

– Typical GWAS studies had power (1− β̄) = 0.5.

– Solving [ 101 = 1
100,000 × 0.5

α ] gave α = 5× 10−7.
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Post-experimental odds analysis (not new):

Once the data is at hand a Bayesian would focus on the posterior odds of

H1 to H0 given by
Opost =

π1

π0
×

m(x)

f(x | θ0)

≡ OP ×Rpost(x) ,

where Rpost(x) is the data-dependent odds of a true to false rejection,

more commonly called the Bayes factor of H1 to H0 and denoted B10(x).

GWAS example: Parts of the Nature article argued that it is best to just

compute the Bayes factors, B10(x), and the posterior odds Opost.

For the 21 claimed associations, these ranged between

• Opost = 1068 (overwhelming evidence of a correct rejection) and

• Opost =
1
10

(evidence of an incorrect rejection; note that this is the one

claimed association in the article that has not been replicated).

Reporting these these seems much more reasonable than always saying

Opre =
10
1 , but the article did not base decisions on them, presumably

because they are not frequentist measures. Is that true?
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Lemma (new): The frequentist expectations of B10(x) and

B01(x) = 1/B10(x) over the rejection region, conditional on the respective

hypotheses, are

E[B10(x) | H0,R] = Rpre =
(1− β̄)

α
, and E[B01(x) | H

∗
1 ,R] = [Rpre]

−1 ,

where H∗
1 refers to the marginal alternative model with density m(x).

The first identity guarantees that, under H0, the “average of the reported

Bayes factors when rejecting” equals the actual rejection odds Rpre, so

B10(x) is as valid a frequentist report as is Rpre.

How can a valid frequentist procedure depend on a prior distribution?

• Any power assessment requires at least specification of a point at which to

assess power, and that can be used as the prior if nothing else is available.

• Thus, if one is willing to consider power, then Rpost is much better than Rpre,

since it has the same frequentist justification and is fully data dependent.
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Vaccine Example:

There were widely varying opinions concerning the prior odds Op = π1/π0,

and the impact of this was illustrated and discussed in Gilbert et al., 2011.

But we will focus on Opre and Opost(z) = B10(z), the odds arising from the

experiment and data.

The observation is z = 2.06, where Z is approximately N(θ, 1), and we are

testing

H0 : θ = 0 versus H1 : θ > 0 .

The p-value is 0.02 and

Opost(z) = B10(z) = Bayes factor of H1 to H0 =

∫

1√
2π

e−(z−θ)2/2π(θ)dθ

1√
2π

e−(z−0)2/2
,

equaling B10(2.06) = 5.63 for the actual data and using

π(θ) = Uniform(0, 2.95), the nonincreasing prior most favorable to H1.
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Odds Analysis: R = (1.645,∞), α = 0.05 and the scientists said

1− β̄ = 0.45, so Rpre = (1− β̄)/α = 9. Thus, pre-experimentally, the

rejection odds of a correct rejection to an incorrect rejection are nine to one.
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35
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st
(z

)

Above is B10(z) (or Rpost(z)), as a function of z ∈ R. Thus,

post-experimentally the odds of a correct rejection to incorrect rejection

can be anywhere from 2 to ∞.

Recall z = 2.06 was observed, so B10(2.06) = 5.63 is the actual odds.
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Another argument for B10(x) as opposed to Rpre: (The basic issue

pointed out to us by Deborah Mayo)

Pre-experimentally, the larger the power, the larger is Rpre, so the larger

the probability that a rejection from the experiment will be correct,

assuming, of course, that the power has been accurately assessed.

But the opposite behavior can be true post-experimentally, with fixed data.

Example: Suppose we use a point mass prior at θ′ (corresponding to power at

a point, and assume that this is indeed viewed as the likely alternative value).

• Rpre =
1−β(θ′)

α will clearly be increasing for large θ′.

• B10(x) =
f(x|θ′)
f(x|θ0) will be decreasing for large enough θ′ and fixed x.

The intuition here is that the observation of (say) p = 0.045 can be less likely

under a highly powered experiment (where much smaller p-values are expected if

the alternative is true) than a moderately powered experiment, and so can be less

evidence in favor of the alternative for the highly powered experiment. This is

correctly reflected by B10(x), while Rpre incorrectly suggests the opposite.
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A common complaint: determining Bayes factors is too hard.

But p-values can be converted into bounds on Bayes factors.

Indeed, robust Bayesian theory suggests general and simple ways to

calibrate p-values. (Vovk, 1993, Sellke, Bayarri and Berger, 2001, ELS, 1963).

Theorem 1 A proper p-value satisfies H0 : p(X) ∼ Uniform(0, 1), so

consider testing this versus H1 : p ∼ g(p), where Y = − log(p) has a

non-increasing failure rate (a natural non-parametric condition on g). Then

B10 ≤ 1
−e p log(p) for p < e−1.

Theorem 2 Consider testing H0 : θ = θ0 vs H1 : θ 6= θ0 based on test

statistic T (x), with p(x) = P (T (X) > T (x) | θ0) ≡ 1− F (T (x) | θ0) and f

being the density corresponding to F . For any prior π(θ),

B10 ≤ supθ f(F
−1(1− p) | θ)/f(F−1(1− p) | θ0).

p 0.1 0.05 0.01 0.005 0.001 0.0001 0.00001 5× 10−7

1
−ep log(p)

1.60 2.44 8.13 13.9 52.9 400 3226 2.0× 105

supθ, Normal 2.9 4.4 14.7 25.7 113 970 8731 1.6× 105
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• Although very simple, there was initially concern that the 1
−ep log(p)

bound is too large, since it is known that Bayes factors can depend

strongly on the sample size n, and the bounds do not.

• But the following studies indicate that this might not typically be a

problem. These studies

– look at large collections of published studies where 0 < p < 0.05;

– compute a Bayes factor, B01 = 1/B10, for each study;

– graph the Bayes factors versus the corresponding p-values.

• The lower boundary in all figures is essentially the lower bound

−e p log(p) (the corresponding bound for B01 = 1/B10 and given by the

dashed lines in the figures), indicating that it is often an accurate

bound.

The first two graphs are for 272 ‘significant’ epidemiological studies with

two different choices of the prior; the third for 50 ‘significant’ meta-analyses

(these three from J.P. Ioannides, Am J Epidemiology, 2008); and the last is

for 314 ecological studies (reported in Elgersma and Green, 2011).
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Bayesian and frequentist possibilities for choosing the prior π(θ)

for the post-experimental rejection ratio or Bayes factor:

1. Subjective prior: When a subjective prior is available, such as the

‘study team prior’ in the vaccine example, using it is optimal. Again, note

that the resulting procedure is still as much of a frequentist procedure as is

the use of the pre-experimental rejection odds Opre =
(1−β̄)

α .

2. Power considerations: If the experiment was designed with power

considerations in mind, one can use the implicit prior that was utilized to

determine power. This could be a prior distribution (or weight function) if

used to compute power, or a specified point (i.e., a prior giving probability

one to that point) if that is what was done.
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3. Objective Bayes conventional priors: Discussion of these can be

found in Berger and Pericchi (2001). One popular such prior, that applies

to our testing problem, is the intrinsic prior defined as follows:

• Let πO(θ) be a good estimation objective prior (using a constant prior

will almost always work fine), with resulting posterior distribution and

marginal distribution for data x given, respectively, by

πO(θ | x) = f(x | θ)πO(θ)/mO(x), mO(x) =

∫

f(x | θ)πO(θ) dθ .

• Then the intrinsic prior (which will be proper) is

πI(θ) =

∫

πO(θ | x∗)f(x∗ | θ0) dx
∗ ,

with x
∗ = (x∗

1, . . . , x
∗
q) being imaginary data of the smallest sample size

q such that mO(x∗) < ∞ (this is an imaginary bootstrap construction).

πI(θ) is often available in closed form, but even if not, computation of the

resulting Bayes factor is often a straightforward numerical exercise.
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4. Empirical Bayes prior: This is found by maximizing the numerator

of Rpost(x) = B10(x) over some class of possible priors. Common are the

class of nonincreasing priors away from θ0 (considered in the vaccine

example) or even the class of all priors as in Theorem 2.

5. p-value bound: Instead of picking a prior distribution to calculate

Rpost(x) = B10(x), use the generic upper bound = B10(x) < 1/[−ep log p].

These last two approaches have the problem that they are significantly

biased (in the wrong way) from both Bayesian and frequentist perspectives.

Indeed, if R̄post(x) is the answer obtained from either approach, then

Rpost(x) < R̄post(x) , Rpre < E[R̄post(x) | H0,R] .

Thus, in either case, one is reporting larger rejection ratios in favor of H1

than is supported by the data (or experiment).

Of course, even though biased, use of either method would give much

better answers than the usual misinterpretations of p-values.
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Conclusion: saving the world from p-values

• We need to agree that the direct use of p-values as confirmatory evidence

should stop (the ASA statement more or less says this); the historical

evidence is clear that p-values cannot be properly interpreted by most users.

• The ideal replacement for p-values would be the posterior odds of H1 to H0:

Opost = OP ×B10(x) (superior to Opre = OP × 1−β̄

α
) ,

where OP is the prior odds and B10(x) is the Bayes factor of H1 to H0.

• The Bayes factor can be the only report if use of prior odds is problematical.

Possible choices of π(θ) for computing the Bayes factor:

– A subjective prior or ‘weight function’ chosen during a pre-experimental

power computation. (Note that B10(x) is as frequentist as 1−β̄

α
.)

– A point mass at a value of θ used in a pre-experimental power calculation.

– An objective prior distribution (e.g., the intrinsic prior for testing).

– The prior from a class of priors that most favors H1.

• If determination of B10(x) is not feasible, report the upper bound on the

Bayes factor, 1/[−ep log p]; this is much less likely to be misinterpreted than p
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Thanks!
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