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Testing constrained hypotheses on measures of association

Testing constrained hypotheses on measures of association

This work is based on Mulder (2016) (published in a special issue
“Bayes Factors for Testing Hypotheses in Psychological Research:
Practical Relevance and New Developments” in the Journal of
Mathematical Psychology, guest edited by me and Eric-Jan
Wagenmakers.

and Mulder and Gelissen (in preparation).
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Testing constrained hypotheses on measures of association

Testing constrained hypotheses on measures of association

Application in social research

Happy Health Educ . S .Perm.

C =

Happy
Health

Education
Sex Perm.

2

664

1
⇢21 1
⇢31 ⇢32 1
⇢41 ⇢42 ⇢43 1

3

775

Problem. Di↵erent hypotheses about the best single predictor of
someone’s Happiness out of Health, Educational Level, and
Personal-Sexual Permissiveness when controlling for Gender and Age.

H1 : ⇢21 = ⇢31 = ⇢41

H2 : ⇢21 > ⇢31 > ⇢41 > 0

H3 : ⇢21 > 0, ⇢31 = ⇢41 = 0

H4 : ⇢21 = ⇢31 = ⇢41 = 0

H5 : not H1,H2,H3,H4.
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Testing constrained hypotheses on measures of association

Generalized Multivariate Probit Model

The model for combinations of continuous and ordinal dependent
variables

Let the first p1 DVs be continuous, and the last p2 DVs be ordinal,
P = p1 + p2 (e.g., Boscardin et al., 2008). A multivariate probit model is
used for the ordinal DVs using multivariate normal latent variables
z
i,1, . . . , zi,p2 with standard deviations of 1 to ensure identification, i.e.,

(y
i,1, . . . , yi,p1 , zi,1, . . . , zi,p2)

0 ⇠ N(Bx
i

,⌃)

with ⌃ = DCD

C =

2

6664

1
⇢21 1
...

. . .
. . .

⇢
P1 . . . ⇢

P(P�1) 1

3

7775

D = diag(�1, . . . ,�p1 , 1, . . . , 1)
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Testing constrained hypotheses on measures of association

Generalized Multivariate Probit Model

Modeling ordinal variables

Cut-points � determine the link between each latent z and the respective
ordinal dependent variable. E.g., for an ordinal variable with 4 categories
this implies the following:

0 zipγ2 γ3

1 2 3 4
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Testing constrained hypotheses on measures of association

Formulation of the testing problem

Testing problem

Test hypotheses H1, . . . ,HT

of the form

H
t

: RI

t

⇢ > r

I

t

& R

E

t

⇢ = r

E

t

,

such that constraints are of the form ⇢
gh

T ⇢
g

0
h

0 or ⇢
gh

T r
gh

.

The free parameters under H
t

will be denoted by ⇢
t

with allowed
subspace C

t

resulting in a positive definite correlation matrices.

Challenges

Prior specification of ⇢ under all constrained hypotheses while
maintaining positive definiteness of the correlation matrix.

Bayesian computation of marginal likelihoods.
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Testing constrained hypotheses on measures of association

Related topics

Pattern hypotheses

Considerable amount of literature on testing pattern hypotheses, i.e.,
H0 : R0⇢ = r0 against the unconstrained alternative (e.g., Steiger, 1980).

Comparing correlational structures

R

AR(1) =

2

4
1
⇢ 1
⇢2 ⇢ 1

3

5 , R

Toeplitz =

2

4
1
⇢1 1
⇢2 ⇢1 1

3

5

Classical methods

The number of free parameters is undefined under an inequality
constrained hypothesis which complicates the use of information
criteria (e.g., AIC, BIC).

Classical p-values are not suited for testing multiple hypotheses
simultaneously or for testing hypotheses with combinations with
equality and inequality constraints.
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Testing constrained hypotheses on measures of association Bayes factors

Bayes Factor Testing

Bayes factor test

Definition. The Bayes factor is defined by

B12 =

RRR
C1
f1(Y|B,�,⇢1)⇡1(B,�,⇢1)dBd�d⇢1RRR

C2
f2(Y|B,�,⇢2)⇡2(B,�,⇢2)dBd�d⇢2

,

Interpretation. The Bayes factor quantifies the relative predictive
adequacy of the hypotheses and priors under consideration.
Therefore, the outcome of the Bayes factor can be seen as a relative
measure of support in the data between two hypotheses.

Setting. Prior information for parameters is absent.

Orthogonal parameters. B, �, and ⇢ are orthogonal parameters.
Therefore, use independent priors, and use noninformative improper
priors for the common nuisance parameters:

⇡
t

(B,�,⇢
t

) = ��1
1 ⇥ . . .⇥ ��1

p1
⇥ ⇡

t

(⇢
t

).
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Testing constrained hypotheses on measures of association Prior specification

Prior choice 1: Uniform constrained priors

Specification

Uniform prior under constrained hypotheses:

⇡U

t

(⇢
t

) = V�1
t

⇥ 1(⇢
t

2 C
t

)

with

V�1
t

=

Z

C
t

1d⇢
t

.

For an order constrained hypothesis, V
t

can be seen as the “volume”
of the subspace.
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Testing constrained hypotheses on measures of association Prior specification

Prior choice 1: Uniform constrained priors

1

1

1

ρ32

ρ31 ρ21
ρ

ρ21 = ρ31 = ρ32

(-1,-1,-1)

(1,1,1)

ρ21

0 .5 15.-

1

1
3

)b()a(

(c)

(0,0)

1

1

-1

-1

1
π

(d)

(0,0)

1
-1

2
π

ρ32

ρ21

ρ32

C2 C3

H: ρ21 = ρ31 = ρ32

H: ρ31= 0, H: ρ31 = 0, ρ21  > ρ32ρ21 , ρ32

(upper left figure from Rousseeuw & Molenberghs, 1994)
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Testing constrained hypotheses on measures of association Prior specification

Prior choice 1: Uniform constrained priors

Marginal prior: ⇡U

u

(⇢
gh

) = beta(P2 ,
P

2 ) on (�1, 1) for a P ⇥ P correlation
matrix C (Joe, 2006).

11

1

ρ21

ρ31 ρ32
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Testing constrained hypotheses on measures of association Prior specification

Prior choice 2: Marginal uniform prior

Marginal uniform prior

Inverse-Wishart distribution for ⌃ ⇠ W�1(I
p

,P + 1).

Transform ⌃ ! (R,�).

Integrate out � results in the marginal uniform prior ⇡MU , with
⇡MU

u

(⇢
gh

) = U(�1, 1) (Barnard et al., 2000).

Use truncations to obtain priors ⇡MU

t

under the constrained
hypotheses (encompassing prior approach; e.g., Berger & Mortera,
1999; Klugkist Laudy, & Hoijtink, 2005).

May result in unreasonable priors under constrained hypotheses with
equality constraints (Böing-Messing & Mulder, in prep.)
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Testing constrained hypotheses on measures of association Prior specification

Prior comparison

Prior comparison
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Marginal priorjoint scatter prior under H0: ρ21=ρ31=ρ32

Conclusion: Constrained uniform priors seem preferable.
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Testing constrained hypotheses on measures of association Prior specification

Derivation of the Bayes factor

Relation between prior under H
t

and prior under H
u

The uniform prior under a constrained hypothesis H
t

is a truncation
of the unconstrained uniform prior under H

u

in C
t

.

Parameter transformation under H
u

by ⇢
u

! (⇢E

0

t

,⇢0
t

)0:


⇢E

t

⇢
t

�
=


R

E

t

R

⇤

�
⇢
u

.

Hypothesis H
t

: RE

t

⇢
u

= r

E

t

, R

I

t

⇢
u

> r

I

t

becomes

H
t

: ⇢E

t

= r

E

t

, R̃

I

t

⇢
t

> r̃

I

t

The truncated prior under H
t

can be written as

⇡U

t

(⇢
t

) = ⇡U

u

(⇢
t

|⇢E

t

= r

E

t

)⇥Pr
⇣
R̃

I

t

⇢
t

> r̃

I

t

|⇢E

t

= r

E

t

,H
u

⌘�1

⇥I (⇢
t

2 C
t

).
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Testing constrained hypotheses on measures of association Prior specification

Derivation of the Bayes factor

Computation of the marginal likelihoods can be avoided because

B
tu

=

RRR
C
t

f
t

(Y|B,�,⇢
t

)⇡U

t

(B,�,⇢
t

)dBd�d⇢
tRRR

C
u

f
u

(Y|B,�,⇢
u

)⇡U

u

(B,�,⇢
u

)dBd�d⇢
u

=
⇡U

u

(⇢E

t

= r

E

t

|Y)
⇡U

u

(⇢E

t

= r

E

t

)
⇥ Pr(R̃

I

t

⇢
t

> r̃

I

t

|⇢E

t

= r

E

t

,Y,H
u

)

Pr(R̃
I

t

⇢
t

> r̃

I

t

|⇢E

t

= r

E

t

,H
u

)

(using results of Dickey, 1971; Klugkist et al., 2005: Pericchi et al.,
2008; Wetzels et al., 2010; Mulder, 2014; among others).

Interpretation. The posterior parts in the numerator can be seen as
measures of relative fit of H

t

relative to H
u

. The prior parts in the
denominator can be seen as measures of relative complexity of H

t

relative to H
u

.
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Testing constrained hypotheses on measures of association Prior specification

Computation of the Bayes factor

Posterior parts ⇡
u

(⇢E

t

= r

E

t

|Y) and Pr(R̃
I

t

⇢
t

> r̃

I

t

|⇢E

t

= r

E

t

,Y,H
u

)

Posterior sample. Use an MCMC algorithm to obtain an
unconstrained posterior sample under H

u

(Chib & Greenberg, 1998;
Liu & Daniels, 2006; Boscardin et al., 2008).

Fisher transformation.
The Fisher Z transformed bivariate sample correlation r given ⇢ is

approximately normal.

In the integrated likelihood r and ⇢ have a similar role because

f (r |⇢) / (1�⇢2)
n�1
2 (1�r

2)
n�4
2

(1�⇢r)
n� 3

2
F1,2(

1
2
, 1
2
;

2n�1
2

;

⇢r+1
2

)

This implies that the Fisher transformed posterior of ⇢, denoted by

⇠, is approximately normal when using a vague prior, i.e.,

⇡(⇠|Y) ⇡ N(m⇠,S⇠).
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Testing constrained hypotheses on measures of association Prior specification

Computation of the Bayes factor

Fisher transformation.
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Testing constrained hypotheses on measures of association Prior specification

Computation of the Bayes factor

Posterior parts

Posterior density. ⇡
u

(⇠E
t

= r

E

t

|Y) follows directly from the
approximated normal distribution.

Posterior probability. Estimation of Pr(R̃
I

t

⇠
t

> r̃

I

t

|⇠E
t

= r

E

t

,Y,H
u

) as
proportion of draws satisfying the constraints can be ine�cient.
Instead use ideas from Mulder (2016) and Morey et al. (2010).

Transform parameters: E.g., if Pr(⇠12 < ⇠31 < ⇠32|Y), then

(✓1, ✓2) = (⇠31 � ⇠21, ⇠32 � ⇠31).

Split constraints:

Pr(✓1 > 0, ✓2 > 0|Y) = Pr(✓1 > 0|Y)⇥ Pr(✓2 > 0|✓1 > 0,Y)

Use Monte Carlo estimation:

Pr(✓2 > 0|✓1 > 0,Y) ⇡ 1

S

X

s

Pr(✓2 > 0|✓(s)1 ,Y).
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Testing constrained hypotheses on measures of association Prior specification

Computation of the Bayes factor

Prior density ⇡
u

(⇠E
t

= r

E

t

)

Prior sample. Draw ⇢ ⇠ ⇡U

u

(⇢) using algorithm of Joe (2006).

Fisher transformation must also be applied on the prior draws,
resulting in transformed prior draws for ⇠ which are not
approximately normal.

Estimation of the prior density using
Pr(|⇠E1 � r̃E1 | < �

2 , |⇠
E

2 � r̃E2 | < �
2 ) ⇡ �2⇡

u

(⇠E = r̃

E ), with � small.

rE

E
2ξ

E
1ξ

δ δ

~
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Testing constrained hypotheses on measures of association Prior specification

Computation of the Bayes factor

Prior probability Pr(R̃
I

t

⇠
t

> r̃

I

t

|⇢E

t

= r

E

t

,H
u

)

For few inequality constraints, e.g., ⇢21 > ⇢31 > ⇢32, the prior
probability will be estimated as the proportion of prior draws
satisfying the constraints using, say, 100,000 prior draws.

For many inequality constraints, e.g., ⇢21 > ⇢32 > . . . > ⇢98, the
prior is approximated with a normal distribution and the same
methodology is used to estimate the prior probability as was
suggested for the posterior probability.

Mulder (Tilburg University) Bayesian Hypothesis Testing in Social Science Research Tilburg University, Tilburg 22 / 52



Testing constrained hypotheses on measures of association Numerical example

Numerical example

Behavior of the criterion

Consider a 3 ⇥ 3 correlation matrix for 3 dependent variables of
which the first two are measured on a continuous scale, and the
third is measured on an ordinal scale with 3 level.

Multiple hypothesis test:
1 H1 : ⇢21 = ⇢31 = ⇢32.
2 H2 : ⇢21 > ⇢31 > ⇢32.
3 H3 : not H1,H2,

Data generated under

C =

2

4
1
⇢21 1
⇢31 ⇢32 1

3

5 =

2

4
1
r 1
r/2 0 1

3

5 .

for r = �.7, . . . , .7.

Equal prior probabilities for the hypotheses:

P(H1) = P(H2) = P(H3) =
1
3 .
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Testing constrained hypotheses on measures of association Numerical example

Numerical example

Behavior of the criterion
001 = n03 = n

n = 500 n = 5000
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H1: ρ21 = ρ31 = ρ32

H2: ρ21 > ρ31 > ρ32

H3: not H1, H2
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Testing constrained hypotheses on measures of association BCT Software

Software

BCT

The methodology is written in a Fortran program called BCT
(Bayesian Correlation Testing).

An R-package will be available soon.

Implementation in JASP (JASP Team, 2016) is planned for the
future as well.
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Testing constrained hypotheses on measures of association Empirical application

Empirical Application

Data and results

A sample of size N = 1286 was collected in the Netherlands.

Self reported happiness (DV1) was measured on a 4-point scale.

Health (DV2) was measured on a 5-point scale.

Educational level (DV3) was measured on a 7-point scale.

Personal-sexual permissiveness (DV4) was measured on a continuous
scale.

Research question. Which hypothesis about predicting someone’s
happiness receives most support?

H1 : ⇢21 = ⇢31 = ⇢41 Pr(H1|Y) = .000
H2 : ⇢21 > ⇢31 > ⇢41 > 0 Pr(H2|Y) = .054
H3 : ⇢21 > 0, ⇢31 = ⇢41 = 0 Pr(H3|Y) = .902
H4 : ⇢21 = ⇢31 = ⇢41 = 0 Pr(H4|Y) = .000
H5 : not H1,H2,H3,H4. Pr(H5|Y) = .044.
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Testing constrained hypotheses on measures of association Summary

Summary

Researchers often have expectations about the degree of association
between certain variables of interest. These expectations can be
translated in statistical hypotheses with equality and inequality
constraints on bivariate, partial, and ordinal correlations.

Bayes factors are useful to test such hypotheses in a direct manner.

Uniform constrained priors seem reasonable as a default setting.

The methodology is implemented in the software program BCT.
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Information inconsistency when testing regression parameters

Outline
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Information inconsistency when testing regression parameters Testing precise hypotheses

Information inconsistency

Bayesian t testing example using Zellner’s (1986) g prior

Data: y
i

⇠ N(✓,�2), for i = 1, . . . , n, for unknown ✓ and �2.

Hypothesis test: H0 : ✓ = ✓0 versus H1 : ✓ 6= ✓0.

Su�cient statistics: ȳ and s2
y

=
P

i

(y
i

� ȳ)2.

g prior choice: under H0 : ⇡0(�2) = ��2; under
H1 : ⇡1(✓,�2) = N✓|�2(✓0, g�2/n)⇥ ��2.

Bayes factor of H1 versus H0 yields

B10 = (1 + ng)�
1
2

✓
1� t2

(n � 1) + t2
⇥ ng

1 + ng

◆� n

2

,

where t = ȳ�✓0
s

y

/
p
n�1

is the usual test statistic.

As t ! 1, then B10 ! (1 + ng)(n�1)/2 < 1. This is called
information inconsistency.
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Information inconsistency when testing regression parameters Testing precise hypotheses

Information inconsistency

Goals

1 Investigate information inconsistency for the most commonly used
priors: conjugate priors (proper or improper), independent priors,
adaptive priors.

2 Investigate information inconsistency for precise hypothesis testing
and one-sided hypothesis testing.

3 If information inconsistency occurs, investigate the severity of the
problem from a practical point if view.

Joint work

This is joint work with Jim Berger and Susie Bayarri: Mulder, Berger, &
Bayarri (in preparation), Mulder (2014).
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Information inconsistency when testing regression parameters Testing precise hypotheses

Notation

Linear regression model

The response vector y of length n is modeled according to

Model : y = X� + ✏, with ✏ ⇠ N(0,�2
⌃)

Precise hypothesis test : H0 : R� = 0 vs H1 : R� 6= 0,

One-sided hypothesis test H0 : R�  0 vs H1 : R� 6 0,

where ⌃ is a known correlation matrix.

Reparametrization

Set ✓ = R�. Then,

Model : y = Z1✓ + Z2� + ✏

Precise hypothesis test : H0 : ✓ = 0 vs H1 : ✓ 6= 0,

One-sided hypothesis test H0 : ✓  0 vs H1 : ✓ 6 0,
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Conjugate Priors – improper and proper

Conjugate priors

⇡0(�0,�
2
0) / ⇡0(�

2
0) = inv-�2

�2
0
(⌫0, s

2
0 )

⇡1(✓,�1,�
2
1) / ⇡1(✓ | �2

1) ⇡1(�
2
1)

= N✓|�2
1
(0,�2

1⌦) inv-�2
�2
1
(⌫1, s

2
1 ).

Bayes factor for precise hypothesis test

The Bayes factor of H1 to H0 is then, with ✓̂ =
�
Z

0
1⌃

�1
Z1

��1
Z

0
1⌃

�1
y,

B10 = C1 ⇥

✓
s2
y

+ s21⌫1 + ˆ✓
0 ⇣�

Z

0
1⌃

�1
Z1

��1
+⌦

⌘�1
ˆ✓

◆�(n+⌫1�k2)/2

⇣
s2
y

+ s20⌫0 + ˆ✓
0
Z

0
1⌃

�1
Z1

ˆ✓
⌘�(n+⌫0�k2)/2

,

where C1 is a contant that does not depend on ✓̂.
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Conjugate Priors – improper and proper

Lemma

As |✓̂| ! 1,

B10 !

8
>>>><

>>>>:

0 if ⌫0 < ⌫1;

C1

 
lim

|✓̂|!1

✓̂
0
Z

0
1⌃

�1
Z1✓̂

✓̂
0
⇣
(Z0

1⌃
�1

Z1)�1
+⌦

⌘�1
✓̂

! (n+⌫�k2)
2

< 1 if ⌫0 = ⌫1;

1 if ⌫0 > ⌫1.

⌫0 > ⌫1 results in information consistency. This is not a logical prior
because it implies that the distribution of �2

0 is more concentrated
than the distribution of �2

1 . The prior that results in the
Savage-Dickey Bayes factors is a special case.

⌫0 = ⌫1 is the usual choice (in the objective Bayesian approach these
would both be 0) and results in information inconsistency.

⌫0 < ⌫1 might seem logical, but is disastrously information
inconsistent.
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Independence Priors – improper and proper

Independence priors

Under this choice, the parameters ✓, �, and �2 are modeled
independently a priori. We consider the conditionally conjugate case.

⇡0(�0,�
2
0) = ⇡0(�0)⇥ ⇡0(�

2
0)

= 1⇥ inv-�2
�2
0
(⌫0, s

2
0 )

⇡1(✓,�1,�
2
1) = ⇡1(✓)⇥ ⇡1(�)⇥ ⇡1(�

2
1)

= N✓(0,⌦)⇥ 1⇥ inv-�2
�2
1
(⌫1, s

2
1 ).
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Independence Priors – improper and proper

Using the result of Dawid (1972) we get the following

B10 = C2

R ⇣
⌫1s21 + s2

y

+ (✓ � ✓̂)0Z0
1⌃

�1
Z1(✓ � ✓̂)

⌘� n�k2+⌫1
2

N✓(0,⌦)d✓

⇣
⌫0s20 + s2
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0
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⌘� n�k2+⌫0
2

! C2

⇣
⌫1s21 + s2

y

+ ✓̂
0
Z

0
1⌃

�1
Z1✓̂

⌘� n�r2+⌫1
2
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y

+ ✓̂
0
Z

0
1⌃

�1
Z1✓̂

⌘� n�r2+⌫0
2

!

8
<

:

1 if ⌫0 > ⌫1;
1 if ⌫0 = ⌫1;
0 if ⌫0 < ⌫1,

as |✓̂| ! 1.

Mulder (Tilburg University) Bayesian Hypothesis Testing in Social Science Research Tilburg University, Tilburg 36 / 52



Information inconsistency when testing regression parameters Testing precise hypotheses

Numerical examples

Explanation of result when ⌫0 = ⌫1

Independence priors results in an even worse form of information
inconsistency than in the natural conjugate priors. The reason is that
extremely large e↵ects of are equally unlikely under H0 as under H1 with
the light-tailed normal prior resulting in equal evidence between the
hypotheses in the limit.

Numerical Example (n = 7, ⇢ = .5, s20 = s21 = 1, s2
y

= 6)

−1 0 1 2 3

−2
−1

0
1

2

−1 0 1 2 3

−1
0

1
2

3
4

−1 0 1 2 3

−2
−1

0
1

2

lo
g
10
(B
10
)

log10(t)

lo
g
10
(B
10
)

log10(t)

lo
g
10
(B
10
)

log10(t)

ν0 = 1, ν1 = 2 ν0 = 2, ν1 = 1ν0 = 0, ν1 = 0

conj. prior
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Independence Priors (thick-tailed)

Based on the result of Dawid (1972) it implies that

B10 = C2

R ⇣
⌫1s21 + s2

y

+ (✓ � ✓̂)0Z0
1⌃

�1
Z1(✓ � ✓̂)

⌘� n�k2+⌫1
2

⇡1(✓)d✓

⇣
⌫0s20 + s2

y

+ ✓̂
0
Z

0
1⌃

�1
Z1✓̂

⌘� n�k2+⌫0
2

! 1, as |✓̂| ! 1,

only if
|✓|n�k2⇡1(✓) ! 1.

For this to hold even for a minimal sample size where n = k1 + k2 + 1,
the tails of ⇡1(✓) must be of order smaller than |✓|�(n�k2) = |✓|�(k1+1),
which implies thicker tails than a (multivariate) Cauchy distribution.
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Adaptive priors

Adaptive prior specification

Another possibility is to let the prior adapt to the likelihood.

An adaptive independence prior of the form N✓(0,⌦), where ⌦ is
chosen such that it maximizes the marginal likelihood under H1.
This results in an information consistent Bayes factor.

Similarly by choosing g in the g -prior such that it maximizes the
marginal likelihood under H1 also results in an information
consistent Bayes factor.
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Information inconsistency when testing regression parameters Testing one-sided hypotheses

One-sided hypothesis test

Test H0 : ✓  0 versus H1 : ✓ 6 0

Definition: A Bayes factor is called information consistent for a
one-sided hypothesis test if and only if B10 ! 1 if for all limits where at
least one element of ✓̂ goes to +1, and B10 ! 0, as all elements of ✓̂ go
to �1. Otherwise, a Bayes factor is called information inconsistent.

Encompassing prior approach

It is natural to set an encompassing prior under ⇥
u

= ⇥0 [⇥1, and set
truncated priors under H0 and H1 (e.g., Berger & Mortera, 1999), i.e.,

p
q

(✓,�,�2) = p
u

(✓,�,�2)I
⇥

q

(✓)/Pr(✓ 2 ⇥

q

|H
u

).

Then

B10 =
1� Pr(✓  0|y,H

u

)

Pr(✓  0|y,H
u

)
⇥ Pr(✓  0|H

u

)

1� Pr(✓  0|H
u

)
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Information inconsistency when testing regression parameters Testing one-sided hypotheses

One-sided hypothesis test

Special choice of prior odds of the hypotheses

It is well-known that

Pr(H1|y)
Pr(H0|y)

= B10 ⇥
Pr(H1)

Pr(H0)
.

For the special case where the prior odds of the hypotheses are based on
the probability of the subspaces of the parameters under the
encompassing model, i.e.,

Pr(H1)

Pr(H0)
=

1� Pr(✓  0|H
u

)

Pr(✓  0|H
u

)
.

then the posterior odds corresponds to the posterior probabilities of the
subspaces under ⇥1 and ⇥0 under H

u

,

Pr(H1|y)
Pr(H0|y)

=
1� Pr(✓  0|y,H

u

)

Pr(✓  0|y,H
u

)
.
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Information inconsistency when testing regression parameters Testing one-sided hypotheses

One-sided hypothesis test

Conjugate encompassing prior

p(✓,�,�2) = p(✓|�2)⇥ p(�)⇥ p(�2)

/ N✓|�2(0,�2
⌦)⇥ 1⇥ inv-�2

�2(⌫, s2),

and set truncated priors under H0 and H1, i.e.,

p
q

(✓|�2) = p(✓|�2)I
⇥

q

(✓)/Pr⇡(✓ 2 ⇥

q

|�2),

and p
q

(�) = p(�) and p
q

(�2) = p(�2), for q = 0 or 1.

Independence encompassing prior

p(✓,�,�2) = p(✓)⇥ p(�)⇥ p(�2)

/ N✓(0,⌦)⇥ 1⇥ inv-�2
�2(⌫, s2).
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One-sided hypothesis test

Lemma

When at least one element of ✓̂ goes to +1, the Bayes factor for the
one-sided test based on the conjugate encompassing prior goes to

B10 ! 1� Pr⇤(✓  0|y,H
u

)

Pr⇤(✓  0|y,H
u

)
⇥ Pr(✓  0|H

u

)

1� Pr(✓  0|H
u

)
< 1,

where the limiting posterior probability Pr⇤ depends on the direction of
the limit.

Lemma

When at least one element of ✓̂ goes to +1, the Bayes factor for the
one-sided test based on the independence encompassing prior yields

B10 ! Pr(✓  0|H
u

)

1� Pr(✓  0|H
u

)
.
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Information inconsistency when testing regression parameters Testing one-sided hypotheses

One-sided hypothesis test

Numerical example (n = 7, s2
y

= 6, ⇢ = .5, and ⌫ = 0)

H0 : ✓ = 0 vs H1 : ✓ 6= 0 H0 : ✓  0 vs H1 : ✓ > 0
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One-sided hypothesis test

Possible solutions (among others)

An independence encompassing prior with a (multivariate) Cauchy
distribution (nonadaptive). This follows from the result of Dawid
(1973).

An encompassing conjugate g -prior where g goes to 1
(nonadaptive). Note that the marginal likelihoods under H0 and H1

go to zero in the limit, but the ratio of marginal likelihoods (i.e., the
Bayes factor) is well-defined.

An adaptive encompassing g -prior where g maximizes the marginal
likelihood of H1 (H0) if ✓̂ 6 0 (✓̂  0).
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Multiple hypothesis test

H0 : ✓ = 0 versus H1 : ✓ < 0 versus H2 : ✓ > 0

Conjugate prior with ⌫0 > ⌫. Although this (nonlogical) setting
resulted in an information consistent in the precise test, the limiting
posterior probabilities satisfy

Pr⇤(H2|y) > Pr⇤(H1|y) > Pr⇤(H0|y) = 0,

as t ! +1 when Pr(H0) = Pr(H1) = Pr(H2) =
1
3 . Thus, a

‘negative e↵ect’ receives more support than ‘no e↵ect’ in the limit.

Independence encompassing prior. Let ⌫0 = ⌫. As t ! ±1, the
limiting posterior probabilities for the hypotheses satisfy

Pr⇤(H2|y) = Pr⇤(H1|y) = Pr⇤(H0|y) = 1
3 .
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Information inconsistency when testing regression parameters Summary

Summary

Information inconsistency is ubiquitous.
It happens with conjugate and g -priors.
It happens with independence priors almost always; tails flatter than

Cauchy are required to ensure information consistency.

It happens when testing of precise hypotheses, one-sided hypotheses,

and combinations.

It can be a practical issue when testing precise hypotheses in the
case of small samples with dependent data. For one-sided
hypotheses, the problem is less severe.

If one adopts information consistency as a criterion, the class of
priors to consider is drastically reduced.

Mulder (Tilburg University) Bayesian Hypothesis Testing in Social Science Research Tilburg University, Tilburg 47 / 52



Information inconsistency when testing regression parameters Summary

Practical consequences of information inconsistency

Testing a precise hypothesis: H0 : ✓ = ✓0 versus H1 : ✓ 6= ✓0

For ⇢ = 0, the limit is (1 + n)(n�1)/2 is usually large; and the Bayes
factors for, say, t = 4 are reasonable compared with the generic
calibration B10 ⇡ 1/[�ep log p] (actually an upper bound, Sellke,
Bayarri and Berger, 2001).

But the limits and Bayes factors for t = 4 seem too small for larger
correlations.

n 2 5 7 10 20

⇢ = 0 limit 1.73 36 512 4.85 · 104 1.79 · 1011
B10 for t = 4 1.55 6.36 12.21 23.61 66.20

⇢ = 0.5 limit 1.53 7.10 20.8 106 2.01 · 104
B10 for t = 4 1.42 3.46 5.31 8.54 20.71

⇢ ⇡ 1 limit 1.41 4 8 22.6 724

B10 for t = 4 1.34 2.76 3.44 4.86 9.47

p-value for t = 4 0.156 0.016 0.0071 0.0031 0.00077

B10 ⇡ 1/[�ep log p] 2.25 7.81 13.47 24.40 72.01
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Testing constrained hypotheses on measures of association

Dependent overlapping correlations: Multimethod-multitrait example

Superiors Peers

R =

Quality
Ability
Quality
Ability

2

664

1
⇢
AS.QS

1
⇢
QP.QS

⇢
QP.AS 1

⇢
AP.QS

⇢
AP.AS ⇢

AP.QP

1

3

775

Monotrait-heteromethod correlations > heterotrait-monomethod
correlations > heterotrait-heteromethod correlations (Campbell & Fiske,
1959):

H1 : (⇢
QP.QS

, ⇢
AP.AS) > (⇢

AS.QS

, ⇢
AP.QP

) > (⇢
AP.QS

, ⇢
QP.AS)

H2 : not H1
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Testing constrained hypotheses on measures of association

Dependent nonoverlapping correlations: Repeated measurements

1986 1988 1990

C =

M
R
C
M
R
C
M
R
C

2

6666666666664

1
⇢
RM86 1

⇢
CM86 ⇢

CR86 1
1

⇢
RM88 1

⇢
CM88 ⇢

CR88 1
1.000
⇢
RM90 1.000

⇢
CM90 ⇢

CR90 1.000

3

7777777777775

,

Correlations between Mathematics (M), Reading Recognition (R),
and Reading Comprehension (C) scores of children.

Interest how the correlations between abilities change over time.
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Testing constrained hypotheses on measures of association

Dependent nonoverlapping correlations: Repeated measurements

H0 :

8
<

:

⇢
RM86 = ⇢

RM88 = ⇢
RM90

⇢
CM86 = ⇢

CM88 = ⇢
CM90

⇢
RC86 = ⇢

RC88 = ⇢
RC90

H1 :

8
<

:

⇢
RM86 < ⇢

RM88 < ⇢
RM90

⇢
CM86 < ⇢

CM88 < ⇢
CM90

⇢
RC86 < ⇢

RC88 < ⇢
RC90

H2 :

8
<

:

⇢
RM86 < ⇢

RM88 = ⇢
RM90

⇢
CM86 < ⇢

CM88 = ⇢
CM90

⇢
RC86 < ⇢

RC88 = ⇢
RC90

H3 : not H0,H1,H2
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Testing constrained hypotheses on measures of association

Independent correlations: Testing an ordered moderator e↵ect

LR WSS

R =
LR
WSS


1

⇢
LR.WSS|country 1

�

Correlations between political left-right self-placement (LR) and welfare
state support (WSS) depends on the institutional arrangements of
welfare states (i.e., Social-Democratic countries (SD), liberal countries
(L), and Mediterranean countries (M)).

H0 : ⇢
LR.WSS|SD = ⇢

LR.WSS|L = ⇢
LR.WSS|M

H1 : ⇢
LR.WSS|SD > ⇢

LR.WSS|L > ⇢
LR.WSS|M

H2 : ⇢
LR.WSS|SD = ⇢

LR.WSS|L > ⇢
LR.WSS|M

H3 : not H0,H1,H2
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