Indian Buffet Epidemics A non-parametric Bayesian Approach to Modelling Heterogeneity

Ashley Ford, Gareth Roberts

Department of Statistics, University of Warwick

Inference For Epidemic-related Risk, 2011

Bipartite Graph Epidemic models

Inference for bipartite epidemic models

Indian Buffet Process

Indian Buffet Epidemics

- Need a model between
 - homogeneous mixing
 - over complex models with unknown parameters.
- Many have been proposed
 - household, spatial, multi-type
- Availability of data
 - contact surveys
 - RFID
 - POLYMOD
 - commuting data
- A non-parametric model for the heterogeneity that can represent a wide range of departures from homogeneity.

- Need a model between
 - homogeneous mixing
 - over complex models with unknown parameters.
- Many have been proposed
 - household, spatial, multi-type
- Availability of data
 - contact surveys
 - RFID
 - POLYMOD
 - commuting data
- A non-parametric model for the heterogeneity that can represent a wide range of departures from homogeneity.

・ロト ・ 個ト ・ ヨト ・ ヨト ・ 三日 ・ のへで

- Need a model between
 - homogeneous mixing
 - over complex models with unknown parameters.
- Many have been proposed
 - household, spatial, multi-type
- Availability of data
 - contact surveys
 - RFID
 - POLYMOD
 - commuting data
- A non-parametric model for the heterogeneity that can represent a wide range of departures from homogeneity.

- Need a model between
 - homogeneous mixing
 - over complex models with unknown parameters.
- Many have been proposed
 - household, spatial, multi-type
- Availability of data
 - contact surveys
 - RFID
 - POLYMOD
 - commuting data
- A non-parametric model for the heterogeneity that can represent a wide range of departures from homogeneity.

Places and People

- Model heterogeneity in an epidemic amongst N people
- Each person belongs to 1 or more of many classes
 - e.g. households, schools, clubs, buses etcetera

- represented as
 - a bipartite graph
 - an $N \times K$ binary matrix Z

Places and People

- Model heterogeneity in an epidemic amongst N people
- Each person belongs to 1 or more of many classes
 - e.g. households, schools, clubs, buses etcetera

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回日 のの⊙

- represented as
 - a bipartite graph
 - an $N \times K$ binary matrix Z

Example bipartite graph

Epidemics on bipartite graphs

Extend homogeneous mixing epidemic models to bipartite graph

▶ e.g. SIR, SEIR, SIS, Reed-Frost

Approaches to defining the infection rate

- a single infection rate could apply to all pairs of individuals connected through one or more locations
- Each class has an associated infection rate λ_k
- ► Rate of infections on a susceptible individual j is $\sum z_{jk} \lambda_k N_{k,t}^{l}$

• $N_{k,t}^{l}$ is the number that are in classs k and infective at time t.

Simulation

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへで

Household epidemic models

Global and within household infection rates λ_g and λ_h

household size mnumber of housholds n_h a bipartite graph representation with adjacency matrix $N \times (n_h + 1)$ where $N = n_h m$ e.g. for 4 houses of sizes 2,3,3,4 the adjacency matrix is

λ_g	λ_h	λ_h	λ_h	λ_h
1	1			
1	1			
1		1		
1		1		
1		1		
1			1	
1			1	
1			1	
1				1
1				1
1				1
1				1

Household epidemic models

Global and within household infection rates λ_g and λ_h

```
household size m
number of housholds n_h
a bipartite graph representation with
adjacency matrix N \times (n_h + 1)where
N = n_h m
e.g. for 4 houses of sizes 2,3,3,4 the
adjacency matrix is
```

λ_g	λ_h	λ_h	λ_h	λ_h
1	1			
1	1			
1		1		
1		1		
1		1		
1			1	
1			1	
1			1	
1				1
1				1
1				1
1				1

Multi-type model

A multi-type model with infection rate $\gamma_{i,j}$ between an infective in group i and a susceptible in group j.

If $\gamma_{i,j} = \gamma_{ji}$ and $\sum_{j \neq i} \gamma_{i,j} \leq \gamma_{i,i} \forall i$ it can be represented as a bipartite model.

These conditions will usualy apply if the groups are geographically separate,

but may not if the groups are split by ages or varying susceptibility and infectiousness e.g. $\gamma_{i,j}=lpha_ieta_j.$

With m types the bipartite representation has m columns for the within type infections and m(m-1)/2 for the between type infections.

Multi-type model

A multi-type model with infection rate $\gamma_{i,j}$ between an infective in group i and a susceptible in group j.

If $\gamma_{i,j} = \gamma_{ji}$ and $\sum_{j \neq i} \gamma_{i,j} \leq \gamma_{i,i} \forall i$ it can be represented as a bipartite model.

These conditions will usualy apply if the groups are geographically separate,

but may not if the groups are split by ages or varying susceptibility and infectiousness e.g. $\gamma_{i,j} = \alpha_i \beta_j$.

With m types the bipartite representation has m columns for the within type infections and m(m-1)/2 for the between type infections.

Multi-type model

$\gamma_{1,1}-\gamma_{1,2}-\gamma_{1,3}$	$\gamma_{2,2} - \gamma_{1,2} - \gamma_{2,3}$	$\gamma_{3,3}-\gamma_{1,3}-\gamma_{2,3}$	Ŷ 1,2	γ 1,3	γ 2,3
1			1	1	
1			1	1	
1			1	1	
	1		1		1
	1		1		1
		1		1	1
		1		1	1
		1		1	1
		1		1	1

Examples

≣I≡ ୬**୯**୯

Other Models

- three level
- commuting
- ► known labels

MCMC inference for known contact matrix

log likelihood when observed on $[0, T_{max}]$ with *n* infections at T_i^I and removals at T_i^R

$$\sum_{j} \log \eta_j(T_j^I) - \int_0^{T_{\max}} \sum_j \eta_j(t) dt + \sum_{j} \log g(T_j^R - T_j^I) + \sum_{j} \log \{1 - G(T_{\max} - T_j^I)\}$$

where $\eta_j(t) = \sum_k z_{jk} \lambda_k N_{k,t-}^l$ is the instantaneous rate of infections on individual *j*, *g* and *G* are the pdf and cdf of time to recovery. A simulation with *Z* 1000 × 21 and $\lambda_k = .5/n_k$ has 626 infections

ヨト イヨト ヨヨ のへの

MCMC inference for known contact matrix

RW - Metropolis-Hastings for 21 parameters

true values 0.00058, 0.00150, 0.17000

non-parametric inference

- Parametric distributions
 - ► Gaussian, Cauchy
 - exponential, gamma, log-normal, Weibull

- Non-parametric
 - histograms
 - kernel density estimate

Indian Buffet Process- a culinary metaphor

Introduced by Griffiths and Ghahramani (2005).

- ► N customers enter a restaurant one after another.
- The first customer selects Poisson(α)
- The *j*th customer selects each dish with probability m_k/j
 - ▶ where m_k is the number of previous customers who have chosen k.
- and then tries $Poisson(\alpha/j)$ new dishes.
- A distribution over all binary matrices with N rows
 - \blacktriangleright Expected number in each row is lpha
 - Expected number of non zero columns $\alpha \sum_{j=1}^{N} 1_{j}$, where $\beta \in \mathbb{R}^{n}$

Indian Buffet Process - example

Classes

IBP Z generated with $N = 260, \alpha = 15$

Individuals

Limit of Finite K

- ψ_k is the probability that an individual is in class k
- $\psi_k \sim Beta(lpha/\kappa, 1)$ or from stick breaking
- ▶ The model for Z is: $z_{ik}|\psi_k \sim Bernoulli(\psi_k)$ independently

• The Indian Buffet process is obtained as $K \to \infty$

Indian Buffet Epidemic

Combine the bipartite graph model with the Indian Buffet Process as a prior for the contact graph.

 $lpha=6,\ N=600,\ K_{+}=31$, different initial infectives in 8,4,1 . It is also seen

MCMC for Indian Buffet Epidemic

- A challenging MCMC problem
 - Very high dimensional
 - multi-modal
- Proposals
 - non centered, using fixed K
 - independence, using sequential IBP

◆□▶ ◆□▶ ◆□▶ ◆□▶ ヨヨ のへ⊙

Conclusions

- Bi-partite graph epidemics provide a generic formulation for modeling and inference.
- The Indian Buffet Epidemic provides a non-parametric model for heterogeneity in contact processes.
- MCMC inference is possible on small epidemics
 - ▶ Work continues on extending the size which can be handled

◆□▶ ◆□▶ ◆目≯ ◆目≯ ◆□▶

◆□▶ <舂▶ <差▶ <差▶ 差目 のへの</p>

For Further Reading I

T.L. Griffiths and Z. Ghahramani.

Infinite latent feature models and the Indian buffet process (tech. rep. no. 2005-001). Gatsby Computational Neuroscience Unit, 2005.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ヨヨ のへ⊙