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Motivation

» Need a model between

» homogeneous mixing
» over complex models with unknown parameters.

» Many have been proposed

» household, spatial, multi-type

> Availability of data
> contact surveys

» RFID
> POLYMOD

» commuting data

» A non-parametric model for the heterogeneity that can
represent a wide range of departures from homogeneity.
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Places and People

» Model heterogeneity in an epidemic amongst N people
» Each person belongs to 1 or more of many classes

» e.g. households, schools, clubs, buses etcetera
> represented as

> a bipartite graph
» an N x K binary matrix Z



Example bipartite graph
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Epidemics on bipartite graphs

Extend homogeneous mixing epidemic models to bipartite graph
» e.g. SIR, SEIR, SIS, Reed-Frost
Approaches to defining the infection rate

> a single infection rate could apply to all pairs of individuals
connected through one or more locations

» Each class has an associated infection rate A,

» Rate of infections on a susceptible individual j is sz-klkN/(_t

» N, is the number that are in classs k and infective at time t.



Simulation
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Household epidemic models

Global and within household infection rates Agand A4



Household epidemic models

Global and within household infection rates Agand A4

household size m

number of housholds ny,

a bipartite graph representation with
adjacency matrix N x (np+ 1)where
N=nym

e.g. for 4 houses of sizes 2,3,3,4 the
adjacency matrix is
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Multi-type model

A multi-type model with infection rate %;; between an infective in
group i and a susceptible in group j .

If vij=7vji and ¥;2i%; < %, Vi it can be represented as a bipartite
model.

These conditions will usualy apply if the groups are geographically
separate,



Multi-type model

A multi-type model with infection rate %;; between an infective in
group i and a susceptible in group j .

If vij=7vji and ¥;2i%; < %, Vi it can be represented as a bipartite
model.

These conditions will usualy apply if the groups are geographically
separate,

but may not if the groups are split by ages or varying susceptibility
and infectiousness e.g. % = &;f3;.

With m types the bipartite representation has m columns for the
within type infections and m(m—1)/2 for the between type
infections.



Multi-type model
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Other Models

> three level
> commuting

» known labels



MCMC inference for known contact matrix

log likelihood when observed on [0, Trax]
with n infections at Tj’ and removals at TJ-R

Ylogmi(T)) - xmode  +
Ylogg(Tf~T]) +1log{l—G(Tmax—T})}
J
where n;(t) = Y« zjk)‘kNli,tf is the instantaneous rate of infections

on individual j, g and G are the pdf and cdf of time to recovery.
A simulation with Z 1000 x 21 and A4 = .5/n has 626 infections

250

0 100
I I

number of infectives



MCMC inference for known contact matrix

RW - Metropolis-Hastings for 21 parameters
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non-parametric inference

» Parametric distributions

» Gaussian, Cauchy
» exponential, gamma, log-normal, Weibull

» Non-parametric

> histograms
» kernel density estimate



Indian Buffet Process- a culinary metaphor

Introduced by Griffiths and Ghahramani (2005) .
» N customers enter a restaurant one after another.
» The first customer selects Poisson ()
» The jth customer selects each dish with probability my/j
» where my is the number of previous customers who have
chosen k.
» and then tries Poisson(a/j) new dishes.
A distribution over all binary matrices with N rows
» Expected number in each row is o
» Expected number of non zero columns aZj’-Vl/j



Indian Buffet Process - example

Individuals

Classes

IBP Z generated with N =260, oo = 15



Limit of Finite K

v

W is the probability that an individual is in class k

v

Yy ~ Beta(a/K, 1) or from stick breaking

v

The model for Z is: zy|yy ~ Bernoulli(yy) independently

v

The Indian Buffet process is obtained as K — oo



Indian Buffet Epidemic

Combine the bipartite graph model with the Indian Buffet Process
as a prior for the contact graph.
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MCMC for Indian Buffet Epidemic

» A challenging MCMC problem

> Very high dimensional
» multi-modal

» Proposals

» non centered, using fixed K
» independence, using sequential IBP
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Conclusions

» Bi-partite graph epidemics provide a generic formulation for
modeling and inference.

» The Indian Buffet Epidemic provides a non-parametric model
for heterogeneity in contact processes.

» MCMC inference is possible on small epidemics

» Work continues on extending the size which can be handled
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For Further Reading |

[§ T.L. Griffiths and Z. Ghahramani.
Infinite latent feature models and the Indian buffet process
(tech. rep. no. 2005-001).
Gatsby Computational Neuroscience Unit, 2005.
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