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Motivation

I Need a model between

I homogeneous mixing
I over complex models with unknown parameters.

I Many have been proposed

I household, spatial, multi-type

I Availability of data

I contact surveys

I RFID

I POLYMOD

I commuting data

I A non-parametric model for the heterogeneity that can

represent a wide range of departures from homogeneity.
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Places and People

I Model heterogeneity in an epidemic amongst N people

I Each person belongs to 1 or more of many classes

I e.g. households, schools, clubs, buses etcetera

I represented as

I a bipartite graph
I an N×K binary matrix Z
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Example bipartite graph

L1 L2 L3 L4

1 1

2 1 1

3 1

4 1 1

5 1 1

6 1 1

7 1 1

8 1

9 1

10 1

11 1



Epidemics on bipartite graphs

Extend homogeneous mixing epidemic models to bipartite graph

I e.g. SIR, SEIR, SIS, Reed-Frost

Approaches to de�ning the infection rate

I a single infection rate could apply to all pairs of individuals

connected through one or more locations

I Each class has an associated infection rate λ k

I Rate of infections on a susceptible individual j is ∑zjkλkN
I
k,t

I N I

k,t is the number that are in classs k and infective at time t.



Simulation



Household epidemic models

Global and within household infection rates λgand λh

household size m

number of housholds nh
a bipartite graph representation with

adjacency matrix N× (nh +1)where
N = nhm

e.g. for 4 houses of sizes 2,3,3,4 the

adjacency matrix is

λg λh λh λh λh
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Multi-type model

A multi-type model with infection rate γi ,j between an infective in

group i and a susceptible in group j .

If γi ,j = γ ji and ∑j 6=iγi ,j ≤ γi ,i ∀ i it can be represented as a bipartite

model.

These conditions will usualy apply if the groups are geographically

separate,

but may not if the groups are split by ages or varying susceptibility

and infectiousness e.g. γi ,j = αiβj .

With m types the bipartite representation has m columns for the

within type infections and m(m−1)/2 for the between type

infections.
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Multi-type model

γ1,1− γ1,2− γ1,3 γ2,2− γ1,2− γ2,3 γ3,3− γ1,3− γ2,3 γ1,2 γ1,3 γ2,3

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1



Examples



Other Models

I three level

I commuting

I known labels



MCMC inference for known contact matrix
log likelihood when observed on [0,Tmax]
with n infections at T I

j and removals at TR
j

∑ logηj(T I
j ) −

∫ Tmax
0 ∑j ηj(t)dt +

∑
j

log g(TR
j −T I

j ) +∑j log{1−G (Tmax−T I
j )}

where ηj(t) = ∑k zjkλkN
I
k,t− is the instantaneous rate of infections

on individual j , g and G are the pdf and cdf of time to recovery.

A simulation with Z 1000×21 and λk = .5/nk has 626 infections



MCMC inference for known contact matrix

RW - Metropolis-Hastings for 21 parameters

true values 0.00058, 0.00150, 0.17000



non-parametric inference

I Parametric distributions

I Gaussian, Cauchy
I exponential, gamma, log-normal, Weibull

I Non-parametric

I histograms
I kernel density estimate



Indian Bu�et Process- a culinary metaphor

Introduced by Gri�ths and Ghahramani (2005) .
I N customers enter a restaurant one after another.
I The �rst customer selects Poisson(α)
I The jth customer selects each dish with probability mk/j

I where mk is the number of previous customers who have

chosen k .

I and then tries Poisson(α/j) new dishes.

A distribution over all binary matrices with N rows
I Expected number in each row is α

I Expected number of non zero columns α ∑
N
j 1/j



Indian Bu�et Process - example

Classes

In
di

vi
du

al
s

IBP Z generated with N = 260, α = 15



Limit of Finite K

I ψk is the probability that an individual is in class k

I ψk ∼ Beta(α/K , 1) or from stick breaking

I The model for Z is: zik |ψk ∼ Bernoulli(ψk) independently
I The Indian Bu�et process is obtained as K → ∞



Indian Bu�et Epidemic

Combine the bipartite graph model with the Indian Bu�et Process

as a prior for the contact graph.

α = 6, N = 600, K+ = 31 , di�erent initial infectives in 8,4,1
groups.



MCMC for Indian Bu�et Epidemic

I A challenging MCMC problem

I Very high dimensional
I multi-modal

I Proposals

I non centered, using �xed K
I independence, using sequential IBP





Conclusions

I Bi-partite graph epidemics provide a generic formulation for

modeling and inference.

I The Indian Bu�et Epidemic provides a non-parametric model

for heterogeneity in contact processes.

I MCMC inference is possible on small epidemics

I Work continues on extending the size which can be handled







For Further Reading I
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