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Statistical motivation (1)

• Fitting parametric mechanistic models (e.g. SIR or more complex) :
Likelihood-based inference in the context of missing data:

Transmission process imperfectly observed (e.g. times of infection unknown);
Likelihood difficult to write down;
Data augmentation strategy [O’Neill et al, JRSS C, 2000; O’Neill & Roberts, JRSS A, 1999].

Limitations: same as fitting of parametric model in other fields - e.g. need to pre-define time 
intervals on which transmission rates are constant.

• Reconstruct transmission tree & derive summary stat. [Wallinga and Teunis, AJE, 2004]:

Less assumptions, greater flexibility, at the cost of larger variance of estimates;
Ignore data on uninfected individuals – can’t inform on transmission risk factors.

Reproduction number of SARS

Parametric approach

[Riley et al, 
Science, 2003]

Tree-reconstruction approach

[Wallinga and 
Teunis, AJE, 2004]



Statistical motivation (2)

• In this talk:
Present a single framework that integrate fitting of mechanistic model and reconstruction of 

transmission tree in a coherent way.
Estimating parameters of mechanistic model from the data is not the end of the journey –
much more we can learn by mixing the 2 approaches!
The two approaches are complementary.



Epidemiological motivations

• In early May 2009, CDC received reports of a rapid-onset H1N1 outbreak in a semi-
rural elementary school in Pennsylvania. 

• Fast decision to investigate the outbreak.
• Very detailed investigation – rare opportunity to better understand how population 

structures and social networks affect influenza transmission.

Household transmission 
data

Contact data

[Cauchemez et al, 
Stat Med, 2004]

[Mossong et al, Plos Med, 2008]



H1N1pdm community outbreak in 
Pennsylvania

• Demographic & clinical information 
collected on students and their family 
members – 2 phone interviews:

• Surveys in school for 4th graders:
• Activities,
• Seating charts,
• Playmates.

May 16-19th

Around June 4th

Censoring issue: 
40% of subjects 

were interviewed on 
May 16-19th only.-141 ARI cases among 370 students (AR:38%)

- 129 ARI cases among 899 household members 
(AR:14%)

Activities

2 interviews of households

Social networks - Who 
are your playmates?

Girls Boys

Seating charts

e.g. scientific demonstration 
with eyeball



Transmission model

• Model person to person transmission rates. 
• Partition of pairs of individuals. E.g. 2 students in the same class are also in the same grade 

and school; But pair is classified as “classmates”.
• Hierarchy: Household > Class > Grade > School > Community [i.e. between individuals of the 

dataset that are not from the same household nor from the school].

• Infectivity profile may be different in the school/community and in the household (for adults and 
for children).

Class
Grade School

Household



Inference without missing data

Subject 3

Subject 1

Time

Subject 2

Infection

Symptom onset

Infection

Symptom onset

Infection

Symptom onset

Infectivity



Inference from the observed data

Subject 3

Subject 1

Time

Subject 2

Symptom onset

Symptom onset

Last interview

Last interview

Last interview

Infection

Infection

Infection

Symptom onset

Augment the data with quantities needed to easily write down the likelihood



Data augmentation: general framework

• Notations:
Y: observed data – e.g. dates of symptom onset;
Z: “missing” (augmented) data – e.g. dates of infection, whether or not 

individual was a case, date of onset when missing;
θ: parameters

• Three-level hierarchical model:

• Joint posterior distribution of augmented data and parameters explored via MCMC.

( ) ( ) ( ) ( ), , | |P Y Z P Y Z P Z Pθ θ θ=

Observation level: ensures that 
augmented data consistent with 

observed data
Transmission level: describes 
the latent transmission process

Prior level



Observation level P(Y|Z) in the PA analysis

• Y=data [date of onset, household id, class id, etc]
• Z=augmented data [date of infection, whether or not 

individual was a case, time of onset when missing etc]

• Assumed distribution of the incubation period: mean 
1.5 days & variance 0.3 days [Lessler et al, NEJM, 2009; 
Ghani et al, Plos Currents Influenza, 2009; Moser et al, AJE, 
1979].

• Individuals with no symptom onset observed prior to 
last interview can have onset after last interview.

• Individuals with missing diagnosis can be infected 
during the outbreak.

• Analysis based on a clinical diagnoses of Acute 
Respiratory Illness – Potential asymptomatic cases are 
not accounted for.

40% of people – no 
information after ~ day 20



MCMC output

Iteration i=1…N

Parameter

θ1

θi

θN

Augmented data for each individual 
m=1…M

Was a case Date of infection

1m
iC =

0m
iC =

1m
iC =

25m
iT =

m
iT NA=

23m
iT =

Joint posterior distribution of augmented data and parameters explored via MCMC.



Transmission rates in the school 
and in the household

School Household

Age dependent susceptibility

Household: β/nγ

γ=1.5[0.4,2.6]

No evidence of 
children being more 

infectious than adults



Infectivity profile & generation time 

Generation time - average time between infection of a case and 
infection of the persons they infect:

Household:
more than 10 year old: 2.3 (1.4, 3.6) days
10 yr or less: 3.6 (2.2, 5.0) days

School and community: 1.2 (1.0, 1.7) days



Gender-related mixing & transmission 
patterns

Social networks: Students are 4 times more likely to play with students of the 
same gender

Girls

Boys

Evidence that this aspect of mixing patterns affected the transmission dynamics
i) Boys had onset before girls! (p=0.023) ii) BF for model with gender-effect: 8.0



Reconstructing the transmission tree

First case

2,500 transmission trees 
drawn from the predictive 

distribution

Used to derive summary 
statistics on spread



Reconstructing the transmission tree 
from the posterior distribution

Subject 3

Subject 1

Time

Subject 2

Infection

Symptom onset

Infection

Symptom onset

Infection

Symptom onset

Infectivity

β1→3

β2→3

Conditional on this realisation, subject 3 was infected by 
subject 1 with probability: ( )1 3 1 3 2 3β β β→ → →+

Augmented data and parameters at iteration i of MCMC



Student cases were infected by

74% (65%, 82%) of student cases infected by other students



Role of 6-18 yr old individuals in 
household spread

• 6-18 yr old individuals facilitate the introduction of influenza in household
Relative risk that a case was the “introducer” (reference group: >18 yr):

0-5 yr: 1.02 (0.85, 1.23)
6-10 yr: 1.83 (1.60, 2.11)
11-18 yr: 1.20 (1.00, 1.41)

• Only 1 in 5 cases aged >18 years was infected by a 6-18 year old household member

(more than 40% of cases 
aged >18 years were the 
first or only case of their 

household)



Low estimates of global R for flu –
implications for spread in places...

• For an outbreak to be sustained in 
a place, multiple introductions and/or 
SSE events are to be expected. 
• Strong between-place interactions 
with back and forth waves of 
transmission between places. 



Detecting atypical transmission events

• We consider the model where 
transmission rates do not 
change with time. Does this 
model satisfyingly fit the data?

• Blue - data: “reconstructed” 
number of infections occurring 
on each day and for different 
groups of individuals.

• Red - “next step ahead” 
predictions: given what has 
been observed up to day t-1, 
how many cases are predicted 
by the model on day t?

• Relatively good fit in general…

April 26th: day 0

Abnormally high transmission 
around May 6th-7th?



May 6th-7th Among 4th

graders, classroom A: 
Only group/time point with 
a posterior probability 
smaller than 10%

April 26th: day 0

Posterior probability 
Reconstructed ≤ Expected

• We can then compute the 
posterior probability that 
reconstructed numbers are 
smaller or equal to expected 
ones.



May 6th-7th : activities 
among 4th graders… (1)

• May 6th:
Science demonstration with a cow 

eyeball in each 4th grade classroom;
• May 7th:

4th grade class A had a physical 
education class; 

All 4th graders congregated at a 1-
day special event.

Between-class trans.

Within-class trans. 
in all class 

Within-class 
trans. in 1 class

Potential mechanism for super-spread

10 models of super-spread, each with prior probability 10%

no between‐class 
SSE

between‐class SSE 
on May 7th

Within‐class SSE

no within‐class SSE 10% 10%
on May 6th, class A 10% 10%
on May 6th, all class 10% 10%
on May 7th, class A 10% 10%
on May 7th, all class 10% 10%

Between‐class SSE



May 6th-7th : activities 
among 4th graders…

no between‐class SSE
between‐class SSE on 

May 7th
Posterior proba

Within‐class SSE

no within‐class SSE 0.4% 2.9%
on May 6th, class A 4.1% 20.0%
on May 6th, all class 3.3% 15.6%
on May 7th, class A 6.2% 24.9%
on May 7th, all class 5.1% 17.6%

BF for SSE: 28 (prior:10%)
Posterior proba for between-class SSE:

81% for a prior of 50%(BF: 4.3)

Posterior probabilities estimated via Reversible Jump MCMC

Posterior proba that within class transmission increased on May 6th or May 7th:
97% for a prior of 80%(BF: 6.3)



Impact of a late 1-week school closure

Late closure: 27% of students 
had already had symptoms at 
time of closure

i) No “abnormally low” transmission rates 
detected during closure

ii) Estimate of transmission rates 
between students after closure relative to 
before closure: 0.8 (0.4,1.4) 

iii) School reproduction number 
- on the week of the closure: 0.3 (0.1,0.6)
- on the following week: 0.3 (0.0, 0.7)

No noticeable reduction detected



Seating plan: higher risk of infection if 
neighbour is sick?  (1)

• Simple permutation test:
Count the number of pairs of neighbours 
that are sick in each class room.
Compare with the number of pairs that 
would be expected if the seating plan had 
no impact on transmission. This expected 
distribution can be obtained by randomly 
permutating the seats of the students.

• Observed numbers of pairs are not significantly 
different than what would be generated by 
chance.

Observed Expected 

Overall 4th graders 19 20 [16,24] (p=0.58) 

Classroom A 12 13 [11,15] (p=0.62) 

Classroom B 2 2 [0,4] (p=0.23) 

Classroom C 1 2 [0,3] (p=0.53) 

Classroom D 4 1 [4,6] (p=0.25) 

But this approach does not correct for the 
effect of other covariates (e.g. gender), does 
not use data on times of symptom onset…



Seating plan: higher risk of infection if 
neighbour is sick?  (2)

• Why not include seating plan data in full transmission model?
Data only available in the 1 grade (out of 5) in which transmission was the highest.

• Alternative approach:
Assume seating chart has no impact on the risk of transmission & draw transmission trees 
from predictive distribution;
From tree, we can directly compute: 

Proportion of between-classmate transmission that occur between neighbours: 8% [0%,19%] 
Is this proportion higher than expected? 

At time t:

Transmission

1 transmission in class;
Infector known & N=14 susceptibles;
If seating chart has no impact, each susceptible has 

the same probability of infection 1/N

We generate an alternative infectee with probability 
1/N 

Expected proportion of between-classmate transmission 
that occur between neighbours: 7% [0%,19%] 



Conclusions on H1N1pdm 
transmission

• Transmission risk factors
Structuring of school in classes and grades has strong impact on spread;
Seating next to a case did not significantly increase risk of transmission;
Gender-related mixing pattern affected spread.

• SSE and school closure
Suggestion of abnormally high transmission among 4th graders;
Late school closure had no noticeable impact on spread.

• Generation times
Shorter in the school than in the household;
Longer for those aged ≤10 years than for others.

• School-aged individuals 
Facilitated the introduction of influenza in households;
But only 1 in 5 cases aged >18 yrs was infected by a school-aged 

household member.



Conclusion on methodological aspects

• Data augmentation:

Gold standard method to deal with missing data in detailed yet relatively small epidemic 
datasets (households, outbreak investigations). 

But methodological developments are needed on model comparison. What are the 
alternative to Reversible Jump between models?

Need alternative methods for large datasets, time series etc.

• Integrating parametric modelling and tree reconstruction:
Fitting mechanistic model seems to be the only way to:

Account for depletion of susceptibles;
Interpret data on non-cases and estimate transmission risk factors; 
Control variance of the estimates.

On the top of that, tree reconstruction methods can provide:
Further insights on what effectively happened during the outbreak;
Summary statistics on who was infected by whom etc;
A framework to detect abnormal features in the data that are not accounted for in the 
model.
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