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Motivation for the work

Motivation

Planning, implementation and evaluation of public health policies in the
UK e.g.

Department of Health (DoH) National Strategy for Sexual Health

DoH Action Plan for Hepatitis C

Pandemic influenza Preparedness Strategy

rely on the monitoring of fundamental aspects of the disease of
interest, such as

prevalence (undiagnosed prevalence)
incidence

- by age groups and locations
- at regular intervals (real time!)
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General problem

Problem

These characteristics are typically not easily directly measurable (if at
all) with little direct information available on them

There is plenty of indirect information on functions of these quantities
from diverse sources (surveillance, ad hoc surveys etc)

Estimated from the synthesis of both direct and indirect information

This has been common problem underlying most of the work I have
been recently involved with

[Goubar et al, 2008], [Presanis et al, 2008], [Sweeting et al, 2008],
[De Angelis et al, 2009], [Sweeting et al, 2009], [Presanis et al, 2010,
2011], [Birrell et al, 2011].
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General problem

Evidence synthesis - a long-established idea

Methods for combining evidence are not new:

The Bayesian paradigm

combining prior knowledge with new evidence

Meta-analysis

combining studies of same type

Confidence Profile Method [Eddy et al (1992)]

combining information of different types/study designs
(medical-decision making literature)

Multi-parameter evidence synthesis [Spiegelhalter et al (2004), Ades
& Sutton (2006)]

epidemiology

Daniela De Angelis (MRC-BSU, HPA) Warwick, March 2011 5 / 45



A few examples

A few examples

Hepatitis C Virus (HCV)

HIV

A/H1N1

type of challenges posed by the data
how tackled by the proposed approach
methodological/epidemiological considerations and open questions
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A few examples

HCV
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A few examples

Infection with the Hepatitis C virus (HCV):
how many are infected?

Acquired through exchange of blood with infected individual (e.g.
injecting drug use)

Disease with long incubation; progressive fibrosis of the liver to
cirrhosis, hepatocellular carcinoma and death

Antiviral therapy very effective

Planning for prevention and treatment implementation needs reliable
estimates of the number currently infected
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A few examples

Problem: HCV prevalence estimation

No prevalence study/surveillance representatively covering the
general population exists

Estimates of proportion of infected derived in specific (opportunistic)
groups

Resulting estimates are either not interpretable or heavily biased
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A few examples

Widely different figures have been suggested

Evening standard, 24th May 2006

Daily Mail, 23rd March 2006 Daily Express, 24th May 2006
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A few examples

Proposed Approach

Information from any available study expressed in terms of 3 main risk
groups g : current injecting drug users (CUR); Ex-injecting drug users
(EX ); Non-IDUs (NON − IDU)

Parameters of interest

ρ
CURrsa

, ρ
EXrsa

, ρ
NON−IDUrsa

prevalence (i.e. the proportion) of current, EX, and NON-IDU in the
population for region r , gender s, and age-group a.

- ρ
NONrsa

= 1− ρ
CURrsa

− ρ
EXrsa

- ρ
IDUrsa

= ρ
CURrsa

+ ρ
EXrsa

π
CURrsa

, π
EXrsa

, π
NON−IDUrsa

corresponding prevalence of HCV. Any other quantities can be derived
from these e.g. π.
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A few examples

Data on ρgrsa

Capture re-capture study in 15-44 years old in London estimate of
number of current IDUs
Household surveys:

British Crime Survey (HO)
Survey of Psychiatric Morbidity (ONS)
Offending Crime and Justice Survey (HO)
National Survey of Sexual Attitudes and Lifestyles (NATSAL)
- use of non-prescribed IDU drugs - ever - past year

Data on πgrsa

UA programme in STI clinics
- HCV prevalence in ever IDUs and non-IDUs

UA programme in current IDUs attending specialist clinics

UA programme in antenatal clinics and neonatal samples

Studies in blood donors
- HCV prevalence in low risk population

Sentinel laboratory surveillance
- HCV prevalence in populations testing for HCV
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A few examples

Challenges

data structure simple as mostly of the form {rgrsa, ngrsa}
But the observed proportions are typically

biased estimates of the true proportions of interest (e.g. size of the
populations)
only interpretable as mixtures of proportions

lack of direct information on specific proportions of interest (e.g. the
size of the ex-IDU population)
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A few examples

Graphical model

fAAFU

Parameters

fTSS

Parameters

fD

Parameters

ρIDU

ρCUR ρEX

Capture
Re-capture

Study

Household
Studies

Additional
information

Tested
population

Ante/neo-
natal
surveys

UA IDU UA STI Blood
transfusions

πIDU

πCUR πEX πNON−IDU

Direct information

Indirect information
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A few examples

Challenges: example (1)

Household studies
i th study provides information on ρgrsa in the form of {r igrsa, ni

grsa}.
We assume that

r igrsa ∼ Binomial(ni
grsa, ρ

i
grsa)

and

logit(ρigrsa) = logit(ρgrsa) + b

where b is a bias parameter.

Daniela De Angelis (MRC-BSU, HPA) Warwick, March 2011 15 / 45



A few examples

Graphical model
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A few examples

Challenges: example (2)

Mixture of proportions
the HCV prevalence in STI clinic attendees who have ever injected
πSTI

IDUrsa
estimated using {rSTI

IDUrsa
, nSTI

IDUrsa
} can only be interpreted as being

πSTI
IDUrsa

= ψπSTI
CURrsa

+ (1− ψ)πSTI
EXrsa

where the mixture coefficient ψ is informed by the NATSAL survey.
Thus we assume that

rSTI
IDUrsa

∼ Binomial(nSTI
IDUrsa

, πSTI
IDUrsa

)
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A few examples

Graphical model
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A few examples

HIV
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A few examples

Infection with HIV: what are trends in
prevalence of undiagnosed infections?

HIV is a long, asymptomatic disease with many infections
undiagnosed

Undiagnosed infections contribute to transmission - lack of access to
treatment

Reliable estimates of the number infected, particularly those still
undiagnosed, over time are required for public health policy
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A few examples

Parameters of interest

ρgtr prevalence (i.e. the proportion in the population) of risk-group g
in the population at time t for region r

πgtr corresponding prevalence of HIV

δgtr proportion of infections diagnosed in risk-group g , region r

Any other quantities can be derived from these e.g. πgtr (1− δgtr ).
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A few examples

Availability of data: 13 risk groups, 3 regions,
over time

Risk group N ρ π δ π(1− δ) f (ρ, π, δ)

Men MSM X X
IDUs X X X X
Born sub-Saharan Africa X X
STI clinic attendees X X
Lower risk
ALL X X

Women IDUs X X X X
Born sub-Saharan Africa X X X X
STI clinic attendees X X
Lower risk
Born UK/elsewhere X X
ALL X X X

Note: multiplicity of data for some parameters
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A few examples

Graphical model: MSM

π

ρ

δ

π(1− δ) ρπδ
Σgρπδ

UA surveys
Prevalence of
undiagnosed
infection

NATSAL
Proportion
of men who
are MSM

SOPHID
Proportion of diagnosed
infection attributable to

each group

Stratified by time, risk group and region

Proportion in risk group

HIV prevalence

Proportion

diagnosed

SOPHID
Total number
of diagnosed
infections

NΣgρπδ
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A few examples

A/H1N1
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A few examples

A/H1N1 2009 in England: is it possible to
inform policy in the midst of an epidemic?

Monitoring the epidemic through the (real time) estimation and prediction
of

the number of infections

the number of symptomatic cases

the number of severe cases (hospitalisations, ICU admissions, deaths)

by age group and region
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A few examples

Ideally

S E I R

Infection Becoming infectious Recovery

Infection model

Clinical cases

Antiviral use GP consultations Hospitalisations Deaths

Disease model

Reported
antiviral use

Reported GP
consultations

Reported
hospitalisations

Reported
deaths

Reporting model
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A few examples

In reality

Q-Surveillance Daily counts of individuals reporting symptoms of
influenza-like illness (ILI) at general practices (GPs).

RMN + RCGP Sentinel GP surveillance schemes, swabbing ILI
patients. Provides data on swab positivity for A/H1N1.

HPA returns service Cross-sectional seroepidemiological surveys.

Virologically confirmed cases.

All data stratified by age class (< 1, 1− 4, 5− 14, 15− 24, 25− 44,
45− 64, and 65+ years) from the 1st May until 31st December.
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A few examples

Integrated model for transmission and
reporting

Infection Becoming infectious Recovery

Clinical cases

Confirmed cases

Disease model

Reporting model

θ

pGP(t) pCC(t)

Seroprevalence
data, Z(t)

Reported case
confirmations, XCC(t)

Background GP consultations for ILI, B(t)

H1N1v GP
consultations

S(t) E(t) I(t) R(t)
Infection model

σ

E2 I1 I2γE1

λ(t) γ

σ

Reported H1N1 GP
consultations, XGP (t)

Positivity data, W (t)

Y (t) = XGP (t) +B(t), reported
GP ILI consultations
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A few examples

(a) (b)
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A few examples

ILI Rate, H1N1 outbreak
Flu positivity * ILI Rate, H1N1 outbreak
ILI Rate
Flu positivity * ILI Rate
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A few examples

Common statistical formulation

Interest: estimation of θ = (θ1, θ2 . . . , θk) on the basis of a
collection of data y = (y1, y2 . . . , yn)

Each yi provides information on

a single component of θ, or
a function of one or more components, i.e. on a quantity
ψi = f (θ)

Thus inference is conducted on the basis of both direct and
indirect information.

Maximum likelihood: L(θ) =
∏n

i=1 Li (yi ;θ)

Bayesian: p(θ | y) ∝ p(θ)× L(θ)
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Results

Posterior distributions for the number of
individuals with anti-HCV antibodies, E&W
2003

0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 450

Number with HCV antibodies (thousands)

Number (thousands)

Contribution by risk−group

Total

All other 
 risk−groups

Ex−injecting 
 drug users

Current 
 injecting 

 drug users

Daniela De Angelis (MRC-BSU, HPA) Warwick, March 2011 32 / 45



Results

Posterior distributions for the proportion of
undiagnosed HIV infections in MSM
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Results

London: Infections, Cases, Attack Rate
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End August
Infections 672000

(544000, 826000)
Symptomatic 217000
cases (133000, 324000)
IAR 9%

(7%, 11%)
End December
Infections 1441000

(1229000, 1681000)
Symptomatic 469000
Cases (298000, 676000)
IAR 19%

(16%, 22%)
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Methodological issues

Methodological issues

Powerful approach that allows use of all available information inevitably
leading to complex probabilistic models

How do we assess these complex models?

appropriateness compared to alternative models
detection of conflicts between data items
influence of particular data items on the resulting inference
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Methodological issues

Model assessment: instruments

Deviance

D(θ) = −2[log{p(y | θ)} − log{p(y | θ̂)}]

Posterior mean deviance (D̄)

D̄ = Eθ|y[D(θ)]

Deviance Information Criteria (DIC )

DIC = D̄ + pD

[Spiegelhalter et al, 2002]
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Methodological issues

Model assessment: model choice. HCV

Model DIC ρ
CUR

(%) ρ
EX

(%) π
CUR

(%) π
EX

(%) π
NON

(%) π (%)

No bias 1022 0.26 0.73 33.7 19.9 0.094 0.32
b = 0 (0.22, 0.30) (0.65, 0.81) (30.3, 37.3) (17.2, 22.8) (0.048, 0.152) (0.27, 0.39)

Common bias,
surveys &
risk-groups 976 0.67 2.69 32.7 18.9 0.098 0.82

b = b (0.49, 0.93) (1.83, 4.04) (29.2, 36.5) (16.3, 21.7) (0.048, 0.157) (0.60, 1.16)

Risk-group
specific bias 978 0.68 1.41 33.0 19.7 0.091 0.60
b = bg (0.49, 0.96) (0.58, 3.19) (29.3, 37.2) (16.8, 22.7) (0.046, 0.150) (0.39, 0.97)

Survey
specific bias 981 0.70 2.79 32.6 18.8 0.098 0.85

b = bi (0.50, 1.01) (1.84, 4.27) (29.2, 36.5) (16.2, 21.6) (0.049, 0.158) (0.60, 1.21)

Survey &
risk-group

specific bias 986 0.69 1.45 33.2 19.6 0.091 0.61

b = big (0.49, 0.96) (0.61, 3.31) (29.4, 37.3) (16.7, 22.7) (0.046, 0.151) (0.39, 0.99)
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Methodological issues

Model assessment: conflict between data
sources

D̄ =
n∑
i

D̄i

assuming independence between the n data sources becomes the sum of
the item specific deviance contributions

can be usefully employed to identify conflict between data sources
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Methodological issues

Availability of data: 13 risk groups, 3 regions,
over time

Risk group N ρ π δ π(1− δ) f (ρ, π, δ)

Men MSM X X
IDUs X X X X
Born sub-Saharan Africa X X
STI clinic attendees X X
Lower risk
ALL X X

Women IDUs X X X X
Born sub-Saharan Africa X X X X
STI clinic attendees X X
Lower risk
Born UK/elsewhere X X
ALL X X X

Note: multiplicity of data for some parameters
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Methodological issues

Model assessment: conflict. HIV

ρSSAf ,r

πALLf ,r

yALLf ,r

NALLf ,r NNSSAf ,r

Number

non-SSA

NSSAf ,r

Number

SSA

πNSSAf ,r

yNSSAf ,r ySSAf ,r

πSSAf ,r

yρ,r

Nρ,r

Census

Number in
unenhanced

survey

πALLf ,r = πSSAf ,rρSSAf ,r + πNSSAf ,r (1− ρSSAf ,r )
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Methodological issues

Model assessment: influence. A/H1N1

What is the role of serological studies?
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Methodological issues

Model assessment: influence. A/H1N1

Sequential analyses with serology based on 83, 143, 192 and 245 days of
epidemic surveillance data
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Methodological issues

In a world without serology...

Other data sources unable to overcome prior information
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Final comments

Discussion

Example of estimation relevant to problems of public health

Use of multiple sources of evidence leads to complex probabilistic
models

Increasingly expert at formulating and estimating models

The establishment of a well-defined iterative process of model
criticism lags behind this expertise

Model criticism becomes more crucial but harder as the number of
data sources increases and the model becomes more complex

Work on approaches to conflict detection, model choice and
assessment needed
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