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Modelling infectious disease surveillance data

Many countries have established surveillance systems for the
routine collection of infectious disease data.

Statistical analysis of such data is essential in the attempt to
control and prevent disease, can be either prospective or
retrospective.

Notification data typically consist of time series of counts of
new infections of a specific disease, observed in different
areas, age groups, . . . .

Aim

Development of a flexible model framework for the statistical
analysis of surveillance data seen as multiple time series of counts.
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Surveillance data: Examples
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Characteristics of notification data

Low number of counts

Seasonality

Occasional outbreaks

Underreporting, reporting delays

No information about number of susceptibles

Dependence between areas, age groups, etc.

How can we (statistically) analyze such data?
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Accounting for temporal dependence

A branching process with immigration is a starting point for
an observation-driven model:

yt |yt−1 ∼ Po(µt) with µt = νt + λyt−1

where yt is the number of cases at time t = 1, 2, . . .

The disease incidence is additively decomposed into

endemic component νt
which may parametrically model regular trends and seasonality
similar to log-linear Poisson regression

epidemic (or autoregressive) component λyt−1

which will capture occasional outbreaks

λ can be interpreted as epidemic proportion

Held et al. (2005), Stat Model
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Accounting for temporal dependence cont.

yt |yt−1 ∼ Po(µt) with µt = ν + λyt−1
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Autoregressive coefficient λ ≥ 0 determines stationarity

In applications Poisson needs to be replaced by negative
binomial distribution to adjust for overdispersion.
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Multivariate formulation

Suppose now multiple time series are available:

µit : mean number of cases in unit i at time t

µit = νit + λiyi ,t−1

+ φi
∑
j 6=i

wjiyj ,t−1

• log(νit) = αi + offset + seasonal trend + covariates

• log(λi ) = βi + covariates

• log(φi ) = γi : neighbor-driven component

• wji : known weights, e.g. adjacency-based or travel intensities
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Addressing unit-specific heterogeneity

There are different options for the unit-specific parameters
νi , λi , φi .

They may be constant across units, e.g. φi = φ

They may represent different fixed effects

They may represent different random effects,

e.g. αi
iid∼ N(0, τ2)

Independence assumptions may be replaced with spatial (CAR)
priors
If more than one set of parameters is taken as random, then
correlation between random effects is taken into account.
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Inference

Model does not belong to the class of GL(M)Ms

Fixed effects model:
Maximum Likelihood estimates are obtained via a (globally
convergent) Newton Raphson type algorithm

→ R package surveillance

Random effects model:
Estimation involves a multidimensional integral without closed
form solution.

→ Penalized likelihood approach combined with Laplace
approximation

→ R package surveillance

More complex extensions require MCMC, e.g. time-varying λ
Held et al. (2006), Biostatistics
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Application I: Influenza and meningococcal disease

Several studies describe an association between influenza and
meningococcal disease: “Outbreaks” of meningococcal disease
appear to occur at the end of influenza outbreaks

Both influenza and meningococcal disease show seasonal
variation with peak incidence rates during the winter.

We examined whether variations in occurrence of influenza
(with a delay of 1,2 weeks) were associated with changes in
the incidence rate of meningococcal disease.

Paul et al. (2008), Stat Med
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Influenza and meningococcal disease in Germany,
2001− 2006
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Modelling influenza and meningococcal disease

Fit models with (or without) influenza cases from previous
time points as explanatory variable for meningococcal disease:

µmen,t = νmen,t + λmenymen,t−1 + φyinf,t−1

µinf,t = νinf,t + λinfyinf,t−1

Investigate also reverse direction.

Adjust for seasonality in the endemic component for both
influenza and meningococcal disease.

14/ 49



Introduction Modelling Applications Predictive validation More applications Discussion

Results

λ̂ (se) φ̂ (se)

flu men men → flu flu → men log L p

0.74 (0.05) 0.16 (0.06) - - -1889.7 14
0.74 (0.05) 0.10 (0.06) - 0.005 (0.001) -1881.0 15
0.74 (0.05) 0.16 (0.06) 4e-07 (1e-04) - -1889.7 15
0.74 (0.05) 0.10 (0.06) 4e-07 (1e-04) 0.005 (0.001) -1881.0 16
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Fitted values
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Analysis with different lags

lag (weeks) φ̂×103 (se ×103)

3 2.92 (1.30)
2 4.54 (1.41)
1 5.32 (1.42)

0 5.30 (1.39)

-1 4.68 (1.31)
-2 3.73 (1.26)
-3 2.30 (1.22)
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Application II: Measles in Germany

Measles is a highly contagious disease.

The introduction of the measles vaccine has considerably
lowered the incidence level in Germany to a historical low
of 2 cases per 1 000 000 inhabitants in 2004.

However, large local outbreaks occurred in some of the federal
states in recent years.

The differences in incidence are most likely due to
heterogeneous vaccination coverage rates.

Goal of analysis

Empirical investigation of the association between vaccination
rates and measles epidemics using routinely collected data.

Herzog et al. (2011), Epidemiol Infect

18/ 49



Introduction Modelling Applications Predictive validation More applications Discussion

Data on measles incidence and MMR vaccination rates

Measles incidence

The Robert-Koch Institute (RKI) provides weekly numbers of
reported cases.

We use cases of all ages in 16 federal states for 2005 – 2007.

Measles-Mumps-Rubella (MMR) vaccination rates

Coverage rates are estimated based on vaccination cards
presented at yearly school entry examinations.

They yield information about the vaccination status of
children aged 4–7.

We use state-specific rates for the 1st and 2nd dose of MMR
from 2006.
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Adjustment of vaccination rates
True rates are most likely overestimated by the available data
as the vaccination status of card-holders is generally better.
Nation-wide information about the degree of overestimation
is not available.
We thus assume that coverage among children without cards
is half as high as among those with cards.
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Model formulation for measles data

µit = λiyi ,t−1 + νi ,t

log(λi ) = β0 +β1 · (vaccination rate in state s)

log(νi ,t) = offset + α0 + seasonal trend

Alternative model formulation: Vaccination rates enter into
endemic component.
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Specification of response and explanatory variables

For measles the average time between the onset of symptoms
in a primary case and a secondary case, the generation time,
is about 10 days.

→ We therefore aggregate measles cases in successive biweekly
periods.

The mass action principle states:

Rate of disease spread ∝ Susceptibles

(unvaccinated)
× Infected

(cases)

→ Taking the log proportion of unvaccinated students as
covariate produces this multiplicative relation.
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AIC and parameter estimates

epidemic component endemic component

AIC β0 (se) β1 (se) α0 (se) α1 (se)

no covariates

10433 - - 3.25 (0.03) -
3606 -0.16 (0.02) - 1.76 (0.06) -

log proportion of students who received at most 1 dose

3584 1.34 (0.31) 1.02 (0.21) 1.76 (0.06) -
3591 -0.17 (0.02) - 3.59 (0.45) 1.17 (0.29)

log proportion of unvaccinated students

3566 3.01 (0.52) 1.38 (0.23) 1.78 (0.06) -
3576 -0.17 (0.02) - 5.43 (0.69) 1.52 (0.29)
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Sensitivity analysis

We have assumed that coverage among non-card holders is
0.5 times as high as among card holders.

We computed the AIC for several values ranging from
1 (same coverage) to 0 (all unvaccinated).
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Application III: Influenza in USA, 1996− 2006

Brownstein et al. (2006), PLoS Med found empirical evidence
that air travel influences the annual spread of influenza in the
USA

Data on weekly mortality from pneumonia and influenza in 9
geographical regions obtained from the CDC 121 Cities
Mortality Reporting system

Data on yearly number of passengers travelling by air obtained
from TranStats database, U.S. Department of Transportation

Paul et al. (2008), Stat Med
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Air travel data, 1997-2007

1 214.1

Shown is the average yearly number of passengers per 100,000
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Modelling Influenza in USA

µit = exp(νit) + λyi ,t−1 + φi
∑
j 6=i

wjiyj ,t−1

Possible weights wji

Geographical weights based on adjacencies

Air travel information
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Results - Influenza in USA

wji λ̂ (se) φ̂i (se) AIC maxEV

– - - 40300.5 -
– 0.34 (0.01) - 39693.6 0.34

adjacencies 0.30 (0.01) 0.01 (0.01) - 0.23 (0.08) 39632.2 0.45
adjacencies (corrected) 0.30 (0.01) 0.01 (0.02) - 0.68 (0.25) 39631.6 0.44

travel 0.28 (0.01) 0.89 (3.13) - 31.58 (6.04) 39617.0 0.45
yearly travel 0.28 (0.01) 0.84 (1.09) - 28.68 (5.02) 39593.5 *
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Predictive validation

Classical model choice criteria such as AIC are problematic in
the presence of random effects.

For space-time data it is more natural to select models based
on probabilistic one-step-ahead predictions.

The often used mean squared prediction error does not
incorporate prediction uncertainty.

We use strictly proper scoring rules (Gneiting and Raftery;

2007), JASA which

compare the predictive distribution and
the later observed true value y

simultaneously address sharpness and calibration
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Proper scoring rules

Most commonly used:

Logarithmic score: logS = − log(py )

Ranked probability score: RPS =
∑∞

k (Pk − 1(y ≤ k))2

where pk is the pmf and Pk is the cdf of the predictive probability
distribution (Czado et al.; 2009), Biometrics

Note: these scoring rules are negatively oriented (the smaller the
better)
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Application IV: Influenza in Southern Germany
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Paul and Held (2011), Stat Med
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Influenza in Southern Germany

We considered several negative binomial models, which differ
depending on whether and how the autoregression is specified.

The endemic components always includes

population fractions as offset
linear time trend and seasonal terms
iid random intercepts

Model choice:

one-step-ahead predictions for the last two years
average logarithmic scores based on these predictions
significance of mean scores differences is investigated with a
Monte Carlo permutation test
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One-step-ahead predictive validation for 2007–2008

autoregressive: λ neighbor-driven: φ logS

p-value

constant random .563

random random .564
random constant .565
constant constant .565

random — .569
constant — .569

— random .588
— constant .591
— — .599

Monte Carlo p-values based on 9999 permutations
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One-step-ahead predictive validation for 2007–2008

autoregressive: λ neighbor-driven: φ logS p-value

constant random .563

random random .564 .5979
random constant .565 .0830
constant constant .565 .0353

random — .569 .0018
constant — .569 .0006

— random .588 .0001
— constant .591 .0001
— — .599 .0001

Monte Carlo p-values based on 9999 permutations
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Application V: Coxiellosis in Swiss cows

Data on Coxiellosis incidence on Swiss farms from 2004 to
2009 for 184 Swiss regions and the Principality of
Liechtenstein

A herd is denoted a case if at least one diseased animal was
detected.

Very low incidence and long reporting delays (disease is not
detected until an abortion takes place) → aggregation to
yearly counts

Question: Is there spatio-temporal spread of the disease and,
if yes,

only local (adjacency-based)?
or associated with cattle trade?

Schrödle et al. (2011), submitted

38/ 49



Introduction Modelling Applications Predictive validation More applications Discussion

An alternative parameter-driven model

→ Latent Gaussian model

µit = λµi ,t−1 + φ
∑
j 6=i

wjiµj ,t−1 + εit

so µt follows a vector-autoregressive (stationary) process

Inference requires a fully Bayesian perspective using
Integrated Nested Laplace Approximations (INLA)

INLA also provides predictive distributions

→ Comparison of several parameter-driven (PM) and
observation-driven (OM) models using mean predictive scores
for 2009.
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Results

logS RPS
wji PM OM PM OM

− 0.583 0.624 0.239 0.257
adjacencies 0.547 0.593 0.218 0.246
cattle trade 0.549 0.590 0.214 0.236

cattle trade (relative to # herds) 0.554 0.583 0.218 0.234√
cattle trade 0.557 0.619 0.217 0.255

log cattle trade 0.575 0.624 0.230 0.257
rel. cattle trade + mean herd size 0.549 0.578 0.212 0.232

Differences between cattle trade and adjacency-based weights
are not significant.

Difference between best PM and OM model are borderline
significant (p = 0.02 for logS, p = 0.10 for RPS).

The PM model seems better in predicting higher counts.
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Discussion

Useful statistical modelling framework for infectious disease
surveillance counts.

Ready-to-use software, easy to fit.

Predictive validation with proper scoring rules is intuitive
model choice criterion for (multiple) time series.

Latent Gaussian hierarchical models may be a useful
alternative in certain applications.
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