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What this talk is about

Most of the content is (joint) work in progress . . .

Interested in exploring cases (i.e. models/data) where exact
“likelihood-free” Monte-Carlo inference can be drawn.

If exact inference is not possible, interested in efficient, but
approximate methods.

Discuss

how one can take advantage of the model’s structure?

how some, if any, of the available (theoretical) results can
aid the construction of efficient simulation-based algorithms?
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Exact Bayesian Computation
(EBC)
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Exact Bayesian Computation (EBC)

Suppose we have discrete data D, prior π(θ) for parameter(s)
θ.

Aim: Draw samples from the posterior distribution of the
parameters, π(θ|D).

Bayes Theorem gives

π(θ|D) = π(D|θ)π(θ)/π(D)

where π(D) is a normalising constant:

π(D) =

∫
θ
π(D|θ)π(θ) dθ

and therefore
π(θ|D) ∝ π(D|θ)π(θ)
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Rejection Sampling

Consider the following algorithm:

ER1

1. Draw θ ∼ π(θ);

2. Accept θ with probability equal to π(D|θ);

3. Repeat until the required number of samples is drawn.

* It is trivial to show that the accepted values will be distributed
according to the posterior distribution π(θ|D).

* Note that this algorithm requires that the likelihood, π(D|θ), can
be computed for any θ (Step 2).
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Rejection Sampling

Can do better: if π(D|θ) < c for all θ, substitute Step 2 with:

2. Accept θ with probability equal π(D|θ)/c

i.e. increased acceptance rate at zero cost provided that we can
find an upper bound for the likelihood.
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Rejection Sampling (cont.)

Consider the following algorithm:

ER2

1. Draw θ ∼ π(θ);

2. Draw D′ ∼ π(·|θ), i.e. simulate data D′ from the model;

3. Accept θ if D = D′;
4. Repeat until the required number of samples is drawn.

* Algorithm ER2 is equivalent to algorithm ER1.

* The main difference is that the computation of the likelihood
π(D|θ) (ER1, Step 2) is substituted by the simulation of an event
which occurs with that probability (ER2, Steps 2 and 3).

* That means that the calculation of the likelihood is unnecessary
as long as we can simulate from our stochastic model.
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EBC and Monte Carlo Maximum Likelihood

Suppose that we are interested in finding the MLE, say θ̂MLE .

One needs to be able to compute the likelihood, π(D|θ) for
any value θ.

If this cannot be done directly, one can approximate the
likelihood function using Monte Carlo (Diggle and Gratton,
1984):

ML1

1. Choose a grid of values for θ, i.e. (θ1, . . . , θK );
2. Estimate the value of the likelihood for each θj , j = 1, . . . ,K

by

π̂(D|θj) =
1

M

M∑
i=1

1(D′θj
= D)

where D ′θj
is a simulated dataset from the model with

parameter θj .
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EBC and Monte Carlo Maximum Likelihood

Instead of maximising the likelihood function π(D|θ) we are
maximising a Monte Carlo estimator of it.

One could either maximise the likelihood in brute-force
manner (expensive) or by optimization (much cheaper).

Although such a MCMLE scheme enjoys desired properties
(such as unbiasness etc) we have to be careful, since we might
get misleading results due to large Monte Carlo error →
increase Monte Carlo samples M.

One can also try and do a Kernel Density Estimation (KDE)
of the Monte Carlo likelihood function and do optimization on
the KDE.
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Some Remarks

Both algorithms ER1 & ER2 are very easy to implement but they
both suffer in terms of efficiency when

the prior π(θ) is very different from the posterior π(θ|D);

while algorithm ML1 can be problematic if

there is huge Monte Carlo variation and one needs a very
large M to accurately approximate the likelihood function.
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How does all this relate to
epidemic modelling?
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EBC for Epidemic Models

Consider some final size data D (i.e. total number of
infectives out of the initial susceptible population of size N )
from a standard SIR model.

Having assumed a distribution for the infectious period, we
wish to make inference for the infection rate λ (or R0), i.e.
derive (or draw samples from) π(λ|D) (or π(R0|D)).

When using standard (double) precision arithmetic, numerical
problems appear when computing the likelihood π(D|θ) (using
for example the triangular equations) due to rounding errors
even for N of the order 50–100.
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EBC for Epidemic Models (2)

Therefore, the algorithm ER1 cannot be implemented unless
Multiple Precision Arithmetic (MPA) is employed (Demiris
and O’Neill, ST&COM).

On the other hand, algorithm ER2 can be used instead;
simulating final size data from an SIR model is trivial using
either the Gillespie algorithm or the Sellke construction etc.

The Gillespie algorithm can be computationally very expensive
for large N and therefore we prefer using the Sellke
construction.

Note that ER2 is very straightforward to implement (i.e. few
lines of code) and it results in drawing exact samples from the
posterior distribution of interest; MCMC approaches
available: e.g. Demiris’ thesis, (2004) O’Neill (2009),
Ball(201?), White’s thesis (2010).
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Accounting for observational error

It is very easy to allow for error in observation of the final
size, e.g. account for underreporting.

In other words, we are interested in the posterior distribution
of π(λ|D ± k) for some k.

This can be done either retrospectively, i.e. if we had stored
all the pairs (θ,D′) we can look at those that satisfy the
criterion, . . .

. . . or by modifying the existing ER1 algorithm, i.e. only store
on the fly the values of θ which satisfy the criterion.
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An Exact Algorithm for Sample Data

Consider the case where we have sample final size data, i.e. we
only observe the final size of a proportion of the population, but
wish to make inference for the whole population.

Total population size of initial susceptibles N
(Random) Sampled population size of initial susceptibles m

Observed final size d (out of m).

ER3

1. Draw θ ∼ π(θ);

2. Draw D′ ∼ π(·|θ), where D′ is total final size.

3. Accept θ with probability p(m,N , d ,D).

4. Repeat until the required number of samples are drawn.
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An Exact Algorithm for Sample Data (2)

The probability p(m,N , d ,D) in Step 3 can be derived from a
hypergeometric distribution and can be computed explicitly.

Instead of accepting θ w.p. p(m,N , d ,D) one could the
following:

AR3

1. Draw θ ∼ π(θ);

2. Draw D′ ∼ π(·|θ), where D′ is total final size.

3. Store the pair {θ, pθ(m,N, d ,D)}.
4. Repeat until the required number of samples are drawn.

One can think of pθ(m,N , d ,D) as a weight for each drawn θ and
then approximate π(θ|D) in an Importance Sampling manner.
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Do these algorithm really work
(well) in practice?
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Some Examples – Full Data

Suppose we observe a final size of 40 out of 100 initially
susceptible individuals.

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

Posterior Distribution of R_0 − full data

D
en

si
ty

Gamma(10, 5)
Gamma(4, 2)
Gamma(2, 1)
Exp(0.5)

18 / 57



Some Examples – MCMLE

Posterior Distribution of lambda

lambda

D
en

si
ty

0.002 0.004 0.006 0.008 0.010 0.012

0
50

10
0

15
0

20
0

25
0

19 / 57



Some Examples – Sample Data

Suppose we observe a final size of 10 out of a sample population of
40 initially susceptible individuals while the size of the total
population is 100 individuals.
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Some Examples – Error in Observations

Suppose we observe 60 infected individuals out of 100 but we want
to allow for some error.
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Challenges

If the prior is very vague, e.g. λ ∼ Exp(10−6), then ER2 and
ER3 will not be efficient (we rarely hit the target).

The problem can be overcome by obtaining a Monte Carlo
estimate for the likelihood to get an idea where the most
likely values of λ lie. Then use this information to draw from
a constrained “prior”. Problem when we have a pretty
informative prior?

This is some sort of an adaptive algorithm → strictly speaking
we are not doing exact inference anymore but in practice we
loose very little!

When the size of initially susceptible population is large, then
the EBC algorithm will very inefficient, i.e. it will take ages to
hit the target.
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How Can we Overcome These Problems?

1. Sequential Monte Carlo - Exact Bayesian Computation

One “solution” to the problem might be to apply an
SMC-ABC type algorithm . . . but, is there an alternative way?

2. “Likelihood-Free Importance Sampling”?

Suppose that, some-how, we have some sort of approximation
to our posterior of interest, π(θ|D), say q(θ).

Can we make use of q(h) and draw honest Bayesian
inference?
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“Likelihood-Free”
Importance Sampling
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How Can we Overcome These Problems? (2)

Recall, ER1 algorithm:

1. Draw θ ∼ π(θ);

2. Accept θ with probability equal to π(D|θ) or if π(D|θ)/c if c
known;

3. Repeat until the required number of samples is drawn.

and ER2 algorithm

1. Draw θ ∼ π(θ);

2. Draw D′ ∼ π(·|θ), i.e. simulate data D′ from the model;

3. Accept θ if D = D′;
4. Repeat until the required number of samples is drawn.
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Approach I: Use ideas from the “Bernoulli
Factory”

Although both algorithms are equivalent, ER2, relies on the fact
we can simulate events with probability equal to the likelihood
(Steps 2 and 3 of ER2).

If c is known (see ER1) then the equivalent ER2 algorithm should
take into account the fact that we want to simulate events with
probability π(D|θ)/c or k · π(D|θ) for k = 1/c .

But, we only know how to simulate events with probability equal
to the likelihood.

The question then is: Given that we can simulate events with
some probability p, how can we simulate events with probability
f (p)? → Bernoulli Factory! It is a (very old) and hard problem!
See Nacu and Peres (2005), Latuszynski et al. (2010) etc
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Approach I: Use ideas from the “Bernoulli
Factory” (2)

Briefly, there is no exact algorithm to simulate events with
probability f (p), . . . for any f (·)

nevertheless, there is an algorithm (see previous refs) to
simulate events with probability when f (p) = min(kp, 1− kε)
for some ε > 0.

The larger the ε the more inefficient this algorithm becomes!

Question: If don’t want to do exact inference, are the there
any fast, but approximate solutions to the Bernoulli factory
problem?
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Sequential Monte Carlo
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Approach II: Sequential Monte Carlo

SMC-E/ABC type algorithms (eg. Sisson et al (2010), Toni et al.
(2010)) can offer a good alternative. The idea is:

1. We use samples from the priors (called particles) . . .

2. . . ., which are propagated through a sequence of intermediate
distributions, π(θ|∆(D,D∗) ≤ εi ), where the tolerances εi for

i = 1, . . . ,T are chosen such that ε1 > . . . εT ≥ 0.

3. In other words, these intermediate distributions evolve towards
π(θ|D).
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Approach II: Sequential Monte Carlo

In general:

Such algorithms can work very well;

although their efficiency largely depends on certain tunable
aspects, such as the choice of the tolerances εi ,i = 1, . . . ,T

and the kernel via which the particles are propagated.

Moreover, without care the approach can even fail altogether
due to “particle degeneracy”.

In the epidemic modelling context:

At least in the case of a single-type one level mixing model,
one could start the series of the ε’s with large values and drag
it down to zero.

Effectively, this will lead to exact Monte Carlo samples from
the posterior of interest.
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Approach II: Sequential Monte Carlo

Abakaliki Data: Posterior distribution of R0:

Histogram of lambda.sampled * 4.1 * 119
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What about models with more
population structure?
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A Model with Two Levels of Mixing

We consider epidemic models in populations which mix at two
levels, “global” and “local”.

More precisely, we consider models in which each infectious
individual i has a ‘global’ rate λG for infecting each other
individual in the population . . .

. . . plus a ‘local’ rate λL of infecting each other individual
among a set of neighbours, N(i).

Our main concern is the case where the population is
partitioned into local groups or households (or farms/yards
etc).
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EBC for the 2-level Mixing Model

ER2

1. Draw θ ∼ π(θ);

2. Draw D′ ∼ π(·|θ), i.e. simulate data D′ from the model;

3. Accept θ if D = D′;
4. Repeat until the required number of samples are drawn.

Step 3 now is more ambitious than before. We need to hit the
target of the total final size of the epidemic as well as the the
final size in each group (households/farms/yards).

If the households are all of the same size then it is not too
bad → permutations or groupings.

Otherwise the above algorithm is (or can be) very inefficient
and an EBC-SMC type algorithm may not offer that great
advantages.
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ABC for the 2-level Mixing Model

Doing exact inference seems very challenging and therefore, we
seek for alternative, but approximate ways to draw inference for
θ = (λL, λG ).

ABC

1. Draw θ ∼ π(θ);

2. Draw D′ ∼ π(·|θ), i.e. simulate data D′ from the model;

3. Accept θ if ∆(D,D′) < ε;

4. Repeat until the required number of samples are drawn.

Questions:

What do we mean by D?

How small to choose ε?

What distance metric ∆(·) should we use?

How good the approximate posteriors are to the true ones?
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Types of data

At least, two different types of data:

1. Suppose that the data D consist of the final size at each group
(household/farm/yard), i.e. a series of (d1, d2, . . . dn) as well
as the number of susceptibles in each group (N1,N2, . . .Nn).

2. Alternatively, if the population consists of various groups of
similar size then, often the data appear in such a form:

Susceptibles per household

No of Infected 1 2 3 4 5

0 40 49 22 20 3
1 93 137 83 80 23
2 3 2 4 2
3 1 1 1
4 1 1
5 1

Total 133 189 108 106 31

36 / 57



Various Choices of Metrics

Just compare the final size and ignore the group structure
(not very clever):

∆(D,D′) =

∣∣∣∣∣
n∑

i=1

di −
n∑

i=1

d ′i

∣∣∣∣∣
Just compare the final sizes in each groups (a bit clever):

∆(D,D′) =
n∑

i=1

∣∣di − d ′i
∣∣

Look at proportions instead (quite clever, especially when Ni ’s
are very different):

∆(D,D′) =
n∑

i=1

∣∣∣∣di − d ′i
Ni

∣∣∣∣
A combination of the above? (see Baguelin et. al (2009))

. . .
37 / 57



Practicalities – Challenges

Our experience reveals that this metric

∆(D,D′) =
n∑

i=1

∣∣∣∣di − d ′i
Ni

∣∣∣∣
works pretty well when compared with the results from a
gold-standard approach, i.e. MCMC.

Adopting an SMC-ABC algorithm one can approximate the
true posteriors very well (see graphs later).

In theory, one could drag the εi in the series of errors to be
close to zero, but some times this could be problematic, i.e.
particles degenerate. When do we stop?

In this case, there are only two parameters and it is possible to
move the particles in a block (e.g. using a random-walk
kernel). What happens when there are more
model-parameters? Use a Gibbs kernel?
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Practicalities – Challenges (2)

One needs to be very careful how to choose the different
values for ε1, . . . , εk .

A bad selection could lead to a very inefficient algorithm.
Of course, the larger the k is, the lower the chance of having
particles to become degenerate . . . (making slick moves) . . .

. . . the more costly the algorithm becomes.

Borrow results from Simulated Annealing/Parellel Tempering
such that we place ε1, . . . , εk efficiently, i.e in an optimal way?
see: Behrens, Friel, Hurn (ST&COM, to appear)
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Some Results
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What about temporal data?
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Temporal Data

So far we have only considered final outcome data which
allowed us to draw exact Monte Carlo inference for the
parameters.

When temporal data are available, it is often the case that a
model (defined) in continuous time will be fitted; although
this is not necessary always the case.

In these, due the continuity, there are many more things to
worry about, e.g. which summary statistics to use etc.

However, in practice, real data are only available in discrete
time, i.e. number of removals per day etc.

An alternative approach to the one presented in Cook et al
(2010) would be to involve some sort of data discretization.
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Temporal Data – Hagelloch Dataset
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Discretizing the data

The idea is, that in the Step where data are simulated in
continuous time (i.e. removal times). we will perform some
sort of discretization.

Obviously, this has to be in accordance with the observed data
(days↔days, months↔months)

Similar distance metrics to the ones used for final size data
could be used and enjoy similar properties.

Challenges:

Bins of equal width?
Weighted bins?
Effect of amount of discretization?
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Piecewise Exact (Approximate)
Bayesian Computation
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Piecewise Exact (Approximate) Bayesian
Computation: PW-EBC (PW-ABC)

White, K, Preston and Crowe (2011)

For simulation-based methods, computing resources are
always a limiting factor,

and a guiding principle is to take every opportunity to exploit
model structure to minimise computational costs.

46 / 57



Piecewise Exact (Approximate) Bayesian
Computation: PW-EBC (PW-ABC) (2)

For a particular (but fairly broad) class of models,

namely those that have the Markov property, and

and whose vector of state variables is observable at discrete
time points

we would like to have a (likelihood free) simulation-based method
which

takes advantage of the models Markov structure,

requires minimal amount of tuning, and

enables less approximate, or even exact, Bayesian inference
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PW-EBC & PW-ABC

Suppose our data are a set of observations denoted
X = {x1, . . . , xn} = {x(t1), . . . , x(tn)} of state variable
x ∈ Rm at time points t1, . . . , tn.

The posterior density is:

π(θ|X ) =
π(X|θ)π(θ)∫

θ π(X|θ)π(θ) dθ
∝ π(X|θ)π(θ),

EBC (ER1/ER2) or ABC can be applied in the usual way.

1. Draw θ∗ from π(θ).
2. Simulate dataset X ∗ = {x∗(t1), . . . , x∗(tn)} from the model

using parameters θ∗.
3. Accept θ∗ if X ∗ = X , otherwise reject or Accept θ∗ if

d(X ,X ∗) ≤ ε, otherwise reject
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Exploting the Markovian Structure

The Markov property enables the likelihood to be written as

π(X|θ) =

(
n∏

i=2

π(xi |xi−1, . . . , x1, θ)

)
π(x1|θ)

=

(
n∏

i=2

π(xi |xi−1, θ)

)
π(x1|θ), (1)

and hence the posterior as

π(θ|X ) ∝ π(X|θ)π(θ)

∝
n∏

i=2

(
π(xi |xi−1, θ)π(θ)

π(θ)

)
π(x1|θ)π(θ)

∝ π(θ)(1−n)π(θ|x1)

(
n∏

i=2

π(θ|xi , xi−1)

)
. (2)

Essentially, the density of the posterior distribution of interest has
been decomposed into a product of the densities of the posteriors
θ|(xi , xi−1), for i = 2, . . . , n. 49 / 57



Exploting the Markovian Structure (2)

We can estimate

π(θ|X ) ∝ π(θ)(1−n)π(θ|x1)

(
n∏

i=2

π(θ|xi , xi−1)

)

as follows:

PW-EBC (PW-ABC)

1. For i = 2 to n do:

(a) Apply EBC (ABC) Algorithm to draw exact (approximate)
samples from π(θ|xi , xi−1);

(b) Calculate the kernel density estimate (KDE), π̂(θ|xi , xi−1)

2. Calculate an estimate, π̂(θ|X ), of π(θ|X ) by replacing in the
equation above the densities π(θ|xi , xi−1) with their
corresponding KDEs, π̂(θ|xi , xi−1).
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PW-EBC/PW-ABC

The good news:

for a given tolerance ε, the rejection sampling acceptance
probability is substantially higher when drawing samples
from π(θ|xi , xi−1) than it is from π(θ|X ).

Also benefit from being trivial to parallelise: factors can be
calculated in parallel, and so can samples within factors.

The not so good news:

PW-EBC and PW-ABC involve having to calculate kernel
density estimates (KDEs).

Sophisticated methods exist for fast calculation (eg. Fast
Fourier Transform) but can be problematic . . .

For parameters with bounded support (e.g. parameters that
can only be positive) to avoid “edge effects” we calculated
KDEs for simple transformed versions of the parameters.

51 / 57



Application to a Stochastic Lotka-Voltera
Model
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LV Model: An Example
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Connection with Epidemic Models

Some of the most commonly used epidemic models exhibit a
Markovian structure (e.g. SI, SIR etc) . . .

therefore, such an approach seems suitable. → see Tj’s talk
later in the week.

Note that we are not drawing samples from the posterior, but
instead we calculate it pointwise.

One can incorporate a sequential sampling-based framework
similar to the one proposed by Chopin (2002) and Del Moral
et al (2006).
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Conclusions
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Conclusions and Some Thoughts

MCMC methods for stochastic epidemic models are
considered as ”gold standard”. Nevertheless, they can be
computationally expensive and non-standard algorithms may
be needed for efficiency {see for example, Neal and Roberts
(2005), K (2007)}

On the other hand, exact Monte-Carlo non MCMC inference
for (some) final size data stochastic epidemic models is
possible.

The greatest at advantage of EBC/ABC-type methods is that
they are much much easier to implement; on the other
hand, careful tuning and care is required in most cases.

It would be great if there was a way to quantify the error of
approximation in ABC, or in other words to know how far we
are from the true posterior . . .

56 / 57



Acknowledgments

Final size data: Frank Ball (Nottingham), Nikos Demiris
(Athens)

Temporal data: Phil O’Neill (Nottingham), Eleni Elia
(Nottingham)

PW-EBC/ABC: Simon White (BSU-MRC, Cambridge),
Simon Preston (Nottingham).

57 / 57


