STATISTICAL INFERENCE FOR VIRAL DISEASES

USING

EPIDEMIOLOGICAL AND GENETIC

SUMMARY STATISTICS

Oliver Ratmann (Duke Biology)

Christophe Fraser (DIDE Imperial), Ge Donker (NIVEL), Katia Koelle (Duke Biology)

Epidemiological & evolutionary dynamics of influenza A (H3N2): overlap \longrightarrow interact \longrightarrow reflect

Duke Imperial College

Statistical inference using epidemiological and genetic data

Bayesian inference

- x₀ observed incidence time series AND viral phylogeny
- phylodynamic model that defines likelihood $f(x_0|\theta)$ implicitly
- \Rightarrow Bayes' posterior density

 $f(\theta|x_0) = \frac{f(x_0|\theta)\pi(\theta)}{f(x_0)}$

Approximate Bayesian Computation

circumvent evaluation of $f(x_0|\theta)$ in two steps:

• simulate from likelihood, $x \sim f(\cdot | \theta)$

• weight simulation under θ by degree ε with which x and x_0 match

Statistical inference using epidemiological and genetic data

Bayesian inference

- x₀ observed incidence time series AND viral phylogeny
- phylodynamic model that defines likelihood $f(x_0|\theta)$ implicitly
- \Rightarrow Bayes' posterior density

 $f(\theta|x_0) = \frac{f(x_0|\theta)\pi(\theta)}{f(x_0)}$

Approximate Bayesian Computation

circumvent evaluation of $f(x_0|\theta)$ in two steps:

- simulate from likelihood, $x \sim f(\cdot | \theta)$
- weight simulation under θ by degree ε with which x and x_0 match

• Approximate Bayesian Computation • Influenza A (H3N2): summaries Influenza A (H3N2): results

• eg S1: # antigenic clusters

• set ABC kernel $\kappa_{\tau}(\varepsilon)$ eg to $1/\tau \ \mathbb{1}\left\{|\varepsilon| \leq \tau/2\right\}$

Rejection-sampler

- **)** Sample $\theta \sim \pi(\theta|M)$
- Simulate $x \sim f(x|\theta)$, compute summaries $\mathbb{S}(x) = \{S_1(x), \dots, S_K(x)\}$
- 3 Compute auxiliary errors $\varepsilon_k = \rho_k(S_k(x), S_k(x_0))$
- Accept (heta, arepsilon) with prob proportional to

$$\prod_{k=1}^{K} \kappa_{\tau_k}(\varepsilon_k)$$

ABC: a particular auxiliary variable Monte Carlo method

• ABC projection ξ_{x_0} : $x \to (\varepsilon_1, \dots, \varepsilon_K)$, $\varepsilon_k = \rho_k(S_k(x), S_k(x_0))$

• for given θ , errors are distributed according to

$$\xi_{x_0,\theta}(E_1 \times \ldots \times E_K)$$

= $f\left(\xi_{x_0}^{-1}(E_1 \times \ldots \times E_K) \middle| \theta, M\right) = \int \mathbb{1}\left\{x \in \xi_{x_0}^{-1}(E_1 \times \ldots \times E_K)\right\} f(dx|\theta, M)$

augmented sampling density of ABC is

$$\begin{split} f_{\mathsf{ABC}}(\theta,\varepsilon|x_0) & \propto & \prod_{k=1}^K \kappa_{\tau_k}(\varepsilon_k) \, \times \, \xi_{x_0,\theta}(\varepsilon_1,\ldots,\varepsilon_K) \, \pi(\theta) \\ & \quad \mathsf{ABC} \text{ kernel } \times \text{ prior predictive error density given } \theta \end{split}$$

• .. augmented likelihood still cannot be computed pointwise for $z = (\theta, \varepsilon)$

• .. and interested in auxiliary variable for model criticism (Ratmann PNAS 2009)

ABC: a particular auxiliary variable Monte Carlo method

- ABC projection ξ_{x_0} : $x \to (\varepsilon_1, \dots, \varepsilon_K)$, $\varepsilon_k = \rho_k (S_k(x), S_k(x_0))$
- for given θ , errors are distributed according to

$$\begin{aligned} \xi_{X_0,\theta}(E_1 \times \ldots \times E_K) \\ &= f\Big(\xi_{X_0}^{-1}(E_1 \times \ldots \times E_K) \,\Big|\, \theta, M\,\Big) = \int \mathbb{1}\left\{x \in \xi_{X_0}^{-1}(E_1 \times \ldots \times E_K)\right\} \, f(dx|\theta, M) \end{aligned}$$

• augmented sampling density of ABC is

$$\begin{split} f_{\mathsf{ABC}}(\theta,\varepsilon|x_0) & \propto & \prod_{k=1}^K \kappa_{\tau_k}(\varepsilon_k) \, \times \, \xi_{x_0,\theta}(\varepsilon_1,\ldots,\varepsilon_K) \, \pi(\theta) \\ & \quad \mathsf{ABC} \text{ kernel } \times \text{ prior predictive error density given } \theta \end{split}$$

• .. augmented likelihood still cannot be computed pointwise for $z = (\theta, \varepsilon)$

• .. and interested in auxiliary variable for model criticism (Ratmann PNAS 2009)

ABC: a particular auxiliary variable Monte Carlo method

- ABC projection ξ_{x_0} : $x \to (\varepsilon_1, \ldots, \varepsilon_K)$, $\varepsilon_k = \rho_k(S_k(x), S_k(x_0))$
- for given θ , errors are distributed according to

$$\begin{aligned} \xi_{x_0,\theta}(E_1 \times \ldots \times E_K) \\ &= f\Big(\xi_{x_0}^{-1}(E_1 \times \ldots \times E_K) \,\Big|\, \theta, M\Big) = \int \mathbb{1}\left\{x \in \xi_{x_0}^{-1}(E_1 \times \ldots \times E_K)\right\} \, f(dx|\theta, M) \end{aligned}$$

augmented sampling density of ABC is

London

Duke

$$\begin{split} f_{\mathsf{ABC}}(\theta,\varepsilon|x_0) & \propto & \prod_{k=1}^{K} \kappa_{\tau_k}(\varepsilon_k) \, \times \, \xi_{x_0,\theta}(\varepsilon_1,\ldots,\varepsilon_K) \, \pi(\theta) \\ & \quad \mathsf{ABC} \text{ kernel } \times \text{ prior predictive error density given } \theta \end{split}$$

- .. augmented likelihood still cannot be computed pointwise for $z = (\theta, \varepsilon)$
- .. and interested in auxiliary variable for model criticism (Ratmann PNAS 2009)

ABC: no need to calculate the augmented likelihood

if we propose from the intractable component

MCMC-sampler

) Propose $heta' \sim q(heta o \cdot)$ and propose $arepsilon' \sim \xi_{x_0, heta'}$

2) Accept z'=(heta',arepsilon') with probability

$$\min\{1, \mathsf{mh}(z \to z')\}, \qquad \mathsf{mh}(z \to z') = \frac{q(\theta' \to \theta)}{q(\theta \to \theta')} \times \frac{\pi(\theta') \prod_{k=1}^{K} \kappa_{\tau_k}(\varepsilon'_k)}{\pi(\theta) \prod_{k=1}^{K} \kappa_{\tau_k}(\varepsilon_k)}$$

and otherwise stay at *z*.

• Because, for $q(z \rightarrow z') = q(\theta \rightarrow \theta')\xi_{x_0,\theta'}(\varepsilon')$,

 $\{q(z \rightarrow z')\mathsf{mh}(z \rightarrow z')\} / \{q(z' \rightarrow z)\mathsf{mh}(z' \rightarrow z)\} = f_{\mathsf{ABC}}(z'|x_0) / f_{\mathsf{ABC}}(z|x_0)$

ABC: no need to calculate the augmented likelihood

if we propose from the intractable component

MCMC-sampler

Propose $heta' \sim q(heta
ightarrow \, \cdot$) and propose $arepsilon' \sim \xi_{ extsf{x}_0, heta'}$

2 Accept $z' = (\theta', \varepsilon')$ with probability

$$\min\{1, \mathsf{mh}(z \to z')\}, \qquad \mathsf{mh}(z \to z') = \frac{q(\theta' \to \theta)}{q(\theta \to \theta')} \times \frac{\pi(\theta') \prod_{k=1}^{K} \kappa_{\tau_k}(\varepsilon'_k)}{\pi(\theta) \prod_{k=1}^{K} \kappa_{\tau_k}(\varepsilon_k)}$$

and otherwise stay at z.

• Because, for $q(z \to z') = q(\theta \to \theta')\xi_{x_0,\theta'}(\varepsilon')$,

 $\{q(z \rightarrow z')\mathsf{mh}(z \rightarrow z')\} / \{q(z' \rightarrow z)\mathsf{mh}(z' \rightarrow z)\} = f_{\mathsf{ABC}}(z'|x_0) / f_{\mathsf{ABC}}(z|x_0)$

ABC: no need to calculate the augmented likelihood

• if we propose from the intractable component

MCMC-sampler

Propose $heta' \sim q(heta
ightarrow \cdot$) and propose $arepsilon' \sim \xi_{x_0, heta'}$

2 Accept $z' = (\theta', \varepsilon')$ with probability

$$\min\{1, \mathsf{mh}(z \to z')\}, \qquad \mathsf{mh}(z \to z') = \frac{q(\theta' \to \theta)}{q(\theta \to \theta')} \times \frac{\pi(\theta') \prod_{k=1}^{K} \kappa_{\tau_k}(\varepsilon'_k)}{\pi(\theta) \prod_{k=1}^{K} \kappa_{\tau_k}(\varepsilon_k)}$$

and otherwise stay at z.

• Because, for $q(z \rightarrow z') = q(\theta \rightarrow \theta')\xi_{x_0,\theta'}(\varepsilon')$,

 $\{q(z \rightarrow z')\mathsf{mh}(z \rightarrow z')\} \ / \ \{q(z' \rightarrow z)\mathsf{mh}(z' \rightarrow z)\} \ = \ f_{\mathsf{ABC}}(z'|x_0) / f_{\mathsf{ABC}}(z|x_0)$

APPROXIMATE BAYESIAN COMPUTATION INFLUENZA A (H3N2): SUMMARIES INFLUENZA A (H3N2): RESULTS

Summaries characterizing seasonal influenza A (H3N2) incidence

- interannual variability
- periodicity
- explosiveness
- overall magnitude

Summaries characterizing seasonal influenza A (H3N2) incidence

- interannual variability
- periodicity
- explosiveness
- overall magnitude

• interannual variability, eg: differences in annual attack rate (Δ_{γ})

Summaries characterizing influenza A (H3N2) antigenic evolution

Imperial College

London

Duke

- Number of antigenic clusters (Smith et al 2004)
- No large changes in annual attack rate at transition yrs

Summaries characterizing influenza A (H3N2) antigenic evolution

Imperial College

London

Duke

- Number of antigenic clusters (Smith et al 2004)
- No large changes in annual attack rate at transition yrs

• pw diversity between strains collected in season

Imperial College

oliver.ratmann@duke.edu

INFER 03-2011

• pw diversity between strains collected in season

oliver.ratmann@duke.edu

INFER 03-2011

• pw diversity between strains collected in season

• substantial # pilot runs to determine which summary to include based on ability to further constrain posterior Θ (Nunes Balding 2010)

Imperial College

Duke

APPROXIMATE BAYESIAN COMPUTATION INFLUENZA A (H3N2): SUMMARIES • INFLUENZA A (H3N2): RESULTS •

SIRS with sinusoidal seasonal forcing

 MCMC using epidemiological summaries fix: demography, birth/death rate, low migration

SIRS with sinusoidal seasonal forcing

- MCMC using epidemiological summaries fix: demography, birth/death rate, low migration
- \Rightarrow strong seasonal forcing to explain interannual seasonal variation

SIRS with sinusoidal seasonal forcing

 MCMC using epidemiological summaries fix: demography, birth/death rate, low migration

 \Rightarrow strong seasonal forcing to explain interannual seasonal variation

 \Rightarrow too regular and too strong sustained oscillations

Imperial College

Duke

oliver.ratmann@duke.edu

INFER 03-201

Antigenic tempo model (Koelle et al JRoySoc 2010)

k

• track status of infection with multiple phenot distinct variants

$$\vec{r} = 1, \dots, \boldsymbol{n}: \quad \frac{dS_i}{dt} = \mu(N - S_i) - \beta_t \frac{S_i}{N} \sum_{j=1}^n \sigma_{ij} I_j + \gamma(N - S_i - I_i)$$
$$\frac{dI_i}{dt} = \beta_t \frac{S_i}{N} I_i - (\mu + \nu) I_i$$

• specify only tempo with which variants emerge

$$\frac{dI_i}{dt} = \beta_t \frac{S_i}{N} I_i - (\mu + \nu) I_i + h(age_i) I_i$$

$$h(a) = \kappa / \lambda (a/\lambda)^{\kappa - 1}$$

• simulate strains of each variant

H68
 BV2
 V75
 T077
 9K79
 S87
 S87
 S88
 S87
 S89
 S82
 W08
 S95
 F02
 C04

Imperial College

Antigenic tempo model

MCMC using epidemiological and immunological summaries

fix: demography, birth/death rate, linear aging, low migration; not shown: λ , report prob

Antigenic tempo model

 MCMC using epidemiological and immunological summaries fix: demography, birth/death rate, linear aging, low migration; not shown: λ, report prob

Antigenic tempo model

 MCMC using epidemiological and immunological summaries fix: demography, birth/death rate, linear aging, low migration; not shown: λ, report prob

\Rightarrow consistent with observed summaries

Antigenic tempo model with genetic simulations

- MCMC using also genetic summaries
 - fix: HA nucl mut rate 5.7×10^{-3} /site/yr, low seasonality (mild bottleneck)

Antigenic tempo model with genetic simulations

• MCMC using also genetic summaries

fix: HA nucl mut rate 5.7×10^{-3} /site/yr, low seasonality (mild bottleneck)

 \Rightarrow in principle, model of punctuated antigenic change can reproduce limited diversity

Antigenic tempo model with genetic simulations

- MCMC using also genetic summaries of strains sampled from northern EU (1968-2009) fix: HA nucl mut rate 5.7×10^{-3} /site/yr, low seasonality (mild bottleneck)
- \Rightarrow **However**, given summer trough, Dutch population ($N \approx 15m$) too small to create diversity scale system by constant *e* to see how big the population should be

To match avg expected diversity and variation in diversity across seasons within 1.5-fold, e > 100 or eN > 1500m

Take home

Methodological:

 \bullet ABC enables the analysis of influenza dynamics with epidemiological, genetic and immunogenic data

Epidemiological:

- SIRS fails to reproduce influenza A (H3N2)'s irregular seasonality
- modeling abrupt changes in herd immunity within H3N2: excite dynamics that match H3N2's irregular seasonality in principle limit genetic diversity to observed levels
- pop size required suggests spatial model component necessary

Thank you!

and the Wellcome Trust for funding through a Sir Henry Wellcome fellowship

