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Notations, and model assumptions

Notations

N : population size
m : initial invectives
λ : transmission rate
γ : recovery rate
R0 : basic reproduction number
S(t), I (t) : numbers of susceptibles, infecteds, s(t) = S(t)

N
, i(t) = I (t)

N
:

proportion of susceptibles, infecteds

Assumptions

Homogenous mixing in closed population

Discrete observations of S and I on a �xed interval [0,T ], with sampling
interval ∆ (T = n∆)

S I R
λI/N γ
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Markov Pure Jump Model

Let X0 = (N −m,m) and Xt = (St , It).

Transitions and holding time

(S , I )
λ
N SI

−→ (S − 1, I + 1)

(S , I )
γI−→ (S , I − 1)

Exponentials holding times

Maximum Likelihood Estimators from complete observations (all jumps)

λ̂MLE = N
N −m − S(T )∫ T
0
S(t)I (t)dt

, γ̂MLE =
N − S(T )− I (T )∫ T

0
I (t)dt

Asymptotic Normality

√
N

((
λ̂MLE − λ0
γ̂MLE − γ0

))
−→
N→∞

N
(
0,

(
var(λ0) 0

0 var(γ0)

))
with var(λ0) =

λ20
(1−m

N )(1−s(T ))
,var(γ0) =

γ20
(1−m

N )(1−m
N −s(T )−i(t))
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ODE Model

Let xλ,γ(t) = (s(t), i(t)), (s(0), i(0)) = (1− m
N
, m
N

)

Classical ODE System

ds

dt
= −λsi

di

dt
= λsi − γi

Do not depend on the population size !

Observations

Discrete observations at times tk = k∆, k = 0, ..., n Xtk
= xλ,γ(tk) + εk with

εk ∼
iid
N2

(
0,

(
σ21 0
0 σ22

))
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Statistical Inference for ODE

Least Square Estimator

LSE(λ, γ) =
n∑

k=0

(Xtk
− xλ,γ(tk))2, (λ̂LSE , γ̂LSE ) = argmin

(λ,γ)∈Θ

LSE(λ, γ)

Asymptotic Normality

√
n

((
λ̂LSE − λ0
γ̂LSE − γ0

))
−→
n→∞

N
(
0,

(
σ21 0
0 σ22

))
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Di�usion approximation model

Let Xt = (st , it), B1,B2 two independent Brownians motions,
(s(0), i(0)) = (1− m

N
, m
N

)

Stochastic Di�erential Equation

dst = −λst itdt + 1√
N

√
λst itdB1(t)

dit = (λst it − γit)dt − 1√
N

√
λst itdB1(t) + 1√

N

√
γitdB2(t)

Remarks

Classic Approximation : studies asymptotic properties of Pure Jump
process (Ethier and Kurz) or Van Kampen approximation of Master
Equation

MLE untractable when discretely observed

Multidimensionnal di�usion processes

Small noise ∼ 1√
N

in large population

Parameters (λ, γ) both in drift and di�usion coe�cient
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Exemple of trajectory : proportion of infecteds over time
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Theoretical model and existing results

Let X εt be the unique strong solution of the SDE

dX εt = b(α,X ε
t )dt + εσ(β,X εt )dBt , X0 = x0 ∈ Rp

We observe X εt at times tk = k∆ on a �xed interval [0,T ] (T = n∆)

σ(β, x) ∈ Mp(R), b(α, x) ∈ Rp,Σ(β, x) = tσ(β, x)σ(β, x) ∈ GLp(R)

Existing estimation result for high-frequency data (Gloter and Sorensen (2009))

Under the condition ∃ρ > 0, 1
εnρ

bounded
For a class of contrast processes, associated Minimum Contrast Estimators
(MCEs) are consistent and :(

ε−1(α̂ε,n − α0)√
n(β̂ε,n − β0)

)
−→

n→∞,ε→0
N

(
0,

(
I−1b (α0, β0) 0

0 I−1σ (α0, β0)

))
I−1b (α0, β0) being optimal
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Main Idea of our inference approach (Generalization of Genon-Catalot(90))

Use of Taylor's Stochastic Expansion formula (Azencott (82))

X
ε
t = xα(t) + εgα,β(t) + ε2Rεα,β(t)

where xα(t) is the deterministic solution dxα(t)
dt

= b(α, xα(t)), x(0) = x0 ∈ Rp

dgα,β(t) =
∂b

∂x
(α, xα(t))gα,β(t)dt + σ(β, xα(t))dBt , gα,β(0) = 0Rp

where Rεα,β satis�es :
sup

t∈[0,T ]

{‖εRεα,β(t)‖} −→
P,ε→0

0

Let Φα be the invertible matrix solution of
dΦα
dt

(t, t0) = ∂b
∂x

(α, xα(t))Φα(t, t0), Φα(t0, t0) = Ip

Properties of gα,β

gα,β is a gaussian process (and we can obtain is analytic expression)

gα,β(tk) = Φα(tk , tk−1)gα,β(tk−1) + Zα,βk

Zα,βk independent gaussian variables
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Contrast process derived from Zα,βk

U∆,ε(α, β)) =
n∑

k=1

log
[
det
(

Σ(β,Xtk−1
)
)]

+ 1
ε2∆

n∑
k=1

t
Nk(α)Σ−1(β,Xtk−1

)Nk(α)

with Nk(α) = Xtk
− xα(tk)− Φα(tk , tk−1)

[
Xtk−1

− xα(tk−1)
]
.

(α̂ε,∆, β̂ε,∆) = argmin
(α,β)∈Θ

U∆,ε (α, β)

Results for high frequency data (∆→ 0)

Under the condition ε2n −→
ε,∆→0

0

(
ε−1( ˆαε,∆ − α0)√
n( ˆβε,∆ − β0)

)
−→

n→∞,ε→0
N

(
0,

(
I−1b (α0, β0) 0

0 I−1σ (α0, β0)

))
.
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Results for low frequency data (∆ and n being �xed)

n �xed : no asymptotic results for β̂ε,∆

β known

We only consider α̂ε,∆(β0) = argmin
α∈Θa

U∆,ε (α, β0)

and then ε−1 (α̂ε,∆(β0)− α0) −→
ε→0
N (0, I−1∆ (α0, β0))

with I∆(α0, β0) −→
∆→0

Ib(α0, β0)

β unknown

We modify the contrast process in a �conditional least square� contrast :

Uε
(
α, (Xtk

)k∈{1,..,n}
)

=
1

ε2

n∑
k=1

t
Nk(X , α)Nk(X , α) (1)

then α̂ε = argmin
α∈Θa

Uε (α)

satis�es :ε−1 (α̂ε − α0) −→
ε→0
N (0, Ĩ−1∆ (α0, β0))
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Return on the di�usion model

Stochastic Di�erential Equation

dst = −λst itdt + 1√
N

√
λst itdB1(t),

dit = (λst it − γit)dt − 1√
N

√
λst itdB1(t) + 1√

N

√
γitdB2(t)

Simulations

N ∈ [1000; 10000], ∆ = 1 (1 observation/ day)

ε = 1√
N
<< 1

∆ is �xed

α = (λ, γ) = β ⇒ Special case : Results for known β hold if we replace
each β occurence with α.
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Simulation study (using Matlab)

Algorithm

1 Exact simulation of an epidemic with Markov Pure Jump process (Gillespie
algorithm with choice of N,m, λ, γ)

2 Calculation of λ̂MLE , γ̂MLE (observation of the whole path of the process)

3 Observations of discrete data on a �xed interval (1 observation/day) up to
extinction time

4 Estimation phase for LSE , Gloter and Sorensen contrast, our method for
unknown β (Conditionnaly least square contrast), and for α = β, using
minimization function of Matlab (fminsearch)

Presented results

We repeat 100 times this algorithm to build empiric con�dence intervals and
avoid early extinction events

Remark

Step 4 : (Analytic power) Short time of estimation
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Simulation results (R0 = 2)

For N = 1000, m = 10, λ = 2/3, γ = 1/3, 1 data/day ⇒ 40 observations

Method λ̂ CI95 empiric CI95 theoretical

MLE(all data) 0.657 [0.645; 0.669] [0.643; 0.671]
LSE 0.643 [0.618; 0.668] [0.633; 0.653]

Gloter Sorensen(α̂ε,n) 0.622 [0.611; 0.634] [0.622; 0.622]
α̂ε,∆(α = β) 0.656 [0.651; 0.660] [0.656; 0.657]
α̂ε(β unknown) 0.645 [0.642; 0.649] [0.644; 0.646]

Method γ̂ CI95empiric CI95theoretical

MLE(all data) 0.336 [0.330; 0.342] [0.330; 0.342]
LSE 0.329 [0.314; 0.343] [0.321; 0.337]

Gloter Sorensen(α̂ε,n) 0.386 [0.367; 0.404] [0.386; 0.386]
α̂ε,∆(α = β) 0.336 [0.333; 0.338] [0.335; 0.336]
α̂ε(β unknown) 0.331 [0.330; 0.333] [0.330; 0.331]

Global remarks

β̂ε,n and β̂ε,∆ do not provide satisfying results (not shown)

Red : True value of parameters not in the CI

Green : best point estimation
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Simulations results (R0 = 1.2)

For N = 10000, m = 100, λ = 0.4, γ = 1/3,
1 observation/day ⇒ 115 observations

Method λ̂ empiric CI95 γ̂ empiric CI95
MLE(all data) 0.397 [0.395; 0.399] 0.337 [0.336; 0.338]

LSE 0.387 [0.377; 0.398] 0.328 [0.319; 0.337]
Gloter Sorensen(α̂ε,n) 0.410 [0.409; 0.411] 0.330 [0.330; 0.331]

α̂ε,∆(α = β) 0.396 [0.396; 0.397] 0.329 [0.329; 0.330]
α̂ε(β unknown) 0.396 [0.396; 0.397] 0.336 [0.336; 0.337]

For N = 1000, m = 10, λ = 0.4, γ = 1/3,
1 observation/day ⇒ 65 observations

Method λ̂ empiric CI95 γ̂ empiric CI95
MLE(all data) 0.387 [0.381; 0.393] 0.362 [0.346; 0.377]

LSE 0.402 [0.364; 0.440] 0.353 [0.322; 0.384]
Gloter Sorensen(α̂ε,n) 0.382 [0.381; 0.383] 0.336 [0.334; 0.338]

α̂ε,∆(α = β) 0.396 [0.394; 0.397] 0.357 [0.355; 0.359]
α̂ε(β unknown) 0.392 [0.385; 0.399] 0.363 [0.359; 0.367]
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Exemple of trajectory for R0=1.2 and N=1000
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Limits and perspectives

Limits

1 Limits of the SIR model

2 The total number of infecteds is assumed observed (instead of incidences,
more realistic assumption)

3 The two coordinates (st , it) are assumed observed (which is not often the
case)

Next Directions

1 Results hold for any autonomous system (SEIR,...)

2 Modifying the di�usion model (observe (ut , vt) with ut = st it , vt = it) and
observe integrated di�usion

3 Work to do
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Thank you !
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