
 
Generation times in epidemic models 
 
Gianpaolo Scalia Tomba 
Dept Mathematics, Univ of Rome "Tor Vergata", Italy 
 
in collaboration with 
 
Åke Svensson, Dept Mathematics, Stockholm University, Sweden 
Tommi Asikainen and Johan Giesecke, ECDC, Sweden 
 
 
 
InFER 2011, Warwick 28/3 - 1/4 2011 



 
In the infectious disease setting, generation time refers to the length of the 
time interval between one individual's time of infection and the time when 
this individual infects another individual, in analogy with the use of the term 
in demography. 
 
Some early users of the concept are Hope-Simpson and Bailey, in the '50s 
and '60s, in relation to diseases like measles. In measles, the latency period is 
long and the infectious period short and, in localized outbreaks, it is usually 
possible to clearly distinguish the first two or three "generations" of infections. 
 
Recently, the concept of generation time has been used in formulae relating 
initial spread of an infection to its reproduction number, following the classical 
demographic definitions [see eg Keyfitz & Caswell, 2005] 



 
l(a) := P(infectious period is longer than a) 
m(a) := intensity of infectious contact at infection age a 
 
=> Malthusian parameter, as the unique value of r ≥ 0 satisfying 

! 

1= e"ra l(a)m(a)da
0

#

$
 

 
We also have R_0 = expected total offspring of an individual = 

! 

l(a)m(a)da
0

"

#
 



We then define the "cohort generation time distribution" as 
 

! 

g(a) =
l(a)m(a)
l(u)m(u)du"  

 
and the "average cohort generation time" as the expected value in 
this distribution, i.e. 
 

! 

Tc = ag(a)da
0

"

#
 

 
All these relations can e.g  be expressed in terms of the Laplace transform 
of the density g. By linearization in the origin we can for instance approximate: 
 
R_0 ≈ 1 + rTC 



Problem: 
in a simulation of a simple stochastic epidemic, with generation times measured 
"backwards", from each infection to the time of infection of the infector, 
the following picture of the time evolution of average GT came out: 
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If the generation time "changes" during the epidemic, what does the theoretical 
relationship between r and R_0 refer to? 



 
Findings... 
 
There is a mixture of problems of definition, effects of sampling schemes and 
effects of the epidemic dynamics... 
 
- "hidden statistical implication of the demographic definitions" 
- difference between "forward" and "backward" observation 
- how to compute averages in the forward case 
- epidemic specific dynamics in the forward and backwards cases 



Demographic tradition counts daughters to mothers and e.g. evaluates the 
age of the mother at each time a daughter is born -> average age at childbearing 
in the cohort generation time distribution. 
However, in statistical terms, this amounts to "size-biased sampling" of mothers, 
since each mother will be present in the sample with a multiplicity equal to her 
number of daughters. 
Example: 
 
suppose we follow two individuals (A and B, say) from their respective moments 
of infection and observe (IP= infectious period, GT = generation time): 
- A:  IP=4 and secondary cases at times 1,2,3 -> av. GT = 2 
- B: IP=8 and secondary cases at times in 1,2,3,4,5,6,7 -> av. GT = 4 
Should we calculate the general average GT as 3 (infector based) or 
34/10 (infectee based)? 



At this point, it is convenient to define a mathematical model for the infection 
process, in which to carry out the analysis of properties of generation times and 
observations. The "simplest" model is the so called SIR model: 
 
Population of fixed size N at time t=0, 3 classes S(t)+I(t)+R(t) = N, S(0)=N-1 
& I(0)=1. 
 
The "mass action" principle = homogeneous mixing -> 
the number of new infections in a time interval [t,t+dt] is expected to be 
 βS(t)I(t) dt 
 
Usually leads to ODE system (µ = 1/average length of infectious period IP) 
 
S' = -βSI 
I' = βSI - µI 
R' = µI 



Another way of viewing the situation is that each person has a given average 
number of contacts/time unit and that only those of an I person with an S 
lead to infections with a given probability. 
Usually leads to Markov process description 
 
(S,I,R) -> (S-1,I+1,R) with intensity αIS/N 
(S,I,R) -> (S,I-1,R+1) with intensity µI 
 
In an average sense, β = α/N, but only if N remains constant and R people remain 
in the contact population... 



Summary of behaviour 
 
-Threshold R = α/µ = expected number of secondary cases when all contacts 
are susceptible. Behaviour of spread radically different in large populations 
below or above R = 1. 
 
-Initial exponential growth with "speed" α-µ (ODE->linearization, 
Markov process -> branching process approximation incl Pr(extinction) 
although supercritical) 
 
-If epidemic, stochastic trajectory close to deterministic trajectory = 
unimodal infectives curve, slightly quicker at start than at end... 
 
- Final size: if epidemic, the proportion τ satisfying τ = 1 - exp(-R0τ), 
will be infected. τ is less than 1... 



The most useful of these results:  the Herd Immunity effect 
 
since R ≤ 1 leads to early extinction (of disease !), immunization of proportion 
1-1/R of population is sufficient to avoid epidemics... 
 
Current research on models is focused on heterogeneity in contacts, e.g. by 
introducing "households" or "networks" in the contact specifications... 



Small interlude about Poisson processes and calculations with Exp... 
 
An I individual is infective during an infectious period T with Exp(µ) distribution. 
During this period, contacts are made with constant intensity α and these lead 
to infection with a certain probability (S(t)/N) dependent on time (thinning). 
Then: the longer T, the larger the number of infected & viceversa... 
Furthermore, the time points of infection in the interval are the generation 
times related to the considered infective individual... 
If the thinning probability σ is essentially constant in the interval, the events will 
be scattered as iid uniform on [0,T]. 
-> average position of an event E(T)/2 (actually slightly more, because of need 
to condition on "at least one event" -> E(T |#events≥1) = 1/µ + 1/(µ+ασ)) 
 



One can thus equally reasonably define 
 
- "natural history based generation time" 
(average of infector's ages at secondary cases) 
=> average GT is slightly larger than half the average IP 
 
- "infectee based generation time" 
(the demographic definition used above) 
=> average GT equals the average IP (in the Markov case...) 
 
However, what we define to be a "generation time" doesn't really matter. 
What matters, from a statistical point of view, is that what we observe 
corresponds to what we assume that we observe... 



It turns out that there is a difference between what can be called "forward" 
observation (following an infected person and registering his secondary cases, 
if any) and "backward" observation (starting from an infected person and 
finding the time of infection of his infector). 
 
If a complete epidemic is simulated and all infectious contacts and corresponding 
times are recorded, various observation schemes can be reconstructed... 
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Generation times (dots) plotted as single points at time of infection of infector. 

Expected behaviour: size biased sampling -> average ≈ 1 (same as average IP...). based on 7888 infectees. 



This picture gives approximately the result expected from the demographic theory 
(average 1 with used parameters). 
It should be noted that each infector participates in the data set as many times as 
he has produced secondary cases. If the average generation time is first computed 
"within" infector and then plotted, size-bias is avoided and a lower average level is 
obtained (average about 2/3). 



However, if we observe GTs "backwards", from each infectee back to the 
infector, we get a completely different behaviour (first graph shown), we get 
to see the "infection age distribution of infectors", at least in models that use 
equal infection rates for all potential infectors... 
If the number of potential infectors is growing exponentially, as e.g. in the first 
part of an epidemic, there will be an "overrepresentation" of recently infected 
individuals => shorter average GT than "expected". 
As the epidemic proceeds, the average "infection age" increases and so do 
the average generation times (average from 1/2 to about 2...). 
 
From a statistical point of view, it is interesting to note that the "set of 
generation times" is the same in the three different calculations above... 



The population dynamics of the epidemic play a role... 
 
In the backwards situation, the exponential growth rate of new infectives 
decreases all the time, due to the progressive depletion of susceptibles => 
average GT becomes longer and longer... 
 
In forward measurements, independently of size biased sampling or not, GTs 
will, on average, become shorter as the rate of depletion of susceptibles 
becomes large (maximum depletion rate slightly before peak of infectives), 
because the average time of infection during an infector's IP has uniform 
distribution if the infection rate is constant, otherwise inherits the shape of 
the changing infection rate: decreasing infection rate => more probability 
of secondary cases in beginning of IP compared to end... (assuming a model 
with constant meeting rate times prob of meeting a susceptible...). 



Conclusions 
 
The presented results, although model dependent, probably represent 
generic problems related to the analysis of generation times. 
Just like R_0, the generation time distribution is a "constructed" parameter, 
not a descriptor of disease natural history, and therefore not necessarily 
constant in all circumstances. 
 
Its original appeal and use is based on clearly identifiable chains of "parents" 
and "offspring". This is not so clear in, say, an influenza epidemic... 



One could try to "use" the described mechanisms for statistical purposes. 
 
For instance, one often described use of the relation between generation 
times and initial exponential growth rate is the estimation of R_0 from the 
first phase of an epidemic. 
 
In the simple Markov SIR model, where R_0 = β/μ, 
the average generation time T is expected to be 1/μ and the growth rate 
r =β-μ, which leads to the formula R_0 ≈ 1 + rT. 
 
However, if backward observation = infector tracing is performed in the initial 
phase of an epidemic, the expected average generation time T = 1/β and 
the formula should now be R_0 ≈ 1/(1 - rT). 



In the discussion about the statistics of generation times, one should not forget 
that the moments of infection are generally not observable and that only 
surrogates, e.g serial times = time interval between symptoms, may be observable. 
Also, the question about "who infected whom" is not always easy to answer... 
 
 
Since most models assume infectious periods and contact rates as 
basic and constant ingredients, it is probably safer to seek to estimate these 
quantities, after proper consideration of the sampling mechanism of 
observations, than to think in terms of "generation times". 
 
 


