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Motivation: German routine surveillance of Campylobacter

I Leading cause of enteritis illnesses in industrial countries
(Robert Koch-Institut, 2005)

I Absolute humidity has been proven to influence the incidence
I Typical characteristics of surveillance time series

Process of Campylobacter infections in Germany
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Aim of Surveillance

Public health view: Early-warning system to detect health risks, such as
outbreaks of infectious diseases

Statistical view: Real-time online monitoring in routine surveillance
data to detect aberrations for public health events

Process of Campylobacter infections in Germany
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Outline

Theoretical Framework
Statistical Foundation: Heisterkamp et al. (2006)
Bayesian Version: Definition of Prior
Threshold Calculation: Predictive Posterior

Implementation

Simulation & Application
Simulation Studies
Campylobacter data

Conclusion
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Statistical Foundation
Definition of Prior
Predictive Posterior

Statistical Foundation: Heisterkamp et al. (2006)

I Generalised additive quasi-Possion model (GAM) of the
number of cases

yt |µt
iid∼ Po(µt), t = 1, . . . ,T

log(µt) = ηt = β0t + x′tβx , t = 1, . . . ,T

with overdispersion Var(yt |µt) = φ · E(yt |µt) = φ · µt

I Time varying intercept as smoothed time effect

β0t = β0(t) = gm(t) + ut , ut
iid∼ N(0, λ−1)

stationary model (IID): giid(t) = β0

neighbour model (RW1): grw1(t) = β0,t−1

linear model (RW2): grw2(t) = 2β0,t−1 − β0,t−2
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Statistical Foundation
Definition of Prior
Predictive Posterior

Heisterkamp et al. (2006): Advantages & Disadvantages

I Opposite to Farrington et al. (1996) all available data is used
for modelling

I Likelihood inference for the GAM
I Threshold calculation using a plug-in prediction interval

⇒ Uncertainty by parameter estimation is ignored
⇒ Normal distribution assumption for MLE is questionable

I Alarm is triggered if observed yt is exceeding treshold

I Enhanced computational efficiency by sequential model
update procedure
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Statistical Foundation
Definition of Prior
Predictive Posterior

Our Work: Bayesian Hierachical Model Algorithm

I Improvement of Heisterkamp et al. (2006) approach by using
Bayesian inference for GAM: Deduce results only from
posterior distribution

p(β|yt) ∝ p(yt |β)p(β).

I Time varying intercept as random walk prior p(β)

I Regression modelling, i.e. covariates such as absolute humidity
can be taken into account

I Threshold calculation using predictive posterior
p(yT |y1, . . . , yT−1) as in Höhle (2007) which

I includes directly uncertainty due to prediction and estimation
I does not assume any further distribution properties
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Statistical Foundation
Definition of Prior
Predictive Posterior

Definition of Prior

Time varying intercept: β0t ∝ N(gm(t), λ−1) random walk
Covariate paramters: β′x ∝ N(0,B−1) non-informative

I.e. the prior for β = (β01, . . . , β0T ,β
′
x)′ given λ is

p(β) ∝ λ
rk(Am)

2 exp

(
−λ

2
β′Amβ

)
,

where Am =

(
D′mDm 0

0 B

)
, with difference matrix Dm.

E.g. for 2nd order random walk is Drw2 =

 1 −2 1
1 −2 1

. . .
. . .

.
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Statistical Foundation
Definition of Prior
Predictive Posterior

Predictive Posterior

The predictive posterior is the pdf for a new observation yT at
current time point T given the past

f (yT |y1, . . . , yT−1) =

∫
f (yT , β0T |y1, . . . , yT−1) dβ0T

=

∫
f (yT |β0T ) p(β0T |y1, . . . , yT−1) dβ0T .

Alarm threshold ξ1−α is defined as 100% · (1− α)-quantile of the
predictive posterior.
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Implementation using INLA

I Bayesian inference is usually very computer-intensive using
MCMC methods

I Modern, efficient, and accurate GAM fitting by using
Integrated Nested Laplace Approximation (INLA, Rue et al.,
2009)
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Implementation in R

I The realization with R inla is simple, but partially unstable

I Calculation of predictive posterior is done by Monte Carlo
integration

I Implementation available as algo.hts() into R package
surveillance (Höhle, 2007)

> algo.hts(disProgObj,
+ control=list(range=NULL, co.arg=NULL,
+ prior=’iid’, family=’poisson’,
+ alpha=0.05, mc.betaT1=100, mc.yT1=10))
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Simulation Studies
Campylobacter data

Simulation Studies

Bayesian hierarchical model algorithm was compared with RKI
method (inspired by Stroup et al., 1993), simple Bayes algorithm
(Höhle, 2007), Farrington algorithm (Farrington et al., 1996)
regarding

I Percentage of false alarm

I Realistic simulation data of different scenarios regarding trend,
seasonality and distribution parameters for outbreak
(Hutwagner et al., 2005)

I Computing time
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Simulation Studies
Campylobacter data

Results for Bayesian hierarchical model algorithm

I 3.5-3.9% false alarms ⇒ not overly conservative

I 1-2 sec. per time point ⇒ slow, but still reasonable computing
time

I approach is stable and well working in all scenarios, e.g. overall
outbreak detection rates with trend and medium seasonality

Bayesian Hierarchical Model Farrington Bayes RKI

Poisson neg. Binomial (4,0,2) (4,0,2) (4,0,2)
iid rw1 rw2 iid rw1 rw2 rew

spec 0.27 0.12 0.02 0.60 0.10 0.10 0.64 0.89 1.00 0.71
sens 0.76 0.94 0.99 0.49 0.95 0.95 0.83 0.56 0.01 0.75
mlag 5.86 12.26 18.46 2.80 12.50 12.50 4.14 0.88 0.00 2.80

⇒ our method could not be shown to be superior
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Simulation Studies
Campylobacter data

Application to Campylobacter data including covariates

> control <- list(range=which(date>=as.Date(’2007-01-01’)),

+ co.arg=cbind(l1.hum,l2.hum,l3.hum,l4.hum,l5.hum),

+ prior=’rw1’, family=’poisson’)

> hts.hum <- algo.hts(cam.disProg, control=control))

Analysis of Campylobacter using hts(prior=rw1)
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Conclusion and Discussion

I Consideration of all available knowledge
I All past observations
I Model includes covariates
I Time series structure as prior knowledge

I Seamless inference
I Simultaneous inclusion of estimate and prediction uncertainty
I No further assumptions for calculation of threshold needed
I Probabilistic decision making possible

I Stage of developement
I Instabilities in numerical execution by R inla
I Efficient update procedure needed
I Superior performance compared to established methods could

not be shown

I Potential for improvements and further developements
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