
Luigi Marangi, University of Pisa, Italy. 
Emilio Zagheni, MPDIR, Rostock, Germany. 
Emanuele Del Fava, University of Hasselt, Belgium. 
Ziv Shkedy, University of Hasselt, Belgium. 
Gianpaolo Scalia Tomba, UniRoma2, Italy 
Piero Manfredi, University of Pisa, Italy. 

Statistical inference for models of close-contact 
infection transmission: An application to varicella in Italy 

InFER2011  
(Inference For Epidemic-related 

Risk)  
 

Warwick,  
28th March-1st April 2011 



Outline 
  Estimating transmission 

  The problem 
  Traditional approaches 
  Approaches based on social contact data 

  Inference on transmission parameters 
  A sample of problems: VZV in Italy as case-study. 
  Non-parametric bootstrap inference on transmission 

parameters. 
  

  Discussion 



Dynamic infection transmission models 
(infections imparting permanent immunity) 

l(a,t) = Force (“hazard rate”) of infection, age–specific 
g= force of recovery D=1/g= expected duration infective 
phase (7 days for VZV) 

S 
Susceptible 

R 
Immune 
(perman) 

l(a,t)  

Disregarding the short infective phase (7days) 
the FOI “separates” two long phases of host 
life:  
  the initial susceptible phase 
  the final immunity phase. 
 
Why not to consider an (simpler) SR model ? 
(boiling down in a standard survival analysis) 

S 
Susceptibile 

I 
Infectious 

(& infective) 

R 
Immune 

(permanently) 

l(a,t)  

g	



SIR model 

Because evaluation of fundamental 
parameters (R0) & policy applications (eg 
simulating impact of vaccination policies) 
require using the whole model ! 



Model equations at equilibrium  (eg pre-vaccination period) 
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S(a) = Susc fraction aged a  
I(a) = Infective fraction aged a  
R(a)= Immune fraction at age a 

Cij= mean number of contacts 
p.u.t between individuals i and j qij=transmission coefficient  

per single social contact 
(age-specific) 

2m2 parameters to be 
estimated (m=number 
age groups) !  



Traditional approach to 
estimating transmission 

o  Indirect approach via 
estimating the FOI from 
seroprevalence data. 

o  Use hypotheses (“WAIFW” 
matrices) to reduce number of 
unknown parameters from m2 to 
m. 

o  Find transmission rates by 
solving the (linear) system of 
equations: 

 
o  No statistics ! 
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Social contact data 

  POLYMOD project (FP6). Direct collection 
of contact data by contact survey in 8 
European countries. (Mossong et al. 
2008). 

  Definition of “at risk contact”: 
  “Face to face” conversation.  
  Physical (“skin to skin”) contact. 

  Diary-based survey. Participants 
reported in a diary all different persons 
with whom an “at risk contact” occurred 
in a randomly assigned day. Also 
reported: 
  age/sex/location of the contact 
  Type (physical/non physical) 
  Duration, etc.  

  Also possible to use artificially generated 
contact data (Del Valle et al., 2007; 
Iozzi et al., 2010). 

Simpson 
House 





The “social contact” approach 
to estimating transmission 

  Choice of one (or more) contact matrix 

  “Social contact hypothesis”: reduction of q 
parameters space by using 1 (constant) 
“transmission” parameter q for each chosen contact 
matrix 



The statistical model: nonlinear regression model 
linking serological likelihood & contact data 
  Individual immune 

status 
  Serological likelihood:  

  k age groups (k=1…K>m), 
nk observations 

  yk  =n. immune individuals 
  πk =success probability 

(expected seroprev). It 
depends on unknown 
(q1,..,qs.) & known pars 
(Cij) 

  (the link) The expected 
seroprevalence computed 
by solving the 
mathematical model over 
serological age groups 
taking contacts as known 
parameters. 
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The estimation problem 
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Subject to: 
 
 The chosen contact 
matrix & age grouping 

 qi>0 (positivity) 

 R0>1 

 FOI equilibrium 
(discretised integral) 
equation 
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(pre-condition to have 
an endemic state and 
therefore to “observe a 
seroprofile”!) 
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Applications: estimating varicella 
transmission in Italy 

  Etiological agent: “VZ” virus (herpes virus 3 family (HHV-3). 
  A childhood infectious disease in industrialised countries. 
  Transmission via close person-to-person contacts with 

infective subjects. 
  Duration infectious phase: about 7 days. 
  Permanent immunity after recovery. 
  However the virus remains latent in the dorsal ganglia, and can 

reactivate at later ages when immunocompetency declines, 
causing herpes zoster (“shingles”). 



Experiments 
  Estimating simple 1-q models also considered in similar 

studies (Melegaro et al., submitted; Goeyvaerts et al., 2010) 
  M1: “all reported contacts” 
  M2: “physical contacts only” 
  M3: “physical contacts of prolonged duration (>15 min)” 

  Bootstrap inference  
  Non-parametric (=re-sampling individuals) 

  serological data 
  contact data 

  “design consistent”  
  Evaluating relative contributions of the two sources of 

uncertainty 
   separate re-sampling of each source  
   joint re-sampling 

  performances of different types of bootstrap CI (e.g., 
looking at “real” vs. “nominal” coverage). 



Role of age grouping: 5-years vs school 

Age grouping 5-years School 0-2, 3-5, 6-10, 11-13, 14-18,
18-25,  etc

q R0 Deviance AIC q R0 Deviance AIC
Model 1 (1-q) 0,0355 5,97 30,25 1903,10 0,037 6,15 49,38 1922,20
All reported contacts (0,0339; 0,379) (0,034;0,0390)

Model 2  (1-q) 0,049 4,66 32,57 1905,40 0,0510 4,91 60,11 1933,00
Physical contacts only (0,0465;0,0515) (0,0484;0,0544)

Model 3 (1-q) 0,0527 4,18 35,97 1908,80 0,0553 4,49 65,13 1938,00
Physical contacts (0,0496; 0,0565) (0,0523;0,0615)
>15 min



Features of the 
“best” model 
(Model 1 with 
5-years age 

groups) 



M1 Model, 1-q, “all registered contacts” 
Bootstrapping (“design-consistent”) serodata only 

SE(q)=6.7*10^(-4) 



M1 Model, 1-q, “all registered contacts” 
Bootstrapping (“design-consistent”) contacts data only 

SE(q)=4.4*10^(-3) 



Contacts appear to be the most important 
source of uncertainty.  
 
The comparison is naive however, given that the two 
sources concur with largely different numbers of 
observations: number of serological samples (2446) three 
times as higher as the number of contact data (845). 
 
 
Keeping sample size under control: 

Keeping fixed the 
serological proportions per 
age group, we simulated a 
serological sample of 845 
individuals. 



M1 Model, 1-q, “all registered contacts” 
Bootstrapping sero-data only, but size of serological 

sample equal to contact sample 
(other things – e.g., seroprevalence - being equal) 

The magnitudes of the “ideal” 
SE from each single source 
now are: 
 much closer; 
 possibly mirroring the true 
“intrinsic” relative magnitude 
of uncertainty in the two 
sources. 

SE(q)=3.6*10^(-3) 



M1 Model, 1-q, “all registered contacts” 
Joint bootstrap (“design consistent”) of both sources  

(1 replicate = 1 resampling from both sources) 

SE= 4.5*10^(-3) 
CV= 0.1403 
BIAS= -1.1*10^(-4) 
BIAS/SE= -0.0258 



Which bootstrap CI performs better  
for estimating transmission? 
(a frequentist experiment:  

real vs. nominal 95% coverage) 

IC q  
(Nominal: 1-α=0.95) 

Normal 0.898 
Percentile 0.937 

BCa (Efron, 1987) 0.959 

Keeping fixed q, we resampled 
serological and contact data many 
times. In this way, we got a series of 
bootstrap CI’s. Then, we computed 
the proportion of CI’s containing the 
“true” value of q. 



Discussion: bootstrap inference & transmission pars 

•  Design-consistent bootstrapping per age group provides 
narrower CI’s with respect to naive resampling 
(disregarding from the age structure), for any level of 
nominal coverage. 

•  Contacts appear to be the most important source of 
uncertainty (under standard sample size). 

•  The bootstrap normal CI shows a real coverage too low, 
while the BCa CI performs well, as expected.  



Future research 

•  Why is a certain contact matrix working better than others? 
Deepening our understanding of the internal structure of a 
contact matrix, beyond assortativeness. 

•  Alternative approaches to bootstraap, e.g., MCMC 
approaches, bayesian melding (Alkema et al., 2007). 
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