Multicore adaptive MCMC for multimodal distributions

Emilia Pompe1, joint work with Chris Holmes1 and Krzysztof Łatuszyński2

1University of Oxford, Department of Statistics \hspace{1em} 2University of Warwick, Department of Statistics

Description of the algorithm

1. Let \(\pi \) be the target distribution on \(X = \mathbb{R}^d \) and let \(X = \{x_1, \ldots, x_N\} \) be the set of its modes. We define a new target distribution \(\tilde{\pi} \) on the augmented state space \(X \times \mathcal{I} \)

\[\tilde{\pi}(x, i) = \pi(x) \prod_{j \in \mathcal{I}} w_j Q_j(p_j, \Sigma_j)(x) \]

where \(w_j \) are weights and \(Q_j(p_j, \Sigma_j) \) is an elliptical distribution centred at \(p_j \) with the covariance matrix \(\Sigma_j \), e.g. \(Q_j \) is the multivariate normal or multivariate \(t \) with the marginal distribution of \(i \) with respect to the \(X \)-coordinate.

2. An optimisation algorithm running in the background finds the locations of the modes \(x_1, \ldots, x_N \) and passes them to the main MCMC sampler.

3. The algorithm learns its parameters as it runs; it updates the weights \(w_j \) and the matrices \(\Sigma_j \) so that the mixture \(\sum_{i \in X} \pi_i Q_i(p_i, \Sigma_i)(x) \) provides a good estimate of \(\pi(x) \).

What properties would an ideal MCMC algorithm for multimodal distributions have?

Making use of multicore implementation.

- The main MCMC sampler is supported by an optimisation algorithm running on multiple cores from different starting points, which enables efficient exploration of the state space.
- After a new mode has been identified, a standard Adaptive MCMC procedure is started from the mode.
- The moves between modes take place via jumps, but it is unlikely to escape to another mode using only local steps.

Provable ergodicity under mild regularity conditions.

- The target distribution keeps being modified as the algorithm runs, so what would ergodicity mean? We consider ergodicity on sets \(B \times X \) for \(B \subseteq X \).
- The algorithm falls into the category of Auxiliary Variable Adaptive MCMC algorithms, for which analogous ergodic results to those of [Roberts and Rosenthal, 2007] can be proved.

Theorem 1. Assume that the mode-finding algorithm stops adding new modes at a finite time with probability one. Then under:
- *standard curvature conditions* for \(\pi \) and proposal distributions for local moves (see [Jarner and Hansen, 2000]),
- appropriate tail conditions for \(Q_i \) and proposal distributions for jumps,

the multicore adaptive MCMC algorithm for multimodal distributions is ergodic.

Learning the local covariance structure around each mode on the fly.

- The covariance matrices for each mode are estimated based on samples obtained around this mode so far. This allows the use of optimal proposal distributions for local moves.
- The auxiliary variable \(i \) indicates which element of the mixture the sample was drawn from. This enables the estimation of the local covariance structure, for each mode separately.
- The moves between modes take place via jumps, but it is unlikely to escape to another mode using only local steps. Suppose in a local move around mode \(i \) at point \(y \) belonging to region associated with mode \(k \), it is proposed:

\[
\text{acceptance probability} = \min \left\{ \frac{\tilde{\pi}(y)}{\tilde{\pi}(x)}, \min_{s \in [0, 1]} \left(\frac{\pi_i Q_j(p_j, \Sigma_j)(y)}{\pi_i Q_j(p_j, \Sigma_j)(x)} \right)(1 + s) \right\}
\]

The ratio \(\frac{\pi_i Q_j(p_j, \Sigma_j)(y)}{\pi_i Q_j(p_j, \Sigma_j)(x)} \) is typically tiny, so the probability of accepting such a move is very small.

Good mixing in practice on challenging examples.

We consider a modified version of the example used in [Woodard et al., 2009]

\[
\text{target distribution} = 0.5 \mathcal{N} \left(-1, \sigma_1^2 \right) + 0.5 \mathcal{N} \left(1, \sigma_2^2 \right),
\]

where \(\mathcal{N} \) is the standard normal distribution and \(\sigma_1^2, \sigma_2^2 \) in this case are \(1, 2 \). Our algorithm (MultiMCMC) outperformed Parallel Tempering (PT) on this example.

References