(Brief) Background / Context / Motivation

Often have complicated, high-dimensional density functions \(\pi : \mathcal{X} \to [0, \infty) \), for some \(\mathcal{X} \subseteq \mathbb{R}^d \) with \(d \) large.

(e.g. Bayesian posterior distribution)

Want to compute probabilities like:

\[
\pi(A) := \int_A \pi(x) \, dx ,
\]

and/or expected values of functionals like:

\[
\mathbb{E}_\pi(h) := \int_{\mathcal{X}} h(x) \pi(x) \, dx .
\]

Or, if \(\pi \) is unnormalised:

\[
\mathbb{E}_\pi(h) := \int_{\mathcal{X}} h(x) \pi(x) \, dx \bigg/ \int_{\mathcal{X}} \pi(x) \, dx .
\]

Calculus? Numerical integration?

Impossible, if \(\pi \) is something like . . .
Typical \(\pi \): Variance Components Model

State space \(\mathcal{X} = (0, \infty)^2 \times \mathbb{R}^{K+1} \), so \(d = K + 3 \), with

\[
\pi(V, W, \mu, \theta_1, \ldots, \theta_K) = C e^{-b_1/V} V^{-a_1-1} e^{-b_2/W} W^{-a_2-1} \\
\times e^{-(\mu-a_3)^2/2b_3} V^{-K/2} W^{-1/2 \sum_{i=1}^{K} J_i} \\
\times \exp \left[- \sum_{i=1}^{K} (\theta_i - \mu)^2 / 2V - \sum_{i=1}^{K} \sum_{j=1}^{J_i} (Y_{ij} - \theta_i)^2 / 2W \right],
\]

where \(a_i \) and \(b_i \) are fixed constants (prior), and \(\{Y_{ij}\} \) are the data.

In the application: \(K = 19 \), so \(d = 22 \).

Integrate? Well, no problems \textit{mathematically}, but . . .

High-dimensional! Complicated! How to compute?

Try Monte Carlo!

Monte Carlo, Monaco
Estimation from sampling: Monte Carlo

Suppose we can sample from π, i.e. generate on a computer
\[X_1, X_2, \ldots, X_M \sim \pi \quad (i.i.d.) \]
(i.e., $P(X_i \in A) = \int_A \pi(x) \, dx$ for each i, and independent).

Then can estimate by e.g.
\[E_\pi(h) \approx \frac{1}{M} \sum_{i=1}^{M} h(X_i). \]

As $M \to \infty$, the estimate converges to $E_\pi(h)$ (by the Law of Large Numbers), which good error bounds / confidence intervals (by the Central Limit Theorem).

Good. But how to sample from π?

Often infeasible! (e.g. above example!)

Instead . . .
Markov Chain Monte Carlo (MCMC)

Given a complicated, high-dimensional target distribution $\pi(\cdot)$:

Find an ergodic Markov chain (random process) X_0, X_1, X_2, \ldots, which is easy to run on a computer, and which converges in distribution to π as $n \to \infty$.

Then for “large enough” B, $\mathcal{L}(X_B) \approx \pi$, so X_B, X_{B+1}, \ldots are approximate samples from π, and e.g.

$$E_\pi(h) \approx \frac{1}{M} \sum_{i=B+1}^{B+M} h(X_i), \text{ etc.}$$

Extremely popular: Bayesian inference, computer science, statistical genetics, statistical physics, finance, insurance, . . .

But how to create such a Markov chain?

Random-Walk Metropolis Algorithm (1953)

This algorithm defines the chain X_0, X_1, X_2, \ldots as follows.

Given X_{n-1}:

- Propose a new state $Y_n \sim Q(X_{n-1}, \cdot)$, e.g. $Y_n \sim N(X_{n-1}, \Sigma_p)$.
- Let $\alpha = \min \left[1, \frac{\pi(Y_n)}{\pi(X_{n-1})} \right]$. (Assuming Q is symmetric.)
- With probability α, accept the proposal (set $X_n = Y_n$).
- Else, with prob. $1 - \alpha$, reject the proposal (set $X_n = X_{n-1}$).

Try it: [APPLET] Converges to π!

Why? α is chosen just right so this Markov chain is reversible with respect to π, i.e. $\pi(dx) P(x, dy) = \pi(dy) P(y, dx)$. Hence, π is a stationary distribution. Also, chain will be aperiodic and (usually) irreducible. So, by general Markov chain theory, it converges to π in total variation distance: $\lim_{n \to \infty} \sup_A |P(X_n \in A) - \pi(A)| = 0$.

More complicated example?
Example: Particle Systems

Suppose have n independent particles, each uniform on a region. What is, say, the average “diameter” (maximal distance)? Sample and see! [pointproc.java] Works! Monte Carlo!

Now suppose instead that the particles are not independent, but rather interact with each other, with the configuration probability proportional to e^{-H}, where H is an energy function, e.g.

$$H = \sum_{i<j} A \left| (x_i, y_i) - (x_j, y_j) \right| + \sum_{i<j} \frac{B}{\left| (x_i, y_i) - (x_j, y_j) \right|} + \sum_{i} C x_i$$

A large: particles like to be close together.
B large: particles like to be far apart.
C large: particles like to be towards the left.

Can’t directly sample, but can use Metropolis! [pointproc.java]

Okay, but Where’s the Math?

MCMC’s greatest successes have been in . . . applications!

- Medical Statistics / Statistical Genetics / Bayesian Inference / Chemical Physics / Computer Science / Mathematical Finance

So, what is MCMC mathematical theory good for?

- Informs and justifies the basic algorithms. (** Above Introduction)
- Quantifies how well the algorithms work. (** Quantitative Bounds)
- Suggests new modifications of the algorithms.
- Determines which algorithm choices are best. (** Optimal Scaling)
- Investigates high-dimensional behaviour. (** Complexity)
- Develops new MCMC directions. (** Adaptive MCMC)
First Topic: Quantitative Convergence Bounds

MCMC works eventually, i.e. $\mathcal{L}(X_n) \Rightarrow \pi$. Good!

But what about quantitative bounds, i.e. a specific number n^* such that, say, $|P(X_{n^*} \in A) - \pi(A)| < 0.01 \ \forall \ A$?

(Not just “as $n \to \infty$”.)

One method: **coupling**. (Many other methods: spectral, . . .)

Consider two copies of the chain, $\{X_n\}$ and $\{X'_n\}$.

Assume that $X'_0 \sim \pi$ (so $X'_n \sim \pi \ \forall n$).

If we can “make” the two copies become equal for $n \geq T$, while respecting their marginal update probabilities, then $X_n \approx \pi$ too.

Specifically, the coupling inequality says:

$$|P(X_n \in A) - \pi(A)| \equiv |P(X_n \in A) - P(X'_n \in A)| \leq P(T > n).$$

But how to apply this to a complicated MCMC algorithm?

(11/54)

Quantitative Bounds: Minorisation

Suppose there is $\epsilon > 0$, and a probability measure ν, such that $P(x, y) \geq \epsilon \nu(y)$ for all $x, y \in \mathcal{X}$.

This “minorisation condition” gives an ϵ-sized “overlap” between the transition distributions $P(x, \cdot)$ and $P(x', \cdot)$.

That means at each iteration, we can make the two copies become equal with probability at least ϵ. Hence, $P(T > n) \leq (1 - \epsilon)^n$.

Therefore, $|P(X_n \in A) - \pi(A)| \leq (1 - \epsilon)^n, \ \forall A$.

e.g. [APPLET], with that π, and $\gamma = 3$: find that $P(x, y) \geq \epsilon \nu(y)$ for all x, y, where $\epsilon = 0.2$, and $\nu(3) = \nu(4) = 1/2$.

• So $|P^n(x, A) - \pi(A)| \leq (1 - \epsilon)^n = (1 - 0.2)^n = (0.8)^n$.

• Hence, $|P^n(x, A) - \pi(A)| < 0.01$ whenever $n \geq 21$.

• So $n^* = 21$. “The chain converges in 21 iterations.” Good!

But what about a harder example??

(12/54)
Hierarchical model for baseball hitting percentages (J. Liu): observed hitting percentages satisfy \(Y_i \sim N(\theta_i, c) \) for \(1 \leq i \leq K \), where \(\theta_1, \ldots, \theta_k \sim N(\mu, V) \), \(c \) is a given constant, with \(V, \mu, \theta_1, \ldots, \theta_K \) to be estimated. Priors: \(\mu \sim \text{flat}, V \sim IG(a, b) \).

Diagram:

\[
\begin{array}{cccc}
\mu & \theta_1 & \ldots & \theta_K \\
\theta_1 & \ldots & \ldots & \theta_K \\
Y_1 & \ldots & \ldots & Y_K \\
\end{array}
\]

\(\theta_i \sim N(\mu, V) \)

\(Y_i \sim N(\theta_i, c) \)

For our data, \(K = 18 \), so dimension = 20.

High dimensional! How to estimate?

MCMC solution: Run a Gibbs sampler for \(\pi \).

Markov chain is \(X_k = (V^{(k)}, \mu^{(k)}, \theta_1^{(k)}, \ldots, \theta_K^{(k)}) \), updated by:

\[
V^{(n)} \sim IG \left(a + \frac{K - 1}{2}, b + \frac{1}{2} \sum (\theta_i^{(n-1)} - \bar{\theta}^{(n-1)})^2 \right);
\]

\[
\mu^{(n)} \sim N \left(\bar{\theta}^{(n-1)}, \frac{V^{(n)}}{K} \right);
\]

\[
\theta_i^{(n)} \sim N \left(\frac{\mu^{(n)} c + Y_i V^{(n)}}{c + V^{(n)}}, \frac{V^{(n)} c}{c + V^{(n)}} \right) \quad (1 \leq i \leq K);
\]

where \(\bar{\theta}^{(n)} = \frac{1}{K} \sum \theta_i^{(n)} \).

Recall that \(K = 18 \), so dimension = 20.

Complicated! How to analyze convergence?
Example: Baseball Data Model (cont’d)

Here we can find a minorisation $P(x, y) \geq \epsilon \nu(y)$, but only when $x \in C$ for a subset $C \subseteq \mathcal{X}$. (“small set”)

But also find a “drift condition” $E[f(X_1) \mid X_0 = x] \leq \lambda f(x) + \Lambda$, for some $\lambda < 1$ and $\Lambda < \infty$, where $f(x) = \sum_{i=1}^{K}(\theta_i - \bar{Y})^2$; this “forces” returns to $C \times C$.

- a drift condition towards $C = \{ \sum_i(\theta_i - \bar{Y})^2 \leq 1 \}$, with $\lambda = 0.000289$ and $\Lambda = 0.161$;
- a minorisation with $\epsilon = 0.0656$, at least for $x \in C \subseteq \mathcal{X}$.

Then can use coupling to prove (R., JASA 1995) that

$$|P(X_n \in A) - \pi(A)| \leq (0.967)^n + (1.17)(0.935)^n, \quad n \in \mathbb{N},$$

so e.g. $|P(X_n \in A) - \pi(A)| < 0.01$ if $n \geq 140$.

- So $n_* = 140$. “The chain converges in 140 iterations.” Good!

Realistic bounds for complicated statistical models!
(See also Jones & Hobert, Stat Sci 2001, . . .)

(15/54)

Does it Matter? Case Study: Independence Sampler

Consider Metropolis-Hastings where $\pi(x) = e^{-x}$, and proposals are chosen i.i.d. $\sim \text{Exp}(k)$ with density ke^{-ky}, for some $k > 0$.

- $k = 1$ (i.i.d. sampling)

\[
E(X) = 1; \text{ estimate } = 1.001. \text{ Excellent! Other } k?
\]

(16/54)
Independence Sampler (cont’d)

- $k = 0.01$

\[\mathbb{E}(X) = 1; \text{estimate} = 0.993. \text{Quite good.} \]

Independence Sampler (cont’d)

- $k = 5$

\[\mathbb{E}(X) = 1; \text{estimate} = 0.687. \text{Terrible: way too small!} \]

What happened? Maybe we just got unlucky? Try again!
Another try with \(k = 5 \):

\[E(X) = 1; \text{ estimate } = 1.696. \] Terrible: way too big!

So, not just bad luck: \(k = 5 \) is really bad. But why??

Independence Sampler: Theory

Why is \(k = 0.01 \) pretty good, and \(k = 5 \) so terrible?

Well, if \(k \leq 1 \), then \(\forall x, q(x) = ke^{-kx} \geq ke^{-x} = k\pi(x) \). Then

\[
\alpha(x, y) = \min(1, \frac{\pi(y)q(x)}{\pi(x)q(y)}) = \min(1, \frac{\pi(y)/q(y)}{\pi(x)/q(x)})
\]

\[
\geq \min(1, \frac{\pi(y)/q(y)}{(1/k)}) = k(\pi(y)/q(y)).
\]

Then \(P(x, y) \geq q(y)\alpha(x, y) \geq k\pi(y) \). Minorisation with \(\epsilon = k \)!

So, \(|P^n(x, A) - \pi(A)| \leq (1 - k)^n \).

- \(k = 1 \): yes, \(\epsilon = 1 \); converges immediately (of course). \(n_* = 1 \).
- \(k = 0.01 \): yes, \(\epsilon = 0.01 \); and \((1 - 0.01)^{459} < 0.01\), so \(n_* = 459 \); “chain converges within 459 iterations”. (Pretty good.)
- \(k = 5 \): no such \(\epsilon \). Not geometrically ergodic. In fact, we can prove (Roberts and R., MCAP, 2011) that with \(k = 5 \), have \(4,000,000 \leq n_* \leq 14,000,000 \), i.e. takes millions of iterations!
Main Topic: How to Optimise MCMC Choices?

In theory, MCMC works with essentially any update rules, as long as they leave π stationary.

- **Any** symmetric proposal distribution Q. (Choices!)
- **Non-symmetric proposals**, with a suitably modified acceptance probability. ("Metropolis-Hastings") (e.g. Independent, Langevin)
- Update one coordinate at a time. ("Componentwise")
- Update from full conditional distributions. ("Gibbs Sampler")

But what choice works best? e.g. What γ in [APPLET]?

- If γ too small (say, $\gamma = 1$), then usually accept, but move very slowly. (Bad.)
- If γ too large (say, $\gamma = 50$), then usually $\pi(Y_{n+1}) = 0$, i.e. hardly ever accept. (Bad.)
- Best γ is **between** the two extremes, i.e. acceptance rate should be far from 0 and far from 1. ("Goldilocks Principle")

Example: Metropolis for $N(0,1)$

Target $\pi = N(0,1)$. Proposal $Q(x, \cdot) = N(x, \sigma^2)$.

How to choose σ? Big? Small? What acceptance rate (A.R.)?

![Graphs showing acceptance rates for different σ values.](image)

- $\sigma = 0.1$? too small! $A.R. = 0.962$
- $\sigma = 25$? too big! $A.R. = 0.052$
- $\sigma = 2.38$? just right! $A.R. = 0.441$

The Goldilocks Principle in action!

What about higher-dimensional examples? If d increases, then σ should: decrease. But how quickly? On what scale? Theory?