Theoretical Properties of Quasistationary Monte Carlo Methods

Andi Wang

University of Oxford

a.wang@stats.ox.ac.uk

Joint with Divakar Kumar, Gareth Roberts and David Steinsaltz

11 July 2018
Let $X = (X_t)$ be an ant undergoing a diffusion on \mathbb{R}^d. Introduce killing rate

$$\kappa : \mathbb{R}^d \rightarrow [0, \infty).$$

At rate $\kappa(X_t)$ the ant is killed; call this time τ_∂.
Let $X = (X_t)$ be an ant undergoing a diffusion on \mathbb{R}^d. Introduce killing rate

$$\kappa : \mathbb{R}^d \rightarrow [0, \infty).$$

At rate $\kappa(X_t)$ the ant is killed; call this time τ_∂.

We will consider $\mathbb{P}_x(X_t \in \cdot | \tau_\partial > t)$ for large t.
Let $X = (X_t)$ be an ant undergoing a diffusion on \mathbb{R}^d. Introduce killing rate

$$\kappa : \mathbb{R}^d \to [0, \infty).$$

At rate $\kappa(X_t)$ the ant is killed; call this time τ_∂.

We will consider $\mathbb{P}_x(X_t \in \cdot | \tau_\partial > t)$ for large t.

If these converge to π as $t \to \infty$, π is an example of a quasistationary distribution.
Example

Take X to be a standard Brownian motion on \mathbb{R}^2, $\kappa(y) = \|y\|^2$.
Example

Take X to be a standard Brownian motion on \mathbb{R}^2, $\kappa(y) = \|y\|^2$.

What can be said about $P(X_t \in \cdot | \tau_{\partial} > t)$ for large t?
Example

Take X to be a standard Brownian motion on \mathbb{R}^2, $\kappa(y) = \|y\|^2$.

What can be said about $P(X_t \in \cdot | \tau_\partial > t)$ for large t?
Quasistationary Monte Carlo methods aim to sample from a target distribution π, where π is a quasistationary distribution.

Quasistationary Monte Carlo methods aim to sample from a target distribution π, where π is a quasistationary distribution.

The quasistationary framework enables the principled use of subsampling techniques to give exact Bayesian inference with a sub-linear cost in the number of observations\(^1\).

Foundational Results

\[
dX_t = \nabla A(X_t) \, dt + dW_t, \quad X_0 = x \in \mathbb{R}^d.
\]

Theorem (Convergence to Quasistationarity)

Under certain assumptions, the diffusion \(X \) killed at rate \(\kappa \) has quasilimiting distribution \(\pi \). That is, for each measurable \(E \subset \mathbb{R}^d \) we have as \(t \to \infty \),

\[
P_x(X_t \in E | \tau_\partial > t) \to \pi(E).
\]
Foundational Results

$$dX_t = \nabla A(X_t) \, dt + dW_t, \quad X_0 = x \in \mathbb{R}^d.$$

Theorem (Convergence to Quasistationarity)

Under certain assumptions, the diffusion X killed at rate κ has quasilimiting distribution π. That is, for each measurable $E \subset \mathbb{R}^d$ we have as $t \to \infty$,

$$\mathbb{P}_x(X_t \in E | \tau_\partial > t) \to \pi(E).$$

Theorem (Rates of convergence)

Additionally, X converges to quasistationarity π at the same rate as the Langevin diffusion targeting $\pi^2 / 2A$ converges to stationarity.
Suppose we have a killed diffusion X with quasilimiting distribution π. So $\mathbb{P}(X_t \in \cdot | \tau_\partial > t) \to \pi$. How might we simulate try to simulate π?
Suppose we have a killed diffusion X with quasilimiting distribution π. So $\mathbb{P}(X_t \in \cdot \mid \tau_\partial > t) \to \pi$. How might we simulate try to simulate π?

1. Rejection sampling. Infeasible.
Simulating from QSDs

Suppose we have a killed diffusion X with quasilimiting distribution π. So $\mathbb{P}(X_t \in \cdot \mid \tau_\theta > t) \rightarrow \pi$. How might we simulate try to simulate π?

1. Rejection sampling. Infeasible.
2. Continuous-time sequential Monte Carlo. Feasible but involved.
Suppose we have a killed diffusion X with quasilitmiting distribution π. So $P(X_t \in \cdot | \tau_\partial > t) \to \pi$. How might we simulate try to simulate π?

1. Rejection sampling. Infeasible.
2. Continuous-time sequential Monte Carlo. Feasible but involved.
An Example ReScaLE Trajectory
Does this algorithm converge to the quasistationary distribution π?
Does this algorithm converge to the quasistationary distribution π?

Theorem (Convergence in compact setting)

When the state space is compact, we have that (after time-changing) (μ_t) is an *asymptotic pseudo-trajectory* for a deterministic semiflow Φ almost surely.

It follows that μ_t converges to π almost surely.
Convergence Result

Does this algorithm converge to the quasistationary distribution π?

Theorem (Convergence in compact setting)

When the state space is compact, we have that (after time-changing) (μ_t) is an asymptotic pseudo-trajectory for a deterministic semiflow Φ almost surely.

It follows that μ_t converges to π almost surely.

Conjecture (General setting)

We should have that the Proposition holds much more generally: non-compact state space, unbounded killing rate.
Figure: Logistic regression example.
Thanks for listening!

If you are interested to learn more, come see my poster!
