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Metropolis-Hastings algorithms in R¢, d large

Sequential Monte Carlo Samplers in high dimensions

Coupling approach «~ Convergence in Wasserstein distance

Functional inequalities «~» Convergence in LP sense



1 INTRODUCTION

1
Uw) = SleP +V(@), eR:,  VeCiRY,

1 9 d/2
,u(dm) _ Ee—U(:E) )\d(dl') _ ( 7T) e—V(:U) ’}/d(d.f),

va = N(0, I;) standard normal distribution in R<.

AIM :
e Approximate Sampling and MC integral estimation w.r.t. p.

e Rigorous error and complexity estimates, d — ~c.



A PROTOTYPICAL EXAMPLE: TRANSITION PATH SAMPLING

dY; = dB, —VH(Y;)dt, Yy=uyoeR",
= conditional distribution on C([0, T'],R™) of (Y}).c(0,77 given Y7 = yr.

By Girsanov‘s Theorem:

u(dy) = Z7" exp(=V (y)) v(dy),
~ = distribution of Brownian bridge from y, to yr,

Viy) = /OT (%AH(yt)HVH(yt)F) dt.

Finite dimensional approx. via Karhunen-Loeve or Wiener-Lévy expansion:

v(dy) — 7*(dz),  V(y) — Va(z)  ~» setup above



POSSIBLE APPROACHES:

e Metropolis-Hastings, Gibbs Sampler
e Parallel Tempering, Equi-Energy Sampler

e Sequential Monte Carlo Sampler



2 Metropolis-Hastings methods with Gaussian
proposals

MARKOV CHAIN MONTE CARLO APPROACH

e Simulate an ergodic Markov process (X,,) with stationary distribution .
e nlarge: PoX '~

e Continuous time: (over-damped) Langevin diffusion

1 1
Xy = —5Xpdt = SVV(Xy)dt + dBy

e Discrete time: Metropolis-Hastings Algorithms



METROPOLIS-HASTINGS ALGORITHM

wz) = Z " exp(~U(z))

p(z,y) stochastic kernel on R?

ALGORITHM
1. Choose an initial state Xj.
2. Forn:=0,1,2,...do

e Sample Y,, ~ p(X,,y)dy, U, ~ Unif(0,1) independently.

o IfU, < a(X,,Y,) then accept the proposal and set X, :=Y,,;
else reject the proposal and set X, 1 := X,,..



METROPOLIS-HASTINGS ACCEPTANCE PROBABILITY

a(x,y) = min (M<y)p(y7$),l> = exp (—G(z,y)"), z,y€RY,

w(x)p(z,y)
o M@ y) s PEY) s s (@)p(sy)
Gla.y) = log (y)p(y,z) Uly)=Ulo)H ® oy, ) Vi) =Viz)H Y (y)p(y, z)

e (X,) is atime-homogeneous Markov chain with transition kernel

q(z,dy) = a(z,y)p(z,y)dy + q()8,(dy), q(z) =1—q(z, R\ {a}).

e Detailed Balance:

p(dz) q(z, dy) = p(dy) q(y, dx).



PROPOSAL DISTRIBUTIONS FOR METROPOLIS-HASTINGS
xr — Yy (z) proposed move, h > 0 step size,

pn(z,dy) = P[Y),(z) € dy] proposal distribution,
an(z,y) = exp(—Gp(z,y)") acceptance probability.

e Random Walk Proposals

Vi(z) = z+Vh-Z, Z ~~%,
pr(x,dy) = N(z,h-1y),
Gr(z,y) = Uly) —U(z).

e Ornstein-Uhlenbeck Proposals

h / h?

pn(z,dy) = N((1—h/2)z, (h—h*/4)-1,), det. balance w.r.t. v¢
Gn(z,y) = V(y)—V(z).



e Euler Proposals

Yi(x) = (1—%)33——VV(33)+\/E Z, 7 ~ ¢
pu(e,dy) = N((1 - 5)e— YV L),
Gp(z,y) = V(y) —V(z)—(y—=) (VV(y) + VV(z))/2

+h(IVU(y)[* = VU (2)[*)/4.

REMARK. Even for V = 0, 44 is not a stationary distribution for pEuler.
Stationarity only holds asymptotically as h — 0. This causes substantial
problems in high dimensions.



e Semi-implicit Euler Proposals
[Beskos,Roberts, Stuart, Voss 2008]

h h h2
Yi(x) = (1—§)$—§VV($)+\/h—Z-Z, Z ~~%,

pu(e,dy) = N((1 -5z~ YV (@), (h— =) o)
Gulz,y) = Viy)=Vir)—(y—2z)- (VV(y) +VV(z))/2

h
8 — 2h

((y+z) - (VV(y) = VV(2) + |VV(y)|> = [VV(2)]) .



KNOWN RESULTS FOR METROPOLIS-HASTINGS IN HIGH DIMENSIONS
e Scaling of acceptance probabilities and mean square jumps as d — oo
e Diffusion limits as d — oo
e Ergodicity, Geometric Ergodicity

e Quantitative bounds for mixing times, rigorous complexity estimates



Optimal Scaling and diffusion limits as d — oo

Roberts, Gelman, Gilks 1997: Diffusion limit for RWM with product tar-
get, h = 0O(d™ 1)

Roberts, Rosenthal 1998: Diffusion limit for MALA with product target,
h=0(d"'/3)

Beskos, Roberts, Stuart, Voss 2008: Preconditioned MALA applied to
Transition Path Sampling, Scaling h = O(1)

Mattingly, Pillai, Stuart 2010: Diffusion limit for RWM with non-product
target, h = O(d™1)

Pillai, Stuart, Thiery 2011a: Diffusion limit for MALA with non-product
target, h = O(d—'/?)

Pillai, Stuart, Thiery 2011b: Preconditioned RWM, Scaling h = O(1),
Diffusion limit as h | 0 independent of the dimension



Geometric ergodicity for MALA in R? (d fixed)

e Roberts, Tweedie 1996. Geometric convergence holds if VU is globally
Lipschitz but fails in general

e Bou Rabee, van den Eijnden 2009: Strong accuracy for truncated MALA

e Bou Rabee, Hairer, van den Eijnden 2010: Convergence to equilibrium
for MALA at exponential rate up to term exponentially small in time step
size



BOUNDS FOR MIXING TIME, COMPLEXITY
Metropolis with ball walk proposals

o Dyer, Frieze, Kannan 1991: u = Unif(K), K C R convex
= Total variation mixing time is polynomial in d and diam(K)

e Applegate, Kannan 1991, ... , Lovasz, Vempala 2006. U : K — R

concave, K C R? convex
= Total variation mixing time is polynomial in d and diam(K)



Langevin diffusions
e If 1 is strictly log-concave, i.e.,
Jk>0: 0*U(z) > k-1y4 V€ R
then Wasserstein contractivity holds:
W(law(X,), p) < e " W(law(Xy), 1),
where W(v, u) = inf x ., vy~ E[d(X,Y)] is L* Wasserstein distance.
e Bound is independent of dimension, sharp !

e Under additional conditions, a corresponding result holds for the Euler
discretization.

e Extension to non log-concave measures: A.E., Reflection coupling and
Wasserstein contractivity without convexity, C.R.Acad.Sci.Paris 2011.

e These results suggest that comparable bounds might hold for MALA, or
even for Ornstein-Uhlenbeck proposals.



Metropolis-Hastings with Ornstein-Uhlenbeck proposals

e Hairer, Stuart, Vollmer 2011: Dimension independent contractivity in
modified Wasserstein distance

Metropolis-adjusted Langevin algorithm

e No rigorous complexity estimates so far



3 Quantitative Wasserstein bounds for
preconditioned MALA

A.E., Metropolis-Hastings algorithms for perturbations of Gaussian measures
in high dimensions: Contraction properties and error bounds in the log-concave
case, Preprint 2012.

Preconditioned MALA: Coupling of proposal distributions p, (z, dy), * € R?:

AN B2 .
Yi(z) = 1—5 :13—§VV(:13)+ h—I-Z, Z ~~% h>0,

~» Coupling of MALA transition kernels g, (z, dy), * € R?:

Yi(x) ifU < ap(z,Yi(x))

, U~ Unif(0,1) independent of Z,
x if U > ap(x, Yy(x)) nif (0,1) P

Wh (af) E— {



We fix a radius R € (0,00) and a norm || - ||— = (-,-)'/? on R? such that
]| - < |z for any = € RY,
and we set

dr(z,%) = min(||z — Z|—,2R), By = {zreR*: |z|- < R}.

EXAMPLE: Transition Path Sampling

e |z|ga is finite dimensional projection of Cameron-Martin norm/ H! norm

T 9 1/2
|5U|CM — (/ dt) .
0

o ||z|/_ is finite dimensional approximation of H* norm, a € (0,1/2).

dx

dt




ASSUMPTIONS:
(A1) There exist finite constants C,,, p,, € [0, 00) such that

(0, ,..&,V)(@)] < Cpmax(l, [|z| )P [|€a]] - - - [|€n ]l -

forany z € R%, &;,...,&, € RY, andn = 2,3, 4.
(A2) There exists a constant X > 0 such that

<77,V2U(x)-77> > K (n,n) VxEB}_%, nEIR{d.

THEOREM (AE 2012). If (A1) and (A2) are satisfied then
1
E[||Wh(z) = Wr(2)| -] < (1 — 5 Kh+ C(R)h3/2> |lz—%|- Vx,7 € By, he (0,1)

with an explicit constant C'(R) € (0, o) that does depend on the dimension
only through the moments

my = |2 ||* v*(dz) | k e N.
Rd



REMARKS.
e h | 0: approaches optimal contraction rate 1 — Kh /2
o 1 = O(R%): contraction rate > 1 — Kh/4

e For Ornstein-Uhlenbeck proposals, the contraction term is O(h) instead
of O(h3/?)

e The corresponding bounds for standard MALA and RWM are dimension
dependent.



CONTRACTIVITY IN WASSERSTEIN DISTANCE
gn, = transition kernel of preconditioned MALA

COROLLARY. If (A1) and (A2) are satisfied, then there exist explicit con-
stants C, D, q € (0, 00) that do not depend on the dimension such that

K
War(rdy,vay) < (1= —h)" Wan(m,v) + DRexp(~KR?/8)nh
for any n € N, h, R € (0,00) such that h=! > C(1 + R)4, and for any initial
distributions 7, v with support in B.



Approximation of quasi-stationary distribution

ur(A) = u(A|Bg).

COROLLARY. If (A1) and (A2) are satisfied, then there exist explicit con-
stants C, D, q € (0, 00) that do not depend on the dimension such that

K _
WQR(VQZHUR) < 58 R(l — Zh)n + DReXp(—KRQ/?)?)) nh

whenever h~1 > C(1+ R)? and the initial distribution v has support in Bp o

REMARK.

e [0 attain a given error bound ¢ for the Wasserstein distance, h has to
be chosen sufficiently small (roughly h=! ~ O((loge~1)%/?), but in a
dimension-independent way!

e There is a best possible error bound ¢ > 0 that can be attained, since
after a long time the chain will exit from the metastable state 5.



KEY INGREDIENTS IN PROOF:

Dimension independent bounds that quantify
e Rejection probabilities
e Dependence of rejection event on the current state

THEOREM. Suppose that Assumption (A1) is satisfied. Then there exist
polynomials P : R? — R of degree max(p3 + 3,2p2 +2) and Q : R? — R of
degree max(py + 2, ps + p2 + 2, 3p2 + 1) such that

E[l —ap(w, Yi(2))] < BlGu(z,Yi(2)"] < P(lz]-, VU (2)[|l-) - B>/

E[|V.Gh(z. Ya(@),] < Qlzll-. [[VU(x)|-) - h*/

for all z € R%, h € (0,2), where

Inll+ = sup{¢€-n : [I¢]|- <1}



REMARK.

e The polynomials P and Q are explicit. They depend only on the values
Cy, C3,Cy4, pa, p3, p4 and on the moments

my = B[ Z]|%]
but they do not depend on the dimension d.

e For MALA with explicit Euler proposals, corresponding estimates hold
with my, replaced by m, = E[|Z|¥]. Note, however, that m; — oo as
d — o0.



4 Sequential MCMC, SMC Sampler

A.E., C. Marinelli, Quantitative approximations of evolving probability mea-
sures and sequential MCMC methods, PTRF 2012, Online First.

pi(de) = Z7 exp (=Uy(x)) y(dx), t € [0, o), Hto = H
probability measures on state space S.
0 dp 0 0
Hilz) = - g log P (@) = LUe) — il e )

tae) = exp (- [ 100105) (a0

Let £;, t > 0, be generators of a time-inhomogeneous Markov process on S
such that £; satisfies the detailed balance condition w.r.t. u;. In particular,

Lin: = 0 (infinitesimal stationarity).

Fix constants \; > 0.



SMC SAMPLER IN CONTINUOUS TIME

XY = (XN, ..., X;Yy) Markov process on S™ with generator

LYo(x1,...,on) = )\tZE o(x1,...,TN)

Egi) action of £; on i th component.

e Independent Markov chain moves with generator \; - £,

o X} replaced by X} with rate - (H,(X[) — H/(X]N)*



ESTIMATORS FOR ;X iid. ~ pg

N ¢
1
o= D0y v = exp (—/ <Hsﬂ7iv>d8) -
i—1 0

PERFORMANCE IN HIGH DIMENSIONS ?

Possible test cases:

1.

> oA N

Product models

Models with dimension-independent global mixing properties
Disconnected unions of such models

Models with a disconnectivity tree structure

Models with a phase transition

. Disordered systems



S Quantitative error bounds and
dimension dependence

e = sup {E ||(f,0)) = (Fod[] 0 s € 10,8 1f oy S 1}, p € 2,00

GOAL:
e Bounds for ;' * for a fixed number N of replicas.

e Explicit dependence on the dimension for test models.



ERROR BOUNDS AND DIMENSION DEPENDENCE UNDER
GLOBAL MIXING CONDITIONS

Fix ty € (0,00) (length of time interval), p € (6, ), ¢ € (p,o0), and let

t
w = sup osc(Hy); Ki = / 1 Hs | ag,,,) ds
tc[0,to] 0
2d
C, = sup ff Mt

=0 E(f )

N = sup J 12 log | f|dp
=1 E(f, f)

where

gt(fa f) — _(f7 ‘th)LQ(,ut)
is the Dirichlet form of £; on L?(u;).



THEOREM (A.E., C. Marinelli 2012) Suppose that

N > 40 -max (K¢, 1), and
3
Ae > w-maX(%(lﬂLt-%)-Cwa(na%%) vt € |0, .
Then

Np _ 28K, (1+ 16 K;

Vi tol.

Here a(p, q) is an explicit constant depending only on p and g.



EXAMPLE 1: Product measures

k=1 k=1
d d
k
= Hy(e) = ——logu(e) = Y H" (a)
k=1

d
Li(z,y) = Z£§k)(af,y) product dynamics
k=1

= (; = max C’gk), V¢ = max %(’“).

k k



EXAMPLE 1: Product measures

d d
s =15 w=Qu"
k=1 k=1

Assumption:

w® <1 vk o™, 4"independent of k.

- w:O(d), Ct:O(l), ’)/t:O(l)
= N =0(d’")and \; = O(d) are sufficient for a given precision
= total effort of order O(d*) is sufficient



EXAMPLE 1: Product measures
Bound independent of d holds provided there are

e O(d) resampling steps
e O(d) MCMC steps between each resampling step
e O(d'/°) particles

EXAMPLE 2: Log Sobolev and spectral gap independent of the dimension
~ similar bounds as in Example 1.

REMARK. [Beskos, Crisan, Jasra, Whiteley 2011]
e In the product case, O(1) resampling steps are sufficient.

e This holds true because strong mixing properties make up even for
huge errors and degeneracy due to resampling.

e One can not expect equally strong results in more general scenarios.



ERROR BOUNDS AND DIMENSION DEPENDENCE

WITHOUT GLOBAL MIXING




NON-ASYMPTOTIC BOUNDS FOR DISCONNECTED UNIONS
S =|JS; disjoint decomposition of state space. Suppose that

Li(z,y) = 0Vt>0,2x€8;,yeS;(t#7), andlet
ppo= 1), 1T = max Il »
5 2 N
= s (B[ 0)) = (F) ] s € 0, 113 <1}
THEOREM. Suppose conditions as above hold with Cy, ~; replaced by
C, = max C? , Y = max ..
Then ) o
2+ 8 K; M? 16 K M?
~N,p t t . 1 t t
where

M; = max sup
Lo 0<r<s<t ,u’r(

N

i)



H Tree(H)

EXAMPLE 3: Disjoint union of i.i.d. product models
Dimension dependence as above holds in particular if

lim inf min po(S;) > 0.

d— 00 7

EXAMPLE 4: Disconnectivity tree
see talk of Nikolaus Schweizer



