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Background

Phylogenetics
Example: what are the evolutionary relationships among these Cichlid fishes?

(a) Chalinochromis popelini (b) Julidochromis marlieri (c) Lamprologus callipterus

(d) Lepidiolamprologus
elongatus

(e) Neolamprologus brichardi (f) Neolamprologus
tetracanthus

(g) Telmatochromis temporalis
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Background

Data: Y

Biological sequences of a set of species
e.g. a DNA sequence is a string of characters from the set of four
nucleotides {A,C,G,T }.

An example of aligned DNA sequences.
Nucleotides in the same column were obtained from a shared ancestral
nucleotide

CTCTAGCCTTTTTCCACT

TTCTAGCCTTTCTCTACT

CTCTAGCCTTTCTCTACT

A

B

C
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Background

A rooted phylogenetic tree, t, and evolution

Root: a common ancestor;

Internal nodes
Branch lengths

positive real numbers associated
with each edge,
specifying the amount of evolution
between nodes.
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Background A likelihood Model: CTMC

A likelihood model: P(Y|t, θ)

Assumption: site independence.

Likelihood model on each site over one
branch is a Continuous Time Markov
Chain (CTMC): {Ys : s ∈ [0, b]}

The state space of the chain:
Ys ∈ {A,C,G,T }.

The transition matrix: P(b) = eQ4×4b for
the branch of length b.

e.g. P1,3(b) = P(Yb = G|Y0 = A).

Evolutionary parameters in CTMCs are
denoted by θ.

CTCTAGCCTTTTTCCACT

TTCTAGCCTTTCTCTACT

CTCTAGCCTTTCTCTACT

A

B

C

One site
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Background Bayesian phylogenetics

Bayesian phylogenetics

Data: aligned sequences, denoted by Y

θ: evolutionary parameters

t: a phylogenetic tree

Posterior

π(θ, t|Y) =
P(Y|t, θ)p(t|θ)p(θ)

P(Y)
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Background Bayesian phylogenetics

Posterior expectation of ϕ(t):
∫

π(dt)ϕ(t)

An example of the function ϕ:

ϕ(t) = 1(c ∈ clades(t))

a clade: a group consisting of a
species and all its descendants

clades(t): all the clades of the tree t

V1
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Background Bayesian phylogenetics

Difficult inference problem over a huge tree space

A B C A BC ABC

Tree space for a phylogenetic tree

#Species #Topologies
3 3
4 15
6 945

10 34459425
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Background Bayesian phylogenetics

Standard Bayesian phylogenetics using MCMC

MCMC: obtain samples tk ∼ π(·|Y), k = 1, · · · ,K

......

∫
π(dt)ϕ(t) ≈

1
K

K∑
k=1

ϕ(tk)
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Background Bayesian phylogenetics

Problems with MCMC

The Markov chain doesn’t explore the tree space well

Only small moves are allowed in each iteration

Each step is expensive to compute
MCMC does not scale to large datasets

a large number of taxa
large amount of data for each taxon
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Background Bayesian phylogenetics

The Ultimate Goal in Phylogenetics

Infer phylogenetic trees accurately and efficiently

Develop new statistical evolutionary models

Current model: CTMC over characters for each site.

Proposed model: a general string-valued CTMC for biological
sequences.

Computational algorithms for efficient analysis of large-scale datasets

Current methods:
Standard MCMC

SMC for unrealistic phylogenetic trees (Teh et al. 2008; Bouchard-Côté
et al. 2011) for fixed parameters θ

Proposed methods:

An efficient SMC algorithm for general phylogenetic trees
PMCMC for joint estimation of t and θ
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et al. 2011) for fixed parameters θ

Proposed methods:

An efficient SMC algorithm for general phylogenetic trees
PMCMC for joint estimation of t and θ

Liangliang Wang (Western University) Bayesian Phylogenetics via SMC 12 / 60



Background Bayesian phylogenetics

The Ultimate Goal in Phylogenetics

Infer phylogenetic trees accurately and efficiently

Develop new statistical evolutionary models

Current model: CTMC over characters for each site.

Proposed model: a general string-valued CTMC for biological
sequences.

Computational algorithms for efficient analysis of large-scale datasets

Current methods:
Standard MCMC
SMC for unrealistic phylogenetic trees (Teh et al. 2008; Bouchard-Côté
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Combinatorial Sequential Monte Carlo (CSMC)

1 Background

2 Combinatorial Sequential Monte Carlo (CSMC)

3 Particle MCMC

4 Ongoing and Future Work
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Combinatorial Sequential Monte Carlo (CSMC)

SMC algorithm for phylogenetic trees

Target distribution: the posterior π(t|Y) ∝ γ(t|Y) = P(Y|t)p(t)

Interested in the posterior expectation of ϕ(t):
∫

π(dt)ϕ(t).

CTCTAGCCTTTTTCCACT

TTCTAGCCTTTCTCTACT

CTCTAGCCTTTCTCTACT

TTCTAGCCTTTTTCTACT

A

B

C

D

Input Y
Aligned biological sequences

Output:
weighted particles {(tk,Wk)} to approximate the posterior distribution
over trees, π̂(t|Y)

● ● ● ●B C D A

t1

●●●●B A D C

t2

● ● ● ●A C B D

t3

● ● ● ●B A D C

t4

● ● ● ●B A D C

t5

● ● ● ●B A D C

t6

● ● ● ●B A D C

t7

● ● ● ●B A C D

t8

● ● ● ●B D A C

t9

●●●●B D A C

t10

estimate of the marginal likelihood, P̂(Y).
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Combinatorial Sequential Monte Carlo (CSMC)

A sequence of partial states

Using ν+(s0 → t) is not efficient

sr: a partial state (forest) of n − r subtrees (n is
the number of species)

A forward proposal ν+(sr−1 → sr): randomly
choose a pair of subtrees of sr−1 to merge.
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Combinatorial Sequential Monte Carlo (CSMC)

How to define distributions πr over partial states sr?

πr(sr |Y) ∝ P(Y|sr)p(sr)

P(Y|sr): the likelihood of the partial state sr

we have likelihood model for trees
consider the trees in a forest to be independent
the product of the likelihood of the subtrees of sr.

πr is represented by K weighted particles, {(srk,Wrk)}

Liangliang Wang (Western University) Bayesian Phylogenetics via SMC 16 / 60



● ● ● ●A B C Ds0

Combinatorial Sequential Monte Carlo (CSMC) Illustration of SMC

The initial partial state

s0: a forest in which each sequence is a trivial tree with a single leaf.
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● ● ● ●A B C Ds0

● ● ● ●B C D A

s1,1

Combinatorial Sequential Monte Carlo (CSMC) Illustration of SMC

The first partial state s1

Generate particle s11 using ν+(s0 → ·)

Randomly choose a pair of subtrees, species B and C, to merge.
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● ● ● ●A B C Ds0

● ● ● ●B C D A

s1,1

● ● ● ●B A D C

s1,2

Combinatorial Sequential Monte Carlo (CSMC) Illustration of SMC

The first partial state s1

Generate particle s12 using ν+(s0 → ·)

Randomly choose a pair of subtrees, species D and C, to merge.
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● ● ● ●A B C Ds0

● ● ● ●B C D A

s1,1

● ● ● ●B A D C

s1,2

● ● ● ●A C B D

s1,3

● ● ● ●A D B C

s1,4

● ● ● ●B A D C

s1,5

● ● ● ●A B D C

s1,6

● ● ● ●C D B A

s1,7

● ● ● ●B A C D

s1,8

● ● ● ●B D A C

s1,9

● ● ● ●A B D C

s1,10

s1

Combinatorial Sequential Monte Carlo (CSMC) Illustration of SMC

The first partial state s1

Generate K particles s1k using ν+(s0 → ·)

These particles cannot represent π1 directly

We need to compensate for the discrepancy between the distribution
of interest and the proposed distribution.
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● ● ● ●A B C Ds0

● ● ● ●B C D A

s1,1

●●●●B A D C

s1,2

●●●●A C B D

s1,3

●●●●ADBC

s1,4

● ● ● ●B A D C

s1,5

●●●●ABDC

s1,6

● ● ● ●C D B A

s1,7

● ● ● ●B A C D

s1,8

● ● ● ●B D A C

s1,9

●●●●ABDC

s1,10

s1

Combinatorial Sequential Monte Carlo (CSMC) Illustration of SMC

Update the weight of particles s1k

The rectangle size corresponds to the normalized particle weight
W1(s1k).
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● ● ● ●A B C Ds0

● ● ● ●B C D A

s1,1

●●●●B A D C

s1,2

●●●●A C B D

s1,3

●●●●ADBC

s1,4

● ● ● ●B A D C

s1,5

●●●●ABDC

s1,6

● ● ● ●C D B A

s1,7

● ● ● ●B A C D

s1,8

● ● ● ●B D A C

s1,9

●●●●ABDC

s1,10

s1

Combinatorial Sequential Monte Carlo (CSMC) Illustration of SMC

Resample s1k

Using a multinomial distribution

Purpose: prune unpromising particles
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● ● ● ●A B C Ds0

● ● ● ●B C D A

s1,1

●●●●B A D C

s1,2

●●●●A C B D

s1,3

●●●●ADBC

s1,4

● ● ● ●B A D C
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●●●●ABDC

s1,6

● ● ● ●C D B A

s1,7

● ● ● ●B A C D

s1,8

● ● ● ●B D A C

s1,9

●●●●ABDC

s1,10

s1

● ● ● ●B C D A

s2,1

●●●●B A D C

s2,2

● ● ● ●A C B D

s2,3

s2
● ● ● ●B A D C

s2,4

● ● ● ●B A D C

s2,5

● ● ● ●B A D C

s2,6

●●●●C D B A

s2,7

● ● ● ●B A C D

s2,8

● ● ● ●B D A C

s2,9

● ● ● ●B D A C

s2,10

Combinatorial Sequential Monte Carlo (CSMC) Illustration of SMC

The second partial state s2

Generate the particles s2k using ν+(s1k → ·)

Update the weights of the particles W2(s2k)
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● ● ● ●B A C D
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● ● ● ●B C D A
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s2,2

● ● ● ●A C B D
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s2
● ● ● ●B A D C
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● ● ● ●B A D C

s2,5

● ● ● ●B A D C

s2,6

●●●●C D B A

s2,7

● ● ● ●B A C D

s2,8

● ● ● ●B D A C

s2,9

● ● ● ●B D A C

s2,10

Combinatorial Sequential Monte Carlo (CSMC) Illustration of SMC

Resample s2k

Using a multinomial distribution.

Purpose: prune unpromising particles
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● ● ● ●A B C Ds0
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●●●●B A D C

s2,2

● ● ● ●A C B D

s2,3

s2
● ● ● ●B A D C

s2,4

● ● ● ●B A D C

s2,5

● ● ● ●B A D C

s2,6

●●●●C D B A

s2,7

● ● ● ●B A C D

s2,8

● ● ● ●B D A C

s2,9

● ● ● ●B D A C

s2,10

●●●●B C D A

s3,1

●●●●B A D C

s3,2

●●●●A C B D

s3,3

s3
● ● ● ●B A D C

s3,4

● ● ● ●B A D C

s3,5

●●●●B A D C

s3,6

● ● ● ●B A D C

s3,7

● ● ● ●B A C D

s3,8

● ● ● ●B D A C

s3,9

●●●●B D A C

s3,10

Combinatorial Sequential Monte Carlo (CSMC) Illustration of SMC

The final state (full tree)
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Combinatorial Sequential Monte Carlo (CSMC) Weight update

The weight update in a standard SMC

wr(sr) = wr−1(sr−1) ·
γr(sr)

γr−1(sr−1)
1

ν+(sr−1 → sr)

γr(sr) : unnormalized density of sr

γr−1(sr−1) : unnormalized density of sr−1

ν+ : forward proposal

This weight update of the standard SMC will lead to a biased estimate for
general phylogenetic trees due to an over-counting problem.

WRONG for general trees!
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Combinatorial Sequential Monte Carlo (CSMC) Over-counting problem

Over-counting some samples

Two trees (each 1/2)
● ● ● ●A B C D ● ● ● ●A C B D

Two copies of the same partial
state: s21, s22

Two copies of the same full tree:
s31, s32

Their weights are doubled.

This will cause biased
estimates.

Need to downweight the
over-counted partial states.
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Combinatorial Sequential Monte Carlo (CSMC) Over-counting problem

Our correct weight update (in the CSMC algorithm)

wr(sr) = wr−1(sr−1) ·
γr(sr)

γr−1(sr−1)
ν (sr → sr−1)
ν+(sr−1 → sr)

The backward proposal ν− is

based on a graded partially ordered set (poset) on an extended
combinatorial space

1: if there is only one way from sr−1 to sr

between 0 and 1 if there are multiple ways from sr−1 to sr

to downweight the over-counted partial states.
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Combinatorial Sequential Monte Carlo (CSMC) Convergence results

Convergence results

Under weak conditions, for any bounded real-valued function ϕ : Sr → R,

Strong Law of Large Numbers (SLLN)

lim
K→∞

 K∑
k=1

Wrkϕ(srk) −
∫

πr(dsr)ϕ(sr)

 a.s.
−→ 0,

K: the number of weighted particles.
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Combinatorial Sequential Monte Carlo (CSMC) Convergence results

Illustration of convergence: simulation

y-axis: Total variation distance of π̂ to π
x-axis: K (# particles)
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Combinatorial Sequential Monte Carlo (CSMC)

Experiment on tree inference

# leaves: 10

# sites: 1000

# datasets: 1000

Computationally faster

100×: 2 orders of magnitude

y-axis: Partition metric
x-axis: time (in log scale)
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Particle MCMC

1 Background

2 Combinatorial Sequential Monte Carlo (CSMC)

3 Particle MCMC

4 Ongoing and Future Work
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Particle MCMC

Particle MCMC

Inferring both the tree and the evolutionary parameter jointly

π(θ, t|Y)

Particle MCMC (Andrieu et al. 2010)

Each MCMC iteration uses our proposed CSMC algorithm to
approximate the posterior distribution of the phylogenetic tree

Particle marginal Metropolis-Hastings (PMMH)

Particle Independent Metropolis-Hastings (PIMH)
The Particle Gibbs sampler (PGS)

requires a special SMC algorithm, conditional SMC.
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Particle MCMC Particle MCMC

Particle MCMC

Advantage

Bolder and more efficient move to update t.

Convergence result

These algorithms converges to the true posterior. (Andrieu et al. 2010)
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Particle MCMC Comparing the standard MCMC and the particle MCMC

Cartoon: problem with standard MCMC

Assume θ can only take two
values: θ1, θ2

Two possible trees: t1, t2
At each iteration of MCMC, the
chain is at one of 4 states:
(θ1, t1), (θ1, t2), (θ2, t1), (θ2, t2)

The square is a joint distribution

A good Markov chain should
move quickly among the states
with high probability mass

● ● ● ●A B C D

t1

● ● ● ●A B C D

t2

θ1 θ2

0.1

0.3

0.5

0.1
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Particle MCMC Comparing the standard MCMC and the particle MCMC

Advantage of using particle MCMC

● ● ● ●A B C D

t1

● ● ● ●A B C D

t2

θ1 θ2
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Particle MCMC Comparing the standard MCMC and the particle MCMC

Particle marginal Metropolis-Hastings (PMMH)

Each iteration of PMMH
1 sample θ∗ ∼ q(θ → ·),

2 run our SMC algorithm targeting πθ∗(t|Y), sample t∗ ∼ π̂θ∗(·|Y), and
P̂θ∗(Y) is the marginal likelihood obtained from SMC.

3 Accept θ∗ and t∗ with the probability

min
(
1,
P̂θ∗(Y)p(θ∗)
P̂θ(Y)p(θ)

q{θ∗ → θ}

q{θ → θ∗}

)
.
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Particle MCMC Comparing the standard MCMC and the particle MCMC

The Particle Gibbs sampler (PGS)

For each iteration
Sample θ∗ ∼ p(·|t)
Run the conditional CSMC algorithm targeting πθ∗(t|Y) conditional on
t and its ancestral lineage.
Sample t∗ ∼ π̂θ∗(·|Y).
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Particle MCMC

Estimation of the parameters with PMMH

True value: θ = 2

Using 100 datasets

Averaged estimate: 1.99

Standard deviation: 0.25

y-axis: Coverage probability
x-axis: Credible intervals
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Ongoing and Future Work

1 Background

2 Combinatorial Sequential Monte Carlo (CSMC)

3 Particle MCMC

4 Ongoing and Future Work
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Ongoing and Future Work

Ongoing and Future Work

Harnessing non-Local evolutionary events for tree inference
Slipped strand mispairing (SSM)

Joint estimation of Multiple Sequence Alignment (MSA) and
phylogeny

Inferring large scale trees on Graphics Processing Units (GPUs)
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Ongoing and Future Work A General Evolutionary Model for Phylogenetics

An Example of Evolutionary Events

Slipped Strand Mispairing (SSM)⇒ long indels that depend on their contexts

TA C

SSM insertion: (G T)

TA CG

TG C

TG CTG
Point insertion: A

TG CTG A

CTG A
Cv1 :

TA C!: 

TG

G

A Ending sequence

Starting sequence0
T1 Point deletion: G
T2 Point mutation: A->G

T3

T4

T5 SSM deletion: (G T)

T6
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Ongoing and Future Work A General Evolutionary Model for Phylogenetics

String-valued Continuous Time Markov Chain (CTMC)

This process is parametrized by the rate of departing from s, λ(s), and
the jumping distribution, J(s→ ·).

Waiting time at s: t ∼ Exp(λ(s)); λi = λ(si).

0 T1 T2 T3 Branch length

Strings

J(s2->s3)

TA CGs0

TA Cs1

TG Cs2

TG CTGs3

TG CTG As4

CTG As5

T4 T5 T=T6

!2exp(-!2t2)
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Ongoing and Future Work Summary

Summary

A combinatorial SMC method

Particle MCMC

Future work

Applicable to Bayesian inference
in combinatorial spaces

Converges to the true posterior
asymptotically

Computationally fast
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Ongoing and Future Work Summary

Summary

A combinatorial SMC method

Particle MCMC

Future work

Using the proposed SMC within
MCMC iterations

The Markov chain can explore
the combinatorial space
efficiently

Accurate estimate of the
parameters
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Summary

A combinatorial SMC method

Particle MCMC

Future work

Harnessing non-Local
evolutionary events for tree
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Joint estimation of MSA and
phylogeny

Inferring large scale trees on
GPUs
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