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Diffusions

A diffusion is a continuous-time Markov process with continuous sample paths. We
can define a diffusion as the solution of a Stochastic Differential Equation (SDE):

dXt = µ(Xt)dt + σ(Xt)dBt.

Intuitively this defines the dynamics over small time intervals. Approximately for
small h:

Xt+h|Xt = xt ∼ xt + hµ(xt) + h1/2σ(xt)Z,

where Z is a standard normal random variable.



Transition Densities

We will denote the transition density of the diffusion by

p(y|x, h) = p(Xt+h = y|Xt = x).

It satisfies Kolmogorov’s forward equation:

∂

∂t
p(y|x, t) = Kyp(y|x, t),

for some forward-operator Ky which acts on y.

Generally the transition density is intractable. Exceptions include models with both
σ(x) = σ and µ(x) = a + bx. Xt is then a Gaussian process.



The Exact Algorithm

Generally simulation and inference for diffusions is performed by approximating the
diffusions by a discrete-time Markov process.

However, work by Beskos, Papaspiliopoulos and Roberts demonstrate how to sim-
ulate from a class of diffusion models where (possibly after transformation):

• The volatility is the identity: σ(x) = I.

• The drift is the gradient of a potential: µ(x) = ∇A(x).

This can be applied to almost all 1-d diffusions, and almost no others.



Current Approaches: The Exact Algorithm

The exact Algorithm is a Rejection Sampler based on proposing paths from Brow-
nian motion.

The acceptance probability for the path is (for σ(x) = 1) proportional to:

exp

{
−
∫ T

0

µ(Xt)dXt +
1

2

∫ T

0

µ(Xt)
2dt

}
= exp

{
A(XT )− A(X0)−

1

2

∫ T

0

(
µ(Xt)

2 + µ′(Xt)
)

dt

}
.

Whilst this cannot be evaluated, events with this probability can be simulated.



Avoiding time-discretisation Errors: Why?

Beskos, Papaspiliopoulos, Roberts and Fearnhead (2006) extend the rejection sam-
pler to an importance sampler, and show how this can used to perform inference for
diffusions which avoids time-discretisation approximations.

Why may these methods be useful?

• Error in estimates are purely Monte Carlo. Thus it is easier to quantify the
error.

• Time-discretisation may tend to use substantially finer discretisations than are
necessary: possible computational gains?

• Error is O(C−1/2), where C is CPU cost. Alternative approaches have errors
that are e.g. O(C−1/3) or worse.



Our Aim

Our aim was to try and extend the ability to perform inference without time-
discretisation approximations to a wider class of diffusions.

The key is to be able to unbiasedly estimate expectations, such as E(f (Xt)) or
E(f (Xt1, . . . , Xtm)).



The Exact Algorithm: Generalising Conditions

The condition µ(x) = ∇A(x) is required to replace the stochastic integral by a
Lebesgue one. It is a necessary and sufficient condition for Girsanov’s formula to
be bounded for bounded sample paths.

The condition σ(x) is the identity as otherwise we do not have a proposal distribu-
tion that is tractable and absolutely continuous wrt to the target:

Consider two diffusions with different diffusion coefficients, σ1 and σ2, then their
laws as NOT mutually absolutely continuous ...

even though their finite-dimensional distributions typically are.



New Approach: CIS

We now derive a continuous-time importance sampling (CIS) procedure for unbiased
inference for general continuous-time Markov models.

We will describe the CIS algorithm for generating a single realisation. So at any
time t we will have xt and wt, realisations of random variables Xt,Wt such that

Ep(f (Xt)) = Eq(f (Xt)Wt).

The former expectation is wrt to the target diffusion, the latter wrt to CIS proce-
dure.

We will use a proposal process with tractable transition density q(x|y, t) (and

forward-operator K(1)
x ).



A discrete-time SIS procedure

First consider a discrete-time SIS method aimed at inference at times h, 2h, 3h, . . . ,.

(0) Fix x0; set w0 = 1, and i = 1.

(1) Simulate Xih = xih from q(xih|x(i−1)h).
(2) Set

wi = wi−1
p(xih|x(i−1)h, h)

q(xih|x(i−1)h, h)

(3) Let i = i + 1 and goto (1).

Problems: cannot calculate weights, and often the efficiency degenerates as h→ 0
for fixed T .



Random weight SIS

It is valid to replace the weight in the SIS procedure by a random variable whose
expectation is equal to the weight.

A simple way to do this here is to define

r(y, x, h) = 1 +

(
p(y|x, h)

q(y|x, h)
− 1

)
1

λh
,

and introduce a Bernoulli random variable Ui, with success probability λh.

Then
p(y|x, h)

q(y|x, h)
= E {(1− Ui) · 1 + Uir(y, x, h)} .



Random weight SIS

Now we can have a random weight SIS algorithm:

(0) Fix x0; set w0 = 1, and i = 1.

(1) Simulate Xih = xih from q(xih|x(i−1)h).
(2) Simulate Ui. If Ui = 1 then set wi = wi−1r(xih, x(i−1)h, h), otherwise wi = wi−1.

(3) Let i = i + 1 and goto (1).

This is a less efficient algorithm than the previous one, but it enables us to now use
two tricks: retrospective sampling and Rao-Blackwelisation.



Retrospective Sampling

We only need to update the weights at time-points where Ui = 1. At these points
we need to simulate Xih, X(i−1)h to calculate the new weights.

If j is the most recent time when Uj = 1, then the distribution of Xih is given by
q(xih|xjh, (i− j)h).

Given xjh and xih the conditional distribution of X(i−1)h is

q(x(i−1)h|xjh, xih) =
q(x(i−1)h|xjh, (i− j − 1)h)q(xih|x(i−1)h, h)

q(xih|xjh, (i− j)h)
.



New SIS algorithm

Using these ideas we get:

(0) Fix x0; set w0 = 1, j = 0 and i = 1.

(1) Simulate Ui; if Ui = 0 goto (3).

(2) [Ui = 1] SimulateXih from q(xih|xjh, (i−j)h) andX(i−1)h from q(x(i−1)h|xjh, xih).
Set

wi = wjr(xih, x(i−1)h, h).

(3) Let i = i + 1 and goto (1).

If we stop the SIS at a time point t, then Xt can be drawn from q(xt|xjh, t− jh);
and the weight is wj.



Example
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Rao-Blackwellisation

At time ih, the incremental weight depends on xih and x(i−1)h. Rather than simu-
lating both we simulate xih, and use an expected incremental weight

ρh(xih, xjh, (j − i)h) = E
(
r(xih, X(i−1)h, h) | xjh

)
,

with expectation with respect to the conditional distribution of X(i−1)h given
xjh, xih under the proposal:

E
(
r(xih, X(i−1)h, h) | xjh

)
=

∫
r(xih, x(i−1)h, h)q(x(i−1)h|xjh, xih)dx(i−1)h.



New SIS algorithm

Using these ideas we get:

(0) Fix x0; set w0 = 1, j = 0 and i = 1.

(1) Simulate Ui; if Ui = 0 goto (3).

(2) [Ui = 1] Simulate Xih from q(xih|xjh, (i− j)h) and set

wi = wjρh(xih, xjh, (i− j)h).

(3) Let i = i + 1 and goto (1).

If we stop the SIS at a time point t, then Xt can be drawn from q(xt|xjh, t− jh);
and the weight is wj.



Continuous-time SIS

The previous algorithm cannot be implemented as we do not know p(·|·, h). How-
ever, if we consider h → 0 we obtain a continuous-time algorithm that can be
implemented.

The Bernoulli process converges to a Poisson-process.

In the limit as h→ 0, if we fix t = ih and s = jh we get

ρ(xt, xs, t− s) = lim
h→0

ρh(xt, xs, t− s) = 1 +
1

λ

(
(Kx −K(1)

x )q(x|xs, t− s)
q(x|xs, t− s)

)∣∣∣∣∣
x=xt

.



CIS Algorithm

(0) Fix x0; set w0 = 1 and s = 0.

(1) Simulate the time t of the next event after s in a Poisson process of rate λ.

(2) Simulate Xt from q(xt|xs, t− s); and set

wt = ws × ρ(xt, xs, t− s).

(3) Goto (1).

If we stop the SIS at a time point T , then XT can be drawn from q(xT |xs, T − s);
and the weight is wj.



Example CIS
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Does it work?

Not always! A necessary and sufficient condition for the method to be valid (ie
unbiased) is that the weight process {ws; s ≥ 0} is a martingale.

This does not automatically happen as Wt can be negative: thus E(|Wt|) can be
infinite.



CIS: Implementation for diffusions

The target process is
dXt = µ(Xt)dt + σ(Xt)dBt.

Denote event times by τ1, τ2, . . ., and τ (t) the time of the most-recent even prior to
t.

Proposal process needs to be tractable: e.g. constant drift and volatility.

• Can allow rate of Poisson process to depend on time since last event: λ =
λ(t− τ (t)).

• At each renewal, can update the importance process:

dXt = b(τi)dt + v(τi)dBt.



Does it work?

In almost all cases where the proposal is not chosen to have v(τi) = σ(Xτi) then
the weight process turns out to NOT be in L1!

What about the copycat scheme? v(τi) = σ(Xτi), b(τi) = µ(Xτi)

Theorem:

1. If σ and µ are globally Libshitz, and σ is bounded away from 0, then the copycat
scheme is valid.

2. For all p > 1, there exists ε > 0 such that chosing λ(u) ∝ u−1+ε ensures that
{ws, s ≥ 0} is an Lp martingale.



Example: CIR Diffusion

We consider estimating the transition density for a 2-d CIR model:

[
dX

(1)
t

dX
(2)
t

]
=

[
−ρ1(X(1)

t − µ1)
−ρ2(X(2)

t − µ2)

]
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√
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t 0

ρσ2

√
X
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√
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t
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t
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]

We compare the CIS with a time-discretisation approach based on the ideas in
Durham and Gallant (2002), for varying CPU cost.



Example: CIR Diffusion
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Example: Hybrid Systems

CIS can be applied to other continuous-time Markov processes.

One example is a hybrid linear diffusion/Markov-jump process:

dXt = (a(t, Yt) + b(t, Yt)Xt) dt + σ(t, Yt)dBt,

and Yt is a Markov-jump process with generator (rate-matrix) Q(Xt).

Such processes arise in systems biology and epidemic models



Example: Hybrid Systems

If we can bound the rate, λ(Xt, yt) of leaving a state yt by λ̄, then we can simulate
from this process using thinning:

• Simulate the next time, τ from a Poisson Process with rate λ̄.

• Simulate Xτ .

•With probability λ(Xτ , yt)/λ̄ simulate an event in the Yt process.

CIS can be implemented in a way similar to thinning, but does not require a bound,
λ̄. Instead if λ(Xτ , yt) > λ̄ we get an Importance Sampling Correction.



Auto-Regulatory System

We applied this to a hybrid system based on a 4-dimensional model of an autoreg-
ulatory system.

We looked at the accuracy of estimating the likelihood of data at a single time-point.

We utilised the tractability of the Xt process after the last event-time at which we
(potentially) updated the Yt process to improve the accuracy of our estimate – this
advantages methods with fewer event times.



Auto-Regulatory System: Comparison with Euler
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Comparison with (approximate) Thinning

Thinning with bound on rates chosen so that Pr(λ(Xτ , yt) < λ̄) ≈ 1
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Discussion

This is a very flexible and potentially powerful method. Can be used to unbiasedly
estimate density (likelihood), expectations, etc.

There are numerous variance reduction methods that can be used

There is a related approach for diffusions by Wolfgang Wagner. His approach can
be viewed as Importance Sampling, whereas ours is most similar to Sequential
Importance Sampling. This has advantages in terms of using ideas (resampling,
adapting proposals) from SIS to improve accuracy.

There are links of our method with Thinning of Jump-Markov processes.

Dealing with the negative weights is an important issue.


