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How is DA used today in geosciences?

Present-day data-assimilation systems are based on
linearizations and state covariances are essential.

4DVar, Representer method (PSAS):

- Gaussian pdf’s for the state, solves only for posterior mode,
needs error covariance of initial state (B matrix)

(Ensemble) Kalman filter:

- assumes Gaussian pdf’s for the state, approximates posterior
mean and covariance, doesn’t minimize anything in nonlinear
systems, needs inflation and localisation

Combinations of these: hybrid methods (!!!)



Notation

* Prior knowledge, the Stochastic PDE:
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* Observations: | "

* Relation between the two: | " = H(2") + €"




Nonlinear filtering: Particle filter
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Why are particle filters degenerate |

Probability space in large-dimensional systems is

‘empty’: the curse of dimensionality
s
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Why are Particle Filters degenerate |

* The volume of a hypersphere of radius r in an
M dimensional space is

T’M
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* Taking for the radius r ~ 30, we find, using
Stirling:
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* So very small indeed.



Why are Particle Filters degenerate ll|

For the optimal proposal density we find, for Gaussian
process model and Gaussian observation errors:
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Ignoring covariances we find:
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Why are Particle Filters degenerate?

* ‘Number of particles needed grows exponentially with dimension
of the state vector (Bickel et al, 2007).

* Aslightly different view: degeneracy due to number of
independent observations.

* Thisis related to the extremely narrow likelihood, a tiny move of a
particle gives a completely different weight.



The statistics

* The Stochastic PDE: | " = f(x”—l) + gn!

mn

e Observations: Y

» Relation between the two: | y"" = H(2") + €"

Assume: 3~ N(0,Q)
e ~ N(0, R)
H is linear



The Equivalent-Weights Particle Filter

* Use simple proposal at each time step, e.g. ‘nudging’.

e Use different proposal at final time step to ensure that
weights are very similar.




Proposal density between observations

We can explore the fact that the model needs several
O(100) time steps between observations, e.g. by using
a relaxation term in the proposal:

q(@"|a; " y") = N (fap )+ S (y" = H ™), Q)

Corresponding to an evolution equation for each particle

) =) + 3+ S (y — H(ap ™))




Proposal density between observations

* One could also use the ‘optimal proposal density’
between observations.

 This can be implemented as a minimization method for
each particle, and is also known as the Implicit Particle
Filter.

* This is related to a method called 4DVar in meteorology
and oceanography, which explores only the mode of the
joint-in-time pdf.



Proposal density at observation time:
the essence of the Equivalent-Weights Particle Filter

The proposal density depends on the maximum weight from
a deterministic particle can achieve during the last time
step:

g ("l yn) if wneT > qtereet
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The target weight is set by the user, as e.g. the weight that
80% of the particles can achieve.




The maximum weights

1. We know:

p(y"|x?)  plaiap™)
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2. Write down expression for each weight ignoring proposal:
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3. When H is linear this is a quadratic function in x/
for each particle. Otherwise linearize.




The target weight
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Target weight




The Equivalent-Weights Particle Filter

The proposal density is chosen as:

g (2t ") i W > qptereet
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The target weight is set by the user, as e.g. the weight that
80% of the particles can achieve.




The two proposal densities

For particles that can reach the target weight we use:

ql(xn‘x?_la ym> — (1 R €>U (i)l _ WUQI/Q]W '@Z T ’VUQl/?]-)
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For particles that cannot reach the target weight we use:

(2" a7y = N (fp ), Q)




The deterministic move

target weight

weight contour

Determine o at crossing of line with target weight contour in:

i = f(2}7Y) + K (y" = H(f(a77"))
with

K=QH"(HQH" + R)™




Equivalent-Weights Particle Filter

Use relaxation-term proposal up to last time step
Calculate w/™** and target weight (e.g. 80%)

Calculate deterministic moves for high-weight
particles:

i = f(2}7) + K (y" = H(f(a7"))

Determine stochastic move

e

p(577") o< (1 = a)U[=b,b] + aN(0,Q)

Calculate new weights and resample ‘lost’ particles



How essential are Gaussian
assumptions?

Allows for analytical expressions.
But no real need.

w/"% calculations do not have to be very
accurate.

Same for wtarget.
Deterministic move has to be very accurate,
good iterative schemes should be used.



Application: the barotropic vorticity equation

Stochastic barotropic vorticity equation:

dq
— -Vg=F
8t+u q

e 256 by 256 grid - 65,536 variables
* Doubly periodic boundary conditions

* Semi-Langrangian time stepping scheme

* Twin experiments

* Observations every 50 time steps — decorrelation time of 42
e 32 particles



Fully observed system
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Individual
particles
are not
smooth.
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The update of the unobserved part

Particle 23 before update Particle 23 after update Difference



Time evolution for different relaxation strengths
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Y4 observations over half of state
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Marginal posterior probability densities
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Rank histograms
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Truth: Ly=5 gridpoi -PF: L,=9 gridpoints
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Conclusions

* Particle filters do not need state covariances.

* Degeneracy is related to number of observations, not to size
of the state space.

* Proposal density allows enormous freedom
» Equivalent-weights scheme solves dimensionality problem?
* Other efficient schemes are being derived.

 Future plans: numerical weather prediction, climate forecasting
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