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AIDS MILESTONE

New path for HIV vaccine

Some in Study p['()tected to set in: Tangiblg progress could fmstratgng and fruitless.
Sikelh i, 48 : take another decade, But by Thursday afternoon, ini-
from 1nfect10n, but trial A Thai and American team an- ]toial euphoria gave way to a more so-
1 \ 1 nounced early Thursday in Bang- ber assessment, There is still a ve
s e questlons kok that they had found a combina- long way to go before reaching t}I;Z
| By Karen Kaplan tion of vaceines providing modest goal of producing a vaccine that re-
| and Thomas H. Maugh || protection against infection with liably shields people from HIV.
Los Angeles Times the virus that causes AIDS, un-  Some researchers questioned
Hours after HIV researchers leashing excitementworldwide. The whether the apparent 31 percent
announced the achievement of a idea of a yaccine to prevent infec- reduction in infections was a sta-
milestone that had eluded them for tion with the human immunodefi-
aquarter of a century, reality began clency virus, HIV; had long heen See VACCINE, Page 14

A researcher
during the Thai
phase [l HIV
Vaccine Trial,
also known as
RV 144, tests the
|| "prime-hoost”
*| combination of
| two vacoines.
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Hypotheses and Data:

Q

e Alvac had shown no effect
e Aidsvax had shown no effect

uestion: Would Alvac as a primer and Aidsvax as a booster work?

The Study: Conducted in Thailand with 16,395 individuals from the
general (not high-risk) population:

-

e 71 HIV cases reported in the 8198 individuals receiving placebos

e 51 HIV cases reported in the 8197 individuals receiving the treatment

/
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The test that was likely performed:

Let p; and py denote the probability of HIV in the placebo and

treatment populations, respectively.

Test Hy : p1 = po versus Hy : p1 > po

(vaccines were not live, so p; < ps can probably be ignored)

Normal approximation okay, so

,_ Pi—pa _ 00866 — 00622
0'{131_132} 00134 .

is approximately N(6, 1), where 6 = (p1 — p2)/(.00134).
We thus test Hy : 8 = 0 versus Hy : 8 > 0, based on z.

Observed z = 1.82, so the (one-sided) p-value is 0.034.

=
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Bayesian Analysis:

Prior distribution:
e Pr(H;) = prior probability that H; is true, ¢ =0, 1,
e On H;:60>0, let w(0) be the prior density for 6.
Note: Hy must be believable (at least approximately) for this to be
reasonable (i.e., no fake nulls).

Subjective Bayes: choose these based on personal beliefs

Objective (or default) Bayes: choose
 J PT(H()) :PT(Hl) = %,
e 71(#) = Uniform(0,6.46), which arises from assigning

— uniform for p; on 0 < py < p1,

— plug in for p; .

- /
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Posterior probability of hypotheses:

PT(H0|Z)

probability that Hy true, given data z
f(z]|0 =0) Pr(H)
Pr(Hy) f(x|6 =0)+ Pr(H;) fooo f(z]0)m(0)do

For the objective prior, Pr(Hy | z = 1.82) =~ 0.337  (recall, p-value ~ .034)
Posterior density on H; : 6 > 0 is
7(0)z = 1.82, Hy) oc 7(0) £(1.82 | ) = (0.413)e~=(1:82-0)
for 0 < 0 < 6.46.

- /
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/Robust Bayes: Report the Bayes factor (the odds of Hy to Hy) as a \
function of w¢(6) = Uniform(0, C):

1 ,—(1.82)%/2

Boy (C) = likelihood of Hg for observed data o
o B average likelihood of Hj B fc 1 —(1.82-60)2/2(—140
0 V2r
3 < _

Note: ming By (C) = 0.265 (while Byy(6.46) = 0.51).
\Note: This is the same Bayes factor envelope for nonincreasing priors. /

8



Subjective Bayes 2009 December 14-16, 2009

4 N

Outline

e Background on multiplicity

e Bayesian approach to control of multiplicity

e A simple example: multiple testing under exclusivity

e Variable selection (including comparison with empirical Bayes)

e Subgroup analysis
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/ Multiplicity Arising in SAMSI Programs \

— FExample: Analysis of gene expression microarrays, with tests concerning

the mean differential expression, u;, of genes ¢ =1,...,10,000:

Ho:pui =0 versus Hi:u; #0.
Multiplicity problem: Even if all u; = 0, one would find that roughly 500
tests reject at, say, level a = 0.05, so a correction for this effect is needed.

— FExzample: In Syndromic Surveillance, many counties in the USA perform
daily tests on the ‘excess’ of some symptoms, the goal being early

detection of the outbreak of epidemics or of bio-terrorist attacks.

— FExample: 1.6 million tests of CMB radiation for non-Gaussianity in the

spatial distribution.

\ — Fzxample: Variable selection in structural equation modeling /
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Additional motivations for the program:

— Multiplicity adjustment is often ignored, because of

x lack of understanding of the importance of the issue
- American Scientist (January 2007) article about personalized medicine
barely mentioned the problem.
- Nature (January 2007) article reviewing the status of personalized

medicine didn’t mention multiplicity at all.

x the lack of suitable adjustment methodology

— Indications of an increasing problem with reproducibility in science

x In the USA, drug compounds entering Phase I development today have
an 8% chance of reaching market, versus a 14% chance 15 years ago
+x Even our most rigorously controlled statistical analyses do not seem
to be immune:
- 50% phase III failure rates are now being reported, versus a 20%

failure rate 10 years ago

\ - reports that 30% of phase III successes fail to replicate /
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1. Represent the problem as a model uncertainty problem: Models M, with

densities f;(x | 8;) for data x, given unknown parameters 6;; prior
distributions 7;(0;); and marginal likelihoods m;(x) = [ fi(x | 8;)m:(0:)d0;.

2. Specify prior probabilities, P(M,;), of models to reflect the multiplicity
issues; Bayesian analysis controls multiplicity through P(M;) @

o Subjective Bayesian Analysis: If the P(M;) are real subjective
probabilities, or arise from subjective modeling of the probabilities, that’s

it: multiplicity correction has been done.

e Objective Bayesian Analysis: One has to be careful to make choices of the
P(M;) that ensure multiplicity correction (e.g., specifying equal prior
probabilities does not generally control multiplicity)!

3. Implement Bayesian model averaging (model selection?), based on

P(M;) m;(x

P(M, | x) = — M) mix)
D=1 P(M;) m;(x)

asee, e.g., Jeffreys 1961; Waller and Duncan 1969; Meng and Demptster 1987; Berry

QQSS; Westfall, Johnson and Utts 1997; Carlin and Louis 2000. /
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/Simple Example: Multiple Testing under Exclusivity \
Suppose one is testing mutually exclusive hypotheses H;, 1 =1,...,m, so

each hypothesis is a separate model. If the hypotheses are viewed as
exchangeable, choose P(H;) = P(M;) =1/m.
Example: 1000 energy channels (or 10'? at CERN) are searched for a

signal:

e if the signal is known to exist and occupy only one channel, but no
channel is theoretically preferred, each channel can be assigned prior
probability 0.001.

e if the signal is not known to exist (e.g., it is the prediction of a
non-standard physics theory) prior probability 1/2 should be given to
‘no signal,” and probability 0.0005 to each channel.

Note: this is the answer regardless of the data structure.

\Note: equal prior model probabilities does provide multiplicity control here/
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Variable Selection

Problem: Data X arises from a normal linear regression model, with m

possible regressors having associated unknown regression coefficients

Bi,i=1,...m, and unknown variance o?2.

Models: Consider selection from among the submodels M;, 1 =1,...,2™,
having only k; regressors with coefficients 3, (a subset of (51,...,06m)) and
resulting density f;(x | 3;,02).

Prior density under M;: Zellner-Siow priors m;(3,,0?) in examples.
Marginal likelihood of M;: m;(x) = [ fi(x| B;,0%)m:(8;,0°) dB,;do”
Prior probability of M;: P(M;)
Posterior probability of M;:
P(M; | x) =

. /
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Equal prior probabilities: P(M;) =2—™
Bayes exchangeable variable inclusion:

e Each variable, 3;, is independently in the model with unknown

probability p (called the prior inclusion probability).

e p has a Beta(p | a,b) distribution, chosen to represent prior beliefs

concerning the unknown p.

e Then, since k; is the number of variables in model M,

Beta(a + ki, b+m — k;)

1
P(M) = [ 9% =) Beta(p | . ) pos

Empirical Bayes exchangeable variable inclusion: Find the MLE p by
m—k,;

maximizing the marginal likelihood of p, ) j p¥i (1 —p)
P(M;) = p* (1 — p)™ % as the prior model probabilities.

-

=

im;(x), and use

/
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Equal prior probabilities: P(M;) = 27" does not control for multiplicity

here; it corresponds to fixed prior inclusion probability p = 1/2 for each
variable, which is rarely appropriate. (Ley and Steel (2007) show other

inadequacies of this choice.)

Empirical Bayes exchangeable variable inclusion does control for

multiplicity, in that p will be small if there are many (3; that are zero.

Bayes exchangeable variable inclusion also controls for multiplicity (see
Scott and Berger, 2008), although the P(M;) are fixed.

Note: The control of multiplicity by Bayes and EB variable inclusion usually
reduces model complexity, but is different than the usual Bayesian Ockham’s

razor effect that reduces model complexity.

e The Bayesian Ockham’s razor operates through the effect of model priors

m:(B,,0%) on m;(x), penalizing models with more parameters.

\o Multiplicity correction occurs through the choice of the P(M,). /
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Equal model probabilities

Bayes variable inclusion

Number of noise variables

Number of noise variables

Signal 1 10 40 90 1 10 40 90
B1:—1.08 | 999 .999 .999 .999 999 999 999  .999
B2 :—0.84 | 999 .999 .999 .999 999 .999 999  .988
B3 :—0.74 | 999 .999 .999 999 999 999 999  .998
By:—0.51 | 977 977  .999 .999 991 .948 710  .345
Bs:—0.30 | .292 .289  .288 127 552 248  .041  .008
Be : +0.07 | .259 .286 .055 .008 519 251 .039  .011
B7:40.18 | 219 .248 .244 275 455 216 .033  .009
Bg:4+0.35 | 773 771 994 .999 896 .686 .307  .057
By : +0.41 | 927 912  .999 .999 969 .861 .567 = .222
Bio : +0.63 | .995 .995  .999 .999 996 .990 .921  .734
False Positives 0 2 5 10 0 1 0 0

Table 1: Posterior inclusion probabilities for 10 real variables in a simulated data set,

\With a uniform prior chosen for p.

=

/
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Theorem 1 In the variable-selection problem, if the null model (or full model)

A

-

has the largest marginal likelihood, m(x), among all models, then the MLE of p is
p=0 (orp=1.) (The naive EB approach, which assigns
P(M;) = p*i (1 —p)™ ¥i, concludes that the null (full) model has probability 1.)

simulation with 10,000 repetitions to gauge the severity of the problem:
e m = 14 covariates, orthogonal design matrix

e p drawn from U(0, 1); regression coefficients are 0 with probability p and

drawn from a Zellner-Siow prior with probability (1 — p).

e n = 16, 60, and 120 observations drawn from the given regression model.

Case p=0 p=1
n =16 820 781
n = 60 783 766
n =120 | 723 AT

=
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Is empirical Bayes at least accurate asymptotically as m — oo?

Posterior model probabilities, given p:

p* (1 —p)" "imi(x)
> PP (1 —p)™Fim;(x)

P(MZ | va) —

Posterior distribution of p: w(p | x) = K Y. p" (1 — p)™ *im;(x)
This does concentrate about the true p as m — oo, so one might expect that
P(M; | x) = [y P(M; | x,p)m(p | x)dp ~ P(M; | x,p) oc mi(x) p¥ (1 — p)™ ",

This is not necessarily true; indeed

| P xpro 1 0dp = [ PR gy ) dp

«WM@LpWLmW*W@@mw@WMM.

Caveat: Some EB techniques have been justified; see Efron and Tibshirani (2001),
Johnstone and Silverman (2004), Cui and George (2006), and Bogdan et. al. (2008).

- %
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Theorem 2 Suppose the true model size kp satisfies
kr/m = pr+ O(1/y/m) as m — oo, where 0 < ppr < 1. Consider all models
M; such that kr — k; = O(y/m), and consider the optimal situation for EB

. which

1
ﬁ:pT—FO(—m) as m — 0.

Then the ratio of the prior probabilities assigned to such models by the

Bayes approach and the empirical Bayes approach satisfies

Pp(Mi) _ Jy P (L= p)" Fim(p)dp O( 1 )

Ppp(Mi) — (p)F(1—p)m—h Vim

providing 7(-) is continuous and nonzero.

- %
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Subgroup Analysis

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Clopidogrel and Aspirin versus Aspirin Alone
for the Prevention of Atherothrombotic Events

Deepak L. Bhatt, M.D., Keith A.A. Fox, M.B., Ch.B., Werner Hacke, M.D.,
Peter B. Berger, M.D., Henry R. Black, M.D., William E. Boden, M.D.,
Patrice Cacoub, M.D., Eric A. Cohen, M.D., Mark A. Creager, M.D.,

). Donald Easton, M.D., Marcus D. Flather, M.D., Steven M. Haffner, M.D.,
Christian W. Hamm, M.D., Graeme J. Hankey, M.D., S. Claiborne Johnston, M.D.,
Koon-Hou Mak, M.D., Jean-Louis Mas, M.D., Gilles Montalescot, M.D., Ph.D.,
Thomas A. Pearson, M.D., P. Gabriel Steg, M.D., Steven R. Steinhubl, M.D.,
Michael A. Weber, M.D., Danielle M. Brennan, M.S., Liz Fabry-Ribaudo, M.S.N., R.N.,
Joan Booth, R.N., and Eric J. Topol, M.D., for the CHARISMA Investigators™

CONCLUSIONS
In this trial, there was a suggestion of benefit with clopidogrel treatment in patients
with symptomatic atherothrombosis and a suggestion of harm in patients with mul-
tiple risk factors. Overall, clopidogrel plus aspirin was not significantly more effective
than aspirin alone in reducing the rate of myocardial infarction, stroke, or death from
cardiovascular causes. (ClinicalTrials.gov number, NCT00050817.)

N ENGL ) MED 354,16 WWW.NEJM.ORG APRIL 20, 2006
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Hazard Ratio for MI, Stroke, or Death

Group from Cardiovascular Causes
Age :

<75 yr +

=75 yr —
Sex :

Female F

Male ——
Diabetes 1

Yes —-—

Ne —B—
Smoking ;

Yes .;

No ——
Body-mass index :

Normal (=25) +

Overweight (25 to <30) —B—

Obese (=30) —
Hypertension :

Yes ——

No —R—
Hypercholesterolemia :

Yes ——

No — .
History of CABG 1

Yes il

No S m
History of PCI ;

Yes |

No +
History of MI :

Yes —

No =
History of stroke :

Yes ——

No ——
Inclusion group :

Asymptomatic w i

Symptomatic —H
All patients —overall cohort 0.93 (0.83-1.05) —.—f—

0|.5 1‘.0 l|,5
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Frequentist adjustment for performing 26 hypothesis tests

e Split the data into one part to suggest a subgroup and another part to
confirm (or confirm with a new experiment).
e Bonferonni correction

— To achieve an overall error probability level of 0.05 when conducting

26 tests, one would need to use a per-test rejection level of
a = 0.05/26 = 0.002.

— This is likely much too conservative because of the dependence in
the 26 tests.

e Various bootstrap types of correction to try to account for dependence.

- /
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Bayesian adjustment

Let v be the vector of 25 zeroes and ones indicating subgroup

characteristics.

For each possible such vector, let py denote the mean of the intersected

subgroup (e.g., young, male, diabetic, non-smoker,...).

Data: x ~ f(x | {uwp,all possible v}).

Two classes of approaches
e Factor-based approaches

e Aggregation-based approaches

- /
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An example factor-based approach

Model the intersected subgroup means additively as

NU:M+U/67 /6:(517“'7625)/7

where p is an overall mean and f; is the effect corresponding to the 7"
subgroup factor.
Conversion to model selection:

o Let v = (70,7") = (70,71, ---,725) be the vector of zeroes and ones,
indicating whether u (corresponding to 7y) and each factor j; is zero or

not.

e This defines the model /\/l»y.

- /
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/An example of choosing the prior model probabilities: \
o P(y=0)=Pp=0)=3/4

e Independently, P(v* = 0) = 2/3 and v* # 0 have probability
« 26 DBeta(l+7r,1+425—r)
Py = 75 Beta(1,1) ’

where r = # zeroes in ~v".

e Note that then
— P(no effect) = P(u=0,v"=0)=1/2
— P(p#0,7"=0)=1/6

- P(p=0,y"#0)=1/4

— P(p#0,7" #0)=1/12
(i

— P(y; #0) = 13/75

The experimenter could (pre-experimentally) make different choices here to
reflect beliefs as to which subgroups might most likely exhibit an effect, as
long as P(no effect) is kept at 1/2. Post-experimentally, one cannot allow

@e experimenter to choose the prior probabilities of subgroups. /
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Possible Bayesian outputs of interest:

o P(effect of factor i 20 | x) = 2{7;%:1} P(M~ | x).
o P(effect in subgroup i # 0| @) =) (~.\ 1 or 4,213 DM~y | @)
o P(a constant effect #0 | x) = P(M4 gy | ).

Of course, posterior densities for all effects, conditional on their being

nonzero, are also available.

- /
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/Aggregation—based approaches \

Basic idea: Recall that for every intersected subgroup (e.g., young, male,
diabetic, non-smoker,...) there is an unknown mean pq. Plausible models
involve aggregation of these means into common effects, e.g. uy, = pov,.
There are a number of ways to aggregate means, including

e Product partition models (Hartigan and Berry)

e Dirichlet process models (Gopalan and Berry use for multiplicity control)
e Generalized partition models

e Species sampling models

e Tree-based models (our current favorite)
Surmountable problem: Any of these aggregate means could be zero;

with some work, this can typically be handled by adding “zero” to the list.

Harder problem: Not all (not even most) aggregations are sensible

\(e.g., UF G, = UFyGy F U Gy = [FyG, VETSUS [UF Gy = UFyGy 7 HF Gy = NFQGQ)'/
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/ Summary (about multiplicity) \

e Developing methods for controlling for multiplicity is a dramatically

increasing need in science.

e Approaching multiplicity control from the Bayesian perspective has the
attractions that

— there is a single approach that can be applied in any situation;

— since multiplicity is controlled solely through prior probabilities of
models, it does not depend on the error structure of the model;
— there is flexibility in the assignment of model prior probabilities;

* subjective assignments are pre-experimentally encouraged, to bring the
science into the problem,;

x post-experimental objective assignments are also possible to evaluate

“discovered” effects.

e Associated empirical Bayes analysis exhibits multiplicity control, but

cannot be assumed to be an approximation to the Bayesian analysis.

\o Bayesian subgroup analysis is promising, but challenging. /
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Thanks!
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