Philip E. Cheng, and Michelle Liou, Academia Sinica, John A.D. Aston ${ }^{\dagger}$, University of Warwick

1 The $2 \times 2 \times K$ Contingency Table -

 Setup and Notation- (X, Y, Z) denote the three-way categorical vector,
- $\left(X_{k}, Y_{k}\right)$ denote pairs of dichotomous variables, where Z is the K-level $(k=1, \ldots, K)$ stratum variable.
- observed data are frequency counts $n_{i j k}$ of subjects having condition i, $(i=1$ (case), 2 (control)), and exposure j ($j=1$ (exposed), 2 (non-exposed)), which fall in stratum $k, k=1, \ldots, K$
- $U=\left\{U_{k}=\left(n_{11 k}, n_{12 k} ; n_{21 k}, n_{22 k}\right), k=1, \ldots, K,\right\}$ denote the observed K strata of 2×2 tables.

A dot notation will be used for summation over a subscript, say, $n \ldots=n$ denotes the total sample size, $n_{1 \cdot k}$ is the number of cases in stratum k, and $n_{.2 k}$ is the total number of non-exposed subjects in stratum k, and so on.

$$
\begin{aligned}
& \overline{X=0} \frac{\frac{Z=0}{Y=0 Y=1}}{\frac{Y=1}{n_{000} n_{010}}} \frac{Z=1}{n_{001} n_{011}} \\
& \begin{array}{lllll}
X=1 & n_{100} & n_{110} & n_{101} & n_{111}
\end{array}
\end{aligned}
$$

Table 1: An example of a $2 \times 2 \times 2$ contingency table

2 Testing Hypotheses

Let the odds ratios of the 2×2 tables be defined by $\psi_{k}=p_{11 k} p_{22 k} / p_{12 k} p_{21 k}, k=1, \ldots, K$, where $p_{i j k}=$ $P(X=i, Y=j, Z=k), i, j=1$ or 2 , are the cell proportions.

- Conditional Independence

$$
\begin{equation*}
H_{0}: \psi_{k}=1, \text { for } k \in\{1, \ldots, K\} \tag{1}
\end{equation*}
$$

- Common Odds Ratio (COR)

$$
\begin{equation*}
H_{1}: \psi_{k}=\psi, \text { for } k \in\{1, \ldots, K\}, \tag{2}
\end{equation*}
$$

for a positive constant ψ.

- Uniform Association

Given a $\operatorname{COR} \psi$,

$$
\begin{equation*}
H_{2}: \psi=1 \tag{3}
\end{equation*}
$$

As can be seen $H_{2}=\left(H_{0} \mid H_{1}\right)$.

3 Classical Tests

- H_{0} - the Pearson chi-square test

$$
\begin{equation*}
\chi_{P E}^{2}=\sum_{k=1}^{K} \sum_{i, j=1}^{2} \frac{\left(n_{i j k}-n_{i \cdot k} n_{\cdot j k} / n_{\cdot \cdot k}\right)^{2}}{n_{i \cdot k} n_{\cdot j k} / n_{\cdot \cdot k}} . \tag{4}
\end{equation*}
$$

It approximates the chi-square distribution with K d.f., denoted χ_{K}^{2}.

- H_{1} - Breslow-Day test

$$
\begin{equation*}
\chi_{B D}^{2}=\sum_{k} \frac{e_{k}^{2}}{\operatorname{var}\left(n_{11 k} \mid \psi_{M H}\right)} . \tag{5}
\end{equation*}
$$

where the adjusted cell estimates e_{k} and the denominator variance can easily be found (e.g., Agresti 2002, p. 232), with

$$
\begin{equation*}
\psi_{M H}=\frac{\sum_{k=1}^{K}\left(n_{11 k} n_{22 k} / n_{. . k}\right)}{\sum_{k=1}^{K}\left(n_{12 k} n_{21 k} / n \cdot . k\right)} \tag{6}
\end{equation*}
$$

The B-D test approximates the chi-square distribution with $K-1$ d.f.

- H_{2} - Cochran-Mantel-Haenszel test, often wrongly believed to test H_{0}

$$
\begin{equation*}
\left.\chi_{C M H}^{2}=\frac{\left(\sum_{k=1}^{K} n_{11 k}-\sum_{k=1}^{K} n_{1 \cdot k} n_{\cdot 1 k} / n_{\cdot . k}\right)^{2}}{\sum_{k=1}^{K}\left\{n_{1 \cdot k} n_{2 \cdot k} n_{\cdot 1 k} n \cdot 2 k\right.} / n_{\cdot . k}^{2}\left(n_{\cdot \cdot k}-1\right)\right\} . \tag{7}
\end{equation*}
$$

The CMH test approximates the chi-square distribution with 1 d.f.

4 Information Identity

- (X, Y, Z) be the variables of a three-way $I \times J \times K$ contingency table.
- $f(i, j, k)=P(X=i, Y=j, Z=k), f(i), g(j), h(k)$; $i=1, \ldots, I, j=1, \ldots, J, k=1, \ldots, K$, denote the joint and marginal probability density functions (p.d.f.).
$H(X)+H(Y)+H(Z)=I(X, Y, Z)+H(X, Y, Z),(8)$ where
- $H(X, Y, Z)=-\sum_{(i, j, k)} f(i, j, k) \cdot \log f(i, j, k)$ is the joint entropy, and marginal entropies
- $I(X, Y, Z)=\sum_{(i, j, k)} f(i, j, k) \cdot \log \{f(i, j, k) / f(i) g(j) h(k)\}$ denotes the mutual information between the three variables.
Furthermore, $I(X, Y, Z)$ admits three equivalent expressions
$\log \left\{\frac{f(i, j, k)}{f(i) g(j) h(k)}\right\}=\log \left\{\frac{f(i, k)}{f(i) h(k)}\right\}+\log \left\{\frac{f(i, j, k)}{f(i, k) g(j)}\right\}$
$=\log \left\{\frac{f(i, k)}{f(i) h(k)}\right\}+\log \left\{\frac{f(j, k)}{g(j) h(k)}\right\}$
$+\log \left\{\frac{f(i, j, k) / h(k)}{f(i \mid k) f(j \mid k)}\right\}$,
where convenient notations $f(i, j)$ and $f(i \mid j)$ are used to denote j.p.d.f. and conditional p.d.f., respectively.
By taking expectations of the sampling versions of both sides of the above, an orthogonal decomposition of the mutual information using Z as the (common) conditioning variable (CV) is expressed as

$$
I(X, Y, Z)=I(X, Z)+I(Y, Z)+I(X, Y \mid Z)
$$

$I(X, Y \mid Z)=\operatorname{Int}(X, Y, Z)+I(X, Y \| Z)$.
The first summand $\operatorname{Int}(X, Y, Z)$ on the r.h.s. of (11) defines the three-way interaction between X and Y, across Z

5 Likelihood Ratio Tests

Let the conditional MLE under H_{0} be denoted by $W_{k}=$ $\left(n_{11 k}^{*}, n_{12 k}^{*} ; n_{21 k}^{*}, n_{22 k}^{*}\right), k=1, \ldots, K$, where $n_{i j k}^{*}=$ $n_{i \cdot k} n_{\cdot j k} / n_{. . k}$ are the conditional MLEs of the cell proportions given the margins, which are the sufficient statistics, of each 2×2 table.
The first term on the r.h.s. of (11) characterizes the conditional MLE under H_{1} by $V=\left\{V_{k}=\right.$ $\left.\left(\hat{n}_{11 k}, \hat{n}_{12 k} ; \hat{n}_{21 k}, \hat{n}_{22 k}\right), k=1, \ldots, K\right\}$, which can be computed by the IPF (Deming and Stephan, 1940) scheme. - H_{0} :

$$
D_{0}=2 D(U: W)=2 \sum_{k=1}^{K} \sum_{i=1}^{2} \sum_{j=1}^{2} n_{i j k} \log \left(n_{i j k} / n_{i j k}^{*}\right) \cong \chi_{K}^{2}\left(H_{0}\right)
$$

- H_{1} :

$$
\begin{equation*}
D_{1}=2 D(U: V)=2 \sum_{k=1}^{K} \sum_{j} \sum_{i} n_{i j k} \log \left(n_{i j k} / \hat{n}_{i j k}\right) \cong \chi_{K-1}^{2}\left(H_{1}\right) . \tag{13}
\end{equation*}
$$

- H_{2} :
$D_{2}=2 D(V: W)=2 \sum_{k=1}^{K} \sum_{j} \sum_{i} \hat{n}_{i j k} \log \left(\hat{n}_{i j k} / n_{i j k}^{*}\right) \cong \chi_{1}^{2}\left(H_{0} \mid H_{1}\right)$,

6 Power Analysis for LR Tests

Theorem 1. Let U be a $2 \times 2 \times K$ table. Let $W^{\prime} \in H^{\prime}$ be another $2 \times 2 \times K$ table, having the same table totals as those of U, sample odds ratios $\left(\psi_{1}, \ldots, \psi_{K}\right)$, and consecutive three-way sample interactions $1 \neq \gamma_{i}=$ $\psi_{i} / \psi_{i+1}>0, i=1, \ldots, K-1$. Then, there is a unique $2 \times 2 \times K$ table $V^{\prime}, V^{\prime} \in H_{1}^{\prime}$, having the same table margins as those of U, such that the following holds

$$
\begin{equation*}
D\left(U: W^{\prime}\right)=D\left(U: V^{\prime}\right)+D\left(V^{\prime}: W^{\prime}\right) \tag{15}
\end{equation*}
$$

Figure 1: Null Hypotheses: $D(U: W)=0=D(U: V)+D(V: W)$, $\gamma_{i}=1 ;$ Alternative Hypotheses: $D\left(U: W^{\prime}\right)=0=D\left(U: V^{\prime}\right)+D\left(V^{\prime}\right.$ $\left.W^{\prime}\right), \gamma_{i} \neq 1$.
Corollary 2. For $K=2$, the statistic $D\left(U: V^{\prime}\right)$ tests for a specific value of the interaction parameter $\gamma(\neq 1)$, and provides an interval estimation for the parameter γ of the observed data U.

7 An Example

	Poland	U.S.
Allele freq. \(
) Genotype	C G	C G
Case	62419	48447
Control	92371	51445

Data of two 2×2 tables are genotypes and allele frequencies for certain polymorphisms in the Polish and U.S. samples. (Ardlie, et al. 2002, Table 2).
The authors' analysis:

- Sample odds ratios 0.597 and 0.937 for the two tables
- COR estimate $\psi_{M H}=0.719$, with a 95% confidence interval ($0.60,0.87$).
- CMH test yields $\chi_{C M H}^{2}=5.88$ with $p=0.015$ (or $\chi_{M H}^{2}=5.56$ with $p=0.018$)
Authors' conclusion: "the two odds ratios are different".
- $D_{0}=8.55$ with $p=0.014, K=2$ d.f.
- $D_{1}=2.646$ with $p=0.104$, and the conditional MLE $\hat{\psi}=0.718$; further, $\psi_{M H}=0.719$ and $\chi_{B D}^{2}=2.653$, $p=0.103$.
- $D_{2}=5.905$ with $p=0.015$, which is significant at level $\alpha_{2} \approx \alpha / 2=0.025$.
Conclusion: There is evidence that the odds ratios differ from one, but no evidence that they differ from each other.

References

A Agresti. (2002) Categorical Data Analysis, New Jersey: Wiley KC Ardlie, KL Lunetta and M Seielstad (2002 Am. J. Hum. Genet., 71, 304-311. PE Cheng, M Liou and JAD Aston. (2010) Likelihood Ratio Tests in Three-Way Tables, JASA, in press.

