
Algebra for Markov Proposal Kernels

Algebra for Markov Proposal Kernels

Ian H. Dinwoodie
Duke University

Wogas2
April 2010

Algebra for Markov Proposal Kernels

Algebra and Sampling

Algebra for Markov Proposal Kernels

Algebra and Sampling
make a nice couple!

Algebra for Markov Proposal Kernels

Algebra and Sampling
make a nice couple!

Contingency tables (linear constraints, nonnegativity): toric
ideals; MCMC and SIS

0-1 tables (linear constraints, 0-1 valued): Erdos-Gallai,
Gale-Ryser Theorem; SIS

binary sequences in network dynamics (equations not too
coupled): elimination ideals; SIS

graphs, networks (equations highly coupled) : hard

Algebra for Markov Proposal Kernels

We want to sample from

Ω := L∩
c

\

i=1

{gi(x) = 0}

Here L is the set of binary or l-level sequences of length d .

Algebra for Markov Proposal Kernels

We want to sample from

Ω := L∩
c

\

i=1

{gi(x) = 0}

Here L is the set of binary or l-level sequences of length d .

This is a fractional design (Pistone and Rogantin).

Algebra for Markov Proposal Kernels

(≥) Three approaches for sampling from Ω:

Algebra for Markov Proposal Kernels

(≥) Three approaches for sampling from Ω:

1 A Backward SIS method computes elimination ideals over
finite fields and constructs partial solutions that extend.

Algebra for Markov Proposal Kernels

(≥) Three approaches for sampling from Ω:

1 A Backward SIS method computes elimination ideals over
finite fields and constructs partial solutions that extend.

2 A Forward SIS method uses numerical global optimization
to determine which partial solutions extend.

Algebra for Markov Proposal Kernels

(≥) Three approaches for sampling from Ω:

1 A Backward SIS method computes elimination ideals over
finite fields and constructs partial solutions that extend.

2 A Forward SIS method uses numerical global optimization
to determine which partial solutions extend.

3 Syzygies can be used with MCMC to improve annealing on
L.

Algebra for Markov Proposal Kernels

(≥) Three approaches for sampling from Ω:

1 A Backward SIS method computes elimination ideals over
finite fields and constructs partial solutions that extend.

2 A Forward SIS method uses numerical global optimization
to determine which partial solutions extend.

3 Syzygies can be used with MCMC to improve annealing on
L.

Algebra for Markov Proposal Kernels

Backward Sequential Importance Sampling (BSIS) on Ω:

0 Compute elimination ideals for IΩ, some polynomials that
define Ω and the discrete states.

1 Solve the polynomials in the ideals backwards with random
values, like back substitution.

2 A theorem says solutions “extend."
3 Keep track of weights for reweighting.

Algebra for Markov Proposal Kernels

Example. Aracena (2008) presents an example of network
dynamics with a large number of fixed points. Setting n = 21 (n
being his notation for number of nodes), we have 21 binary
maps given by

f1=x(2)
f2=x(21)*x(1)
...
...
f17=x(18)
f18=x(21)*x(17)
f19=x(20)
f20=x(21)*x(19)
f21=1-((1-x(2))*(1-x(4))*(1-x(6))*(1-x(8))*(1-x(10))*(1-x(12))*(1-x(14))*

(1-x(16))*(1-x(18))*(1-x(20)))

We have found 1023 = 2(21−1)/2 −1 fixed points, not the
1024 that seem to be predicted in Aracena.

Algebra for Markov Proposal Kernels

Example. Aracena (2008) presents an example of network
dynamics with a large number of fixed points. Setting n = 21 (n
being his notation for number of nodes), we have 21 binary
maps given by

f1=x(2)
f2=x(21)*x(1)
...
...
f17=x(18)
f18=x(21)*x(17)
f19=x(20)
f20=x(21)*x(19)
f21=1-((1-x(2))*(1-x(4))*(1-x(6))*(1-x(8))*(1-x(10))*(1-x(12))*(1-x(14))*

(1-x(16))*(1-x(18))*(1-x(20)))

We have found 1023 = 2(21−1)/2 −1 fixed points, not the
1024 that seem to be predicted in Aracena.
We can measure the size of the basin of attraction of the
fixed point 0 – SIS is good for approximate counting! We
estimate |F−∞(0)| ≈ 1+1010, and all points that hit 0 do
so in 0 or 1 iteration.

Algebra for Markov Proposal Kernels

The algebraic BSIS will not handle big problems like social
networks.

Algebra for Markov Proposal Kernels

The algebraic BSIS will not handle big problems like social
networks.

Forward SIS scales better, it uses global system solvers as
a tool to look forward to see which possible current states 0
or 1 will lead to a feasible full sequence.

Algebra for Markov Proposal Kernels

The algebraic BSIS will not handle big problems like social
networks.

Forward SIS scales better, it uses global system solvers as
a tool to look forward to see which possible current states 0
or 1 will lead to a feasible full sequence.

The global minimization steps are done numerically with a
certain tolerance – runs on large problems with little
memory use, but gives samples with some variability in
quality.

Forward SIS can be distributed over many processors.

Algebra for Markov Proposal Kernels

Forward Sequential Importance Sampling (FSIS) on Ω:

1 Test to see if values 0 or 1 are possible for xd (last
coordinate), by plugging them in and seeing if the
dimension d −1 equations have any solution.

Algebra for Markov Proposal Kernels

Forward Sequential Importance Sampling (FSIS) on Ω:

1 Test to see if values 0 or 1 are possible for xd (last
coordinate), by plugging them in and seeing if the
dimension d −1 equations have any solution.

2 The way to see if they have a solution is not algebraic this
time (not is 1 /∈ IΩ), rather you convert the problem to global
minimization in the usual way, and see if the minimum is 0.

Algebra for Markov Proposal Kernels

Forward Sequential Importance Sampling (FSIS) on Ω:

1 Test to see if values 0 or 1 are possible for xd (last
coordinate), by plugging them in and seeing if the
dimension d −1 equations have any solution.

2 The way to see if they have a solution is not algebraic this
time (not is 1 /∈ IΩ), rather you convert the problem to global
minimization in the usual way, and see if the minimum is 0.

3 Choose the value randomly from the winners, keep track of
weights, keep going through xd ,xd−1, . . . ,x1.

Algebra for Markov Proposal Kernels

Forward Sequential Importance Sampling (FSIS) on Ω:

1 Test to see if values 0 or 1 are possible for xd (last
coordinate), by plugging them in and seeing if the
dimension d −1 equations have any solution.

2 The way to see if they have a solution is not algebraic this
time (not is 1 /∈ IΩ), rather you convert the problem to global
minimization in the usual way, and see if the minimum is 0.

3 Choose the value randomly from the winners, keep track of
weights, keep going through xd ,xd−1, . . . ,x1.

4 Errors happen.

Algebra for Markov Proposal Kernels

Global optimization methods attempt to minimize a
real-valued function from any initial point and without
convexity assumptions.

Algebra for Markov Proposal Kernels

Global optimization methods attempt to minimize a
real-valued function from any initial point and without
convexity assumptions.

Nonmonotone line search methods often play a key role but
other methods are also possible (Nelder-Mead).

Algebra for Markov Proposal Kernels

Global optimization methods attempt to minimize a
real-valued function from any initial point and without
convexity assumptions.

Nonmonotone line search methods often play a key role but
other methods are also possible (Nelder-Mead).

We used one by LaCruz, Martinez, and Raydan (2006), a
development of the Barzilai-Borwein spectral method,
which is refined and implemented in the R package BB
(Varadhan and Gilbert, 2008).

Algebra for Markov Proposal Kernels

Example. Network of mutually “known" researcher in the EIES.1
data set from SIENA.

Algebra for Markov Proposal Kernels

Example. Network of mutually “known" researcher in the EIES.1
data set from SIENA.

Want conditional parameter significance. Conditional
conclusion for significance agrees with existing method on
this example.

Algebra for Markov Proposal Kernels

Example. Network of mutually “known" researcher in the EIES.1
data set from SIENA.

Want conditional parameter significance. Conditional
conclusion for significance agrees with existing method on
this example.

Example where the ergm software (Handcock, Hunter et
al., 2009) has difficulty, and thus one where the conditional
approach may be essential, is the network of mutual friends
in EIES.1 – could not get fitted parameter values.

Algebra for Markov Proposal Kernels

Figure: EIES network of mutually known researchers

Algebra for Markov Proposal Kernels

If y is a symmetric 0-1 adjacency matrix with no loops, then yij

indicates edge between nodes i and j .

E(y) = ∑
1≤i<j≤32

yij

T (y) = ∑
1≤i<j<h≤32

yijyihyjh

A(y) = ∑
2≤k≤31

(−1/2)k−2

(

32

∑
i=1

(

yi+

k

)

)

A 3-parameter network probability model is

qη,τ,α(y) = κe(ηE(y)+τT (y)+αA(y))

Algebra for Markov Proposal Kernels

We want the significance of the alternating k -star term A(y).

Algebra for Markov Proposal Kernels

We want the significance of the alternating k -star term A(y).

Fit model with ergm function of the ergm R package:

α̂ = 1.6816 and reported p-value of 0.630

Algebra for Markov Proposal Kernels

We want the significance of the alternating k -star term A(y).

Fit model with ergm function of the ergm R package:

α̂ = 1.6816 and reported p-value of 0.630

We also want the conditional method: obtain a p-value for
A(y) using the conditional distribution of A(y) given the
observed value s of E(y0) and T (y0).

Algebra for Markov Proposal Kernels

We want the significance of the alternating k -star term A(y).

Fit model with ergm function of the ergm R package:

α̂ = 1.6816 and reported p-value of 0.630

We also want the conditional method: obtain a p-value for
A(y) using the conditional distribution of A(y) given the
observed value s of E(y0) and T (y0).
The conditional distribution is uniform on networks with the
same number of edges (113) and triangles (81).

Algebra for Markov Proposal Kernels

Syzygies for MCMC

πθ(x) =
e−θU(x)

zθ
, x ∈ L

where U := −∑c
i=1 g2

i .
Metropolis Algorithm on L:

Kθ(x,y) = K (x,y) ·min{1,e−θ(U(y)−U(x))}.

Algebra for Markov Proposal Kernels

Metropolis Algorithm on L:

Kθ(x,y) = K (x,y) ·min{1,e−θ(U(y)−U(x))}.

Algebra for Markov Proposal Kernels

Metropolis Algorithm on L:

Kθ(x,y) = K (x,y) ·min{1,e−θ(U(y)−U(x))}.

Some kernels K will be more efficient than others

Algebra for Markov Proposal Kernels

Metropolis Algorithm on L:

Kθ(x,y) = K (x,y) ·min{1,e−θ(U(y)−U(x))}.

Some kernels K will be more efficient than others
in that the proportion of rejected proposal moves will be smaller

Algebra for Markov Proposal Kernels

Metropolis Algorithm on L:

Kθ(x,y) = K (x,y) ·min{1,e−θ(U(y)−U(x))}.

Some kernels K will be more efficient than others
in that the proportion of rejected proposal moves will be smaller
leading to more mobility in the state space, faster convergence
to stationarity.

Algebra for Markov Proposal Kernels

Let R be the ring of polynomials Q[s] = Q[s1, . . . ,sd]. Define
the gradient ∇gi = (∂jgi)j=1,...,d ∈ Rd . Let

∂jG =

∂jg1

..

..
∂jgc

and define the module J to be the span of the polynomial
c-tuples ∂jG, with polynomial coefficients fj ∈ Q[s]:

J := {
d

∑
j=1

fj ·∂jG} ∈ Q[s]c.

Algebra for Markov Proposal Kernels

Consider the syzygy module SJ ⊂ Rd of d -tuples on the
generators ∂1G, . . . ,∂dG defined by

SJ := {(p1, . . . ,pd)∈Rd : p1 ·∂1G+p2 ·∂2G+· · ·+pd ·∂dG = 0}.

This can be written in the form

∇G ·P = 0

if P = (p1, . . . ,pd) is the column of polynomials and G is the
derivative matrix

∇G :=
(

∂1G . . . ∂dG
)

=

∇g1

· · ·
· · ·

∇gc

.

Algebra for Markov Proposal Kernels

Proposition: Let x ∈ L be a particular point, and let a point
y ∈ L satisfy ∇G(x) · (y−x) = 0. If the matrix ∇G(x) is of full
rank and if the matrix MSJ (x) is of full rank, then y can be
represented as

y = x+P(x)

for some syzygy P = (p1, . . . ,pd) ∈ SJ .

Algebra for Markov Proposal Kernels

Now let MSJ be a d ×g matrix of generators (as columns) for SJ ,
that is a matrix whose columns are d ×1 vectors of polynomials
that are in the module SJ and whose span (with polynomial
coefficients) is all of SJ .

MSJ :=
(

v1 · · · · · · vg
)

for the d ×g generating matrix of syzygies.

Algebra for Markov Proposal Kernels

Observe that the acceptance probability e−θ(U(y)−U(x)) will be
on the order of e−θλ⋆‖y−x‖2/2 if y = x±vi(x), where λ⋆ is the
spectral radius of the second derivative of U at x.
This follows from a Taylor expansion and ∇U(x) · (y−x) = 0.

Algebra for Markov Proposal Kernels

Observe that the acceptance probability e−θ(U(y)−U(x)) will be
on the order of e−θλ⋆‖y−x‖2/2 if y = x±vi(x), where λ⋆ is the
spectral radius of the second derivative of U at x.
This follows from a Taylor expansion and ∇U(x) · (y−x) = 0.
Since our state space is in the integers, ‖y−x‖ is not
necessarily small.

Algebra for Markov Proposal Kernels

Syzygies as Increments:

KS(x,y) selects a column v of MSJ uniformly, and adds its
randomly-signed evaluation σv(x) to the current state x.

Algebra for Markov Proposal Kernels

Syzygies as Increments:

KS(x,y) selects a column v of MSJ uniformly, and adds its
randomly-signed evaluation σv(x) to the current state x.

This procedure is not necessarily symmetric, since the
increments depend on the state x, and leads to an
awkward Metropolis-Hastings algorithm. So a symmetrized
version will be used.

Algebra for Markov Proposal Kernels

Syzygies as Increments:

KS(x,y) selects a column v of MSJ uniformly, and adds its
randomly-signed evaluation σv(x) to the current state x.

This procedure is not necessarily symmetric, since the
increments depend on the state x, and leads to an
awkward Metropolis-Hastings algorithm. So a symmetrized
version will be used.

Proposal kernel:

K =
1

2
Bs(x,y)+

1

2
KS(x,y)

Algebra for Markov Proposal Kernels

Example
Symmetric graphs on 4 vertices, with 4 edges and 1 triangle.
The adjacency matrices are a subset of binary sequences of
length 6, and are written

X =

0
x1 0
x2 x3 0
x4 x5 x6 0

.

∇G =

(

1 · · · 1
x2x3 + x4x5 · · · x2x4 + x3x5

)

.

Algebra for Markov Proposal Kernels

Singular gives a set of 11 generators using graded reverse lex
order for the syzygies on the Jacobean J. For example, the first
one is the column vector

(0,−x2 + x5,x3 − x4,−x3 + x4,x2 − x5,0)′.

Algebra for Markov Proposal Kernels

Singular gives a set of 11 generators using graded reverse lex
order for the syzygies on the Jacobean J. For example, the first
one is the column vector

(0,−x2 + x5,x3 − x4,−x3 + x4,x2 − x5,0)′.

At a particular state x we evaluate:

1 2 3 4 5 6 7 8 9 10 11

x1,21 0 0 0 0 1 0 0 0 0 −1 −1
x2,31 −1 0 −1 −1 −1 0 −1 1 −1 0 2
x3,32 1 1 1 1 1 0 1 −1 1 0 −2
x4,41 −1 −1 0 0 −1 0 −1 0 0 1 1
x5,42 1 0 0 0 0 0 1 0 0 0 0
x6,43 0 0 0 0 0 0 0 0 0 0 0

Here we see that column 10 added to the present graph will
remove edge {1,2} and add edge {1,4}, taking us directly from
x to y.

Algebra for Markov Proposal Kernels

Computation and approximation
A method for cheap syzygies is based on the circuit
polynomials. Recall that ∇G is a c×d matrix and let c < d .
Consider c×d indeterminates yij in a matrix Y :

Y =

y11 · · · · · · y1d

· · · · · · · · · · · ·
yc1 · · · · · · ycd

 .

Algebra for Markov Proposal Kernels

For each subset C = {τ1, . . . ,τc+1} of the
(d

c+1

)

subsets of size
c +1 of column indices, form the d ×1 vector vC with nonzero
entries at coordinates τk given by:

vC,τk := (−1)k det(YC−τk), k = 1, . . . ,c +1

where YC−τk is the matrix with only the c columns indexed by
C −{τk}. By Cramér’s Rule, each vector vC is in the kernel of Y
with polynomial entries. Now substitute the polynomials ∂jgi(s)
in for yij and the result is a syzygy.

Algebra for Markov Proposal Kernels

Proposition: Let vC(y) be the polynomial vector in
indeterminates yij defined above, and let PC be a d -tuple of
polynomials given by PC = vC(∂jgi(s)). Then ∇G ·PC = 0.

Algebra for Markov Proposal Kernels

Conclusions

It may be useful to compute syzygies on the columns of the
derivative matrix ∇G when trying to sample from a discrete
constrained set of the form G(x) = 0.

The syzygies give a set of tangent vectors that serve as
good increments in a Metropolis base chain.

Theory and examples need more work.

