Algebra for Markov Proposal Kernels

Ian H. Dinwoodie
Duke University

Wogas2
April 2010

Algebra and Sampling

Algebra and Sampling make a nice couple!

Algebra and Sampling make a nice couple!

■ Contingency tables (linear constraints, nonnegativity): toric ideals; MCMC and SIS
■ 0-1 tables (linear constraints, 0-1 valued): Erdos-Gallai, Gale-Ryser Theorem; SIS
■ binary sequences in network dynamics (equations not too coupled): elimination ideals; SIS
■ graphs, networks (equations highly coupled) : hard

We want to sample from

$$
\Omega:=L \cap \bigcap_{i=1}^{c}\left\{g_{i}(\mathbf{x})=0\right\}
$$

Here L is the set of binary or I-level sequences of length d.

We want to sample from

$$
\Omega:=L \cap \bigcap_{i=1}^{c}\left\{g_{i}(\mathbf{x})=0\right\}
$$

Here L is the set of binary or I-level sequences of length d.

This is a fractional design (Pistone and Rogantin).
(\geq) Three approaches for sampling from Ω :
(\geq) Three approaches for sampling from Ω :
1 A Backward SIS method computes elimination ideals over finite fields and constructs partial solutions that extend.
(\geq) Three approaches for sampling from Ω :
1 A Backward SIS method computes elimination ideals over finite fields and constructs partial solutions that extend.
2 A Forward SIS method uses numerical global optimization to determine which partial solutions extend.
(\geq) Three approaches for sampling from Ω :
1 A Backward SIS method computes elimination ideals over finite fields and constructs partial solutions that extend.
2 A Forward SIS method uses numerical global optimization to determine which partial solutions extend.
3 Syzygies can be used with MCMC to improve annealing on L.
(\geq) Three approaches for sampling from Ω :
1 A Backward SIS method computes elimination ideals over finite fields and constructs partial solutions that extend.
2 A Forward SIS method uses numerical global optimization to determine which partial solutions extend.
3 Syzygies can be used with MCMC to improve annealing on L.

Backward Sequential Importance Sampling (BSIS) on Ω :

0 Compute elimination ideals for I_{Ω}, some polynomials that define Ω and the discrete states.
1 Solve the polynomials in the ideals backwards with random values, like back substitution.
2 A theorem says solutions "extend."
3 Keep track of weights for reweighting.

Example. Aracena (2008) presents an example of network dynamics with a large number of fixed points. Setting $n=21$ (n being his notation for number of nodes), we have 21 binary maps given by

```
f1=x(2)
f2=x(21)*x(1)
...
f17=x(18)
f18=x(21)*x(17)
f19=x(20)
f20=x (21) *x(19)
f21=1-((1-x(2))*(1-x(4))*(1-x(6))* (1-x(8))* (1-x(10))* (1-x(12))*(1-x(14))*
    (1-x(16))*(1-x(18))*(1-x(20)))
```

- We have found $1023=2^{(21-1) / 2}-1$ fixed points, not the 1024 that seem to be predicted in Aracena.

Example. Aracena (2008) presents an example of network dynamics with a large number of fixed points. Setting $n=21$ (n being his notation for number of nodes), we have 21 binary maps given by

```
f1=x(2)
f2=x(21)*x(1)
...
f17=x(18)
f18=x(21)*x(17)
f19=x(20)
f20=x (21) *x (19)
f21=1-((1-x(2))*(1-x(4))*(1-x(6))*(1-x(8))*(1-x(10))*(1-x(12))*(1-x(14))*
    (1-x(16))*(1-x(18))*(1-x(20)))
```

- We have found $1023=2^{(21-1) / 2}-1$ fixed points, not the 1024 that seem to be predicted in Aracena.
- We can measure the size of the basin of attraction of the fixed point $\mathbf{0}$ - SIS is good for approximate counting! We estimate $\left|F^{-\infty}(\mathbf{0})\right| \approx 1+1010$, and all points that hit $\mathbf{0}$ do so in 0 or 1 iteration.

■ The algebraic BSIS will not handle big problems like social networks.

■ The algebraic BSIS will not handle big problems like social networks.

■ Forward SIS scales better, it uses global system solvers as a tool to look forward to see which possible current states 0 or 1 will lead to a feasible full sequence.

■ The algebraic BSIS will not handle big problems like social networks.

■ Forward SIS scales better, it uses global system solvers as a tool to look forward to see which possible current states 0 or 1 will lead to a feasible full sequence.
■ The global minimization steps are done numerically with a certain tolerance - runs on large problems with little memory use, but gives samples with some variability in quality.
■ Forward SIS can be distributed over many processors.

Forward Sequential Importance Sampling (FSIS) on Ω :

1 Test to see if values 0 or 1 are possible for x_{d} (last coordinate), by plugging them in and seeing if the dimension $d-1$ equations have any solution.

Forward Sequential Importance Sampling (FSIS) on Ω :

1 Test to see if values 0 or 1 are possible for x_{d} (last coordinate), by plugging them in and seeing if the dimension $d-1$ equations have any solution.
2 The way to see if they have a solution is not algebraic this time (not is $1 \notin \Omega_{\Omega}$), rather you convert the problem to global minimization in the usual way, and see if the minimum is 0 .

Forward Sequential Importance Sampling (FSIS) on Ω :

1 Test to see if values 0 or 1 are possible for x_{d} (last coordinate), by plugging them in and seeing if the dimension $d-1$ equations have any solution.
2 The way to see if they have a solution is not algebraic this time ($n o t$ is $1 \notin l_{\Omega}$), rather you convert the problem to global minimization in the usual way, and see if the minimum is 0 .
3 Choose the value randomly from the winners, keep track of weights, keep going through $x_{d}, x_{d-1}, \ldots, x_{1}$.

Forward Sequential Importance Sampling (FSIS) on Ω :

1 Test to see if values 0 or 1 are possible for x_{d} (last coordinate), by plugging them in and seeing if the dimension $d-1$ equations have any solution.
2 The way to see if they have a solution is not algebraic this time ($n o t$ is $1 \notin l_{\Omega}$), rather you convert the problem to global minimization in the usual way, and see if the minimum is 0 .
3 Choose the value randomly from the winners, keep track of weights, keep going through $x_{d}, x_{d-1}, \ldots, x_{1}$.
4 Errors happen.

■ Global optimization methods attempt to minimize a real-valued function from any initial point and without convexity assumptions.

■ Global optimization methods attempt to minimize a real-valued function from any initial point and without convexity assumptions.
■ Nonmonotone line search methods often play a key role but other methods are also possible (Nelder-Mead).

■ Global optimization methods attempt to minimize a real-valued function from any initial point and without convexity assumptions.

- Nonmonotone line search methods often play a key role but other methods are also possible (Nelder-Mead).
■ We used one by LaCruz, Martinez, and Raydan (2006), a development of the Barzilai-Borwein spectral method, which is refined and implemented in the R package $B B$ (Varadhan and Gilbert, 2008).

Example. Network of mutually "known" researcher in the EIES. 1 data set from SIENA.

Example. Network of mutually "known" researcher in the EIES. 1 data set from SIENA.

■ Want conditional parameter significance. Conditional conclusion for significance agrees with existing method on this example.

Example. Network of mutually "known" researcher in the EIES. 1 data set from SIENA.

■ Want conditional parameter significance. Conditional conclusion for significance agrees with existing method on this example.
■ Example where the ergm software (Handcock, Hunter et al., 2009) has difficulty, and thus one where the conditional approach may be essential, is the network of mutual friends in EIES. 1 - could not get fitted parameter values.

Figure: EIES network of mutually known researchers

If y is a symmetric $0-1$ adjacency matrix with no loops, then $y_{i j}$ indicates edge between nodes i and j.

$$
\begin{aligned}
& E(y)=\sum_{1 \leq i<j \leq 32} y_{i j} \\
& T(y)=\sum_{1 \leq i<j<h \leq 32} y_{i j} y_{i h} y_{j h} \\
& A(y)=\sum_{2 \leq k \leq 31}(-1 / 2)^{k-2}\left(\sum_{i=1}^{32}\binom{y_{i+}}{k}\right)
\end{aligned}
$$

A 3-parameter network probability model is

$$
q_{\eta, \tau, \alpha}(y)=\kappa e^{(\eta E(y)+\tau T(y)+\alpha A(y))}
$$

We want the significance of the alternating k-star term $A(y)$.

We want the significance of the alternating k-star term $A(y)$.

Fit model with ergm function of the ergm R package:
$\hat{\alpha}=1.6816$ and reported p-value of 0.630

We want the significance of the alternating k-star term $A(y)$.

Fit model with ergm function of the ergm R package:

$$
\hat{\alpha}=1.6816 \text { and reported } p \text {-value of } 0.630
$$

- We also want the conditional method: obtain a p-value for $A(y)$ using the conditional distribution of $A(y)$ given the observed value s of $E\left(y_{0}\right)$ and $T\left(y_{0}\right)$.

We want the significance of the alternating k-star term $A(y)$.

Fit model with ergm function of the ergm R package:

$$
\hat{\alpha}=1.6816 \text { and reported } p \text {-value of } 0.630
$$

■ We also want the conditional method: obtain a p-value for $A(y)$ using the conditional distribution of $A(y)$ given the observed value s of $E\left(y_{0}\right)$ and $T\left(y_{0}\right)$.
\square The conditional distribution is uniform on networks with the same number of edges (113) and triangles (81).

Syzygies for MCMC

$$
\pi_{\theta}(\mathbf{x})=\frac{e^{-\theta U(\mathbf{x})}}{z_{\theta}}, \mathbf{x} \in L
$$

where $U:=-\sum_{i=1}^{c} g_{i}^{2}$.
Metropolis Algorithm on L :

$$
K_{\theta}(\mathbf{x}, \mathbf{y})=K(\mathbf{x}, \mathbf{y}) \cdot \min \left\{1, e^{-\theta(U(\mathbf{y})-U(\mathbf{x}))}\right\}
$$

Metropolis Algorithm on L :

$$
K_{\theta}(\mathbf{x}, \mathbf{y})=K(\mathbf{x}, \mathbf{y}) \cdot \min \left\{1, e^{-\theta(U(\mathbf{y})-U(\mathbf{x}))}\right\} .
$$

Metropolis Algorithm on L:

$$
K_{\theta}(\mathbf{x}, \mathbf{y})=K(\mathbf{x}, \mathbf{y}) \cdot \min \left\{1, e^{-\theta(U(\mathbf{y})-U(\mathbf{x}))}\right\}
$$

Some kernels K will be more efficient than others

Metropolis Algorithm on L :

$$
K_{\theta}(\mathbf{x}, \mathbf{y})=K(\mathbf{x}, \mathbf{y}) \cdot \min \left\{1, e^{-\theta(U(\mathbf{y})-U(\mathbf{x}))}\right\}
$$

Some kernels K will be more efficient than others in that the proportion of rejected proposal moves will be smaller

Metropolis Algorithm on L :

$$
K_{\theta}(\mathbf{x}, \mathbf{y})=K(\mathbf{x}, \mathbf{y}) \cdot \min \left\{1, e^{-\theta(U(\mathbf{y})-U(\mathbf{x}))}\right\}
$$

Some kernels K will be more efficient than others in that the proportion of rejected proposal moves will be smaller leading to more mobility in the state space, faster convergence to stationarity.

Let R be the ring of polynomials $\mathbb{Q}[\mathbf{s}]=\mathbb{Q}\left[s_{1}, \ldots, s_{d}\right]$. Define the gradient $\nabla g_{i}=\left(\partial_{j} g_{i}\right)_{j=1, \ldots, d} \in R^{d}$. Let

$$
\partial_{j} G=\left(\begin{array}{c}
\partial_{j} g_{1} \\
. . \\
. . \\
\partial_{j} g_{c}
\end{array}\right)
$$

and define the module J to be the span of the polynomial c-tuples $\partial_{j} G$, with polynomial coefficients $f_{j} \in \mathbb{Q}[\mathbf{s}]$:

$$
J:=\left\{\sum_{j=1}^{d} f_{j} \cdot \partial_{j} G\right\} \in \mathbb{Q}[\mathbf{s}]^{c}
$$

Consider the syzygy module $S_{J} \subset R^{d}$ of d-tuples on the generators $\partial_{1} G, \ldots, \partial_{d} G$ defined by

$$
S_{J}:=\left\{\left(p_{1}, \ldots, p_{d}\right) \in R^{d}: p_{1} \cdot \partial_{1} G+p_{2} \cdot \partial_{2} G+\cdots+p_{d} \cdot \partial_{d} G=0\right\}
$$

This can be written in the form

$$
\nabla G \cdot P=0
$$

if $P=\left(p_{1}, \ldots, p_{d}\right)$ is the column of polynomials and G is the derivative matrix

$$
\nabla G:=\left(\begin{array}{lll}
\partial_{1} G & \ldots & \partial_{d} G
\end{array}\right)=\left(\begin{array}{c}
\nabla g_{1} \\
\ldots \\
\ldots \\
\nabla g_{c}
\end{array}\right) .
$$

Proposition: Let $\mathbf{x} \in L$ be a particular point, and let a point $\mathbf{y} \in L$ satisfy $\nabla G(\mathbf{x}) \cdot(\mathbf{y}-\mathbf{x})=0$. If the matrix $\nabla G(\mathbf{x})$ is of full rank and if the matrix $M_{S_{J}}(\mathbf{x})$ is of full rank, then \mathbf{y} can be represented as

$$
\mathbf{y}=\mathbf{x}+P(\mathbf{x})
$$

for some syzygy $P=\left(p_{1}, \ldots, p_{d}\right) \in S_{J}$.

Now let $M_{S_{J}}$ be a $d \times g$ matrix of generators (as columns) for S_{J}, that is a matrix whose columns are $d \times 1$ vectors of polynomials that are in the module S_{J} and whose span (with polynomial coefficients) is all of S_{J}.

$$
M_{S_{J}}:=\left(\begin{array}{llll}
\mathbf{v}_{1} & \cdots & \cdots & \mathbf{v}_{g}
\end{array}\right)
$$

for the $d \times g$ generating matrix of syzygies.

Observe that the acceptance probability $e^{-\theta(U(\mathbf{y})-U(\mathbf{x}))}$ will be on the order of $e^{-\theta \lambda^{\star}\|\mathbf{y}-\mathbf{x}\|^{2} / 2}$ if $\mathbf{y}=\mathbf{x} \pm \mathbf{v}_{i}(\mathbf{x})$, where λ^{\star} is the spectral radius of the second derivative of U at \mathbf{x}.
This follows from a Taylor expansion and $\nabla U(\mathbf{x}) \cdot(\mathbf{y}-\mathbf{x})=0$.

Observe that the acceptance probability $e^{-\theta(U(\mathbf{y})-U(\mathbf{x}))}$ will be on the order of $e^{-\theta \lambda^{\star}\|\mathbf{y}-\mathbf{x}\|^{2} / 2}$ if $\mathbf{y}=\mathbf{x} \pm \mathbf{v}_{i}(\mathbf{x})$, where λ^{\star} is the spectral radius of the second derivative of U at \mathbf{x}.
This follows from a Taylor expansion and $\nabla U(\mathbf{x}) \cdot(\mathbf{y}-\mathbf{x})=0$. Since our state space is in the integers, $\|\mathbf{y}-\mathbf{x}\|$ is not necessarily small.

Syzygies as Increments:

■ $K_{S}(\mathbf{x}, \mathbf{y})$ selects a column \mathbf{v} of $M_{S_{J}}$ uniformly, and adds its randomly-signed evaluation $\sigma \mathbf{v}(\mathbf{x})$ to the current state \mathbf{x}.

Syzygies as Increments:

■ $K_{S}(\mathbf{x}, \mathbf{y})$ selects a column \mathbf{v} of $M_{S_{J}}$ uniformly, and adds its randomly-signed evaluation $\sigma \mathbf{v}(\mathbf{x})$ to the current state \mathbf{x}.

- This procedure is not necessarily symmetric, since the increments depend on the state \mathbf{x}, and leads to an awkward Metropolis-Hastings algorithm. So a symmetrized version will be used.

Syzygies as Increments:

■ $K_{S}(\mathbf{x}, \mathbf{y})$ selects a column \mathbf{v} of $M_{S J}$ uniformly, and adds its randomly-signed evaluation $\sigma \mathbf{v}(\mathbf{x})$ to the current state \mathbf{x}.
■ This procedure is not necessarily symmetric, since the increments depend on the state \mathbf{x}, and leads to an awkward Metropolis-Hastings algorithm. So a symmetrized version will be used.
■ Proposal kernel:

$$
K=\frac{1}{2} B_{S}(\mathbf{x}, \mathbf{y})+\frac{1}{2} K_{S}(\mathbf{x}, \mathbf{y})
$$

Example

Symmetric graphs on 4 vertices, with 4 edges and 1 triangle. The adjacency matrices are a subset of binary sequences of length 6, and are written

$$
\begin{gathered}
X=\left(\begin{array}{cccc}
0 & & & \\
x_{1} & 0 & & \\
x_{2} & x_{3} & 0 & \\
x_{4} & x_{5} & x_{6} & 0
\end{array}\right) . \\
\nabla G=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
x_{2} x_{3}+x_{4} x_{5} & \cdots & x_{2} x_{4}+x_{3} x_{5}
\end{array}\right) .
\end{gathered}
$$

Singular gives a set of 11 generators using graded reverse lex order for the syzygies on the Jacobean J. For example, the first one is the column vector

$$
\left(0,-x_{2}+x_{5}, x_{3}-x_{4},-x_{3}+x_{4}, x_{2}-x_{5}, 0\right)^{\prime}
$$

Singular gives a set of 11 generators using graded reverse lex order for the syzygies on the Jacobean J. For example, the first one is the column vector

$$
\left(0,-x_{2}+x_{5}, x_{3}-x_{4},-x_{3}+x_{4}, x_{2}-x_{5}, 0\right)^{\prime}
$$

At a particular state \mathbf{x} we evaluate:
$x_{1}, 21$
$x_{2}, 31$
$x_{3}, 32$
$x_{4}, 41$
$x_{5}, 42$
$x_{6}, 43$$\left(\begin{array}{ccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & -1 \\ -1 & 0 & -1 & -1 & -1 & 0 & -1 & 1 & -1 & 0 & 2 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & -1 & 1 & 0 & -2 \\ -1 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Here we see that column 10 added to the present graph will remove edge $\{1,2\}$ and add edge $\{1,4\}$, taking us directly from x to \mathbf{y}.

Computation and approximation

A method for cheap syzygies is based on the circuit polynomials. Recall that ∇G is a $c \times d$ matrix and let $c<d$. Consider $c \times d$ indeterminates $y_{i j}$ in a matrix Y :

$$
Y=\left(\begin{array}{llll}
y_{11} & \cdots & \cdots & y_{1 d} \\
\cdots & \cdots & \cdots & \cdots \\
y_{c 1} & \cdots & \cdots & y_{c d}
\end{array}\right)
$$

For each subset $C=\left\{\tau_{1}, \ldots, \tau_{c+1}\right\}$ of the $\binom{d}{c+1}$ subsets of size $c+1$ of column indices, form the $d \times 1$ vector \mathbf{v}_{C} with nonzero entries at coordinates τ_{k} given by:

$$
\mathbf{v}_{C, \tau_{k}}:=(-1)^{k} \operatorname{det}\left(Y_{C-\tau_{k}}\right), k=1, \ldots, c+1
$$

where $Y_{C-\tau_{k}}$ is the matrix with only the c columns indexed by $C-\left\{\tau_{k}\right\}$. By Cramér's Rule, each vector \mathbf{v}_{C} is in the kernel of Y with polynomial entries. Now substitute the polynomials $\partial_{j} g_{i}(\mathbf{s})$ in for $y_{i j}$ and the result is a syzygy.

Proposition: Let $\mathbf{v}_{C}(\mathbf{y})$ be the polynomial vector in indeterminates $y_{i j}$ defined above, and let P_{C} be a d-tuple of polynomials given by $P_{C}=\mathbf{v}_{C}\left(\partial_{j} g_{i}(\mathbf{s})\right)$. Then $\nabla G \cdot P_{C}=0$.

Conclusions

■ It may be useful to compute syzygies on the columns of the derivative matrix ∇G when trying to sample from a discrete constrained set of the form $G(\mathbf{x})=0$.
■ The syzygies give a set of tangent vectors that serve as good increments in a Metropolis base chain.
■ Theory and examples need more work.

