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Abstract

Gaussian models with symmetries have been of interest for a long time (e.g. Votaw, 1948; Andersson,
1975) whereas the combination with conditional independence restrictions is more recent (e.g.
Hylleberg et al., 1993). Højsgaard and Lauritzen (2008) introduced three types of graphical Gaussian
models with symmetry constraints on their parameters, which can all be represented by vertex and
edge coloured graphs G = (V , E). They identified two sets of coloured graphs which lead to desirable
statistical properties of the represented model. We specify two further such sets together with their
implications for the represented models, and show that all four sets are lattices with respect to model
inclusion. Computing the join of two models requires the computation of a supremum graph which
we have implemented in our computer program GraphCheck. We believe the found structure can be
effectively exploited in the study of the corresponding models. One instance of this is the Edwards-
Havránek model selection procedure for lattices (Edwards and Havránek, 1987), for which we have
developed an algorithm for one of the sets, to be described elsewhere.

Preliminaries

1. Graphs: G = (V , E) shall be denoting a coloured graph with vertex set V , edge set E and vertex
and edge colourings V and E respectively. G = (V,E) denotes the corresponding uncoloured graph.

2. Partitions: For two partitions P1(S) and P2(S) of a set S we say that P1(S) is finer than P2(S),
or equivalently that P2(S) is coarser than P1(S), if every set in P2(S) is a union of sets in P1(S).

3. Lattices: A set L is a lattice if for any a, b ∈ L there is a unique smallest element in L which is
larger than both a and b, denoted a ∨ b, and a unique largest element in L which is smaller than
both, denoted by a ∧ b.

Graphical Gaussian Models with Symmetries

Graphical Gaussian models are concerned with the distribution of a multivariate random vector
Y = (Yα)α∈V following a N|V |(µ,Σ) distribution and are represented by undirected graphs. A graph

G = (V,E) represents the model with concentration matrix K = Σ−1 lying inside S+(G), the set of
(symmetric) positive definite matrices which satisfy

αβ 6∈ E =⇒ kαβ = 0 for α, β ∈ V.

Højsgaard and Lauritzen (2008) introduced three types of graphical Gaussian models with symmetry
constraints on their parameters, all represented by vertex and edge coloured graphs G = (V , E):

1.RCON: Equality between specified elements of the concentration matrix, K ∈ S+(V , E)

2.RCOR: Equality between specified partial correlations, K ∈ R+(V , E)

3.RCOP: Restrictions that are generated by permutation symmetry, K ∈ S+(G,Γ) with

S+(G,Γ) = S+(G) ∩ {K : G(σ)KG(σ)−1 = K ∀σ ∈ Γ}.

For example,

R+( ) = {K ∈ S+(G) : k11 = k33, ρ12|3 = ρ23|1},yy y
1 2 3

* ** *

S+( ) = {K ∈ S+(G) : k11 = k33, k12 = k23},yy y
1 2 3

* ** *

= S+( yy y
1 2 3

, {Id, (13)}).

They showed:
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RCON RCOP RCOR

+ Linear exponential models
+ MLE unique

Not scale invariant

Curved exponential models
MLE not unique

+ Scale invariant

All ’+’ from above, and + considerable computational savings in computation of MLE

Graph Colourings

Definition 1 Let the set of vertex and edge coloured graphs with vertex set V be denoted by CV .
We shall say that the colouring of G = (V , E) is

- edge regular if in E every pair of equally coloured edges connects the same vertex colour
classes in V, the set of graphs with such colourings on vertex set V being denoted by BV ,

- vertex regular if in all subgraphs Gu,u′,u′′ of G which are induced by the vertex colour classes
u, u′ ∈ V (allowing u = u′) and the edges inside u′′ ∈ E connecting u to u′ the vertex degree
is invariant within each vertex colour class, their set being denoted by PV ,

- colour regular if it is both edge regular and vertex regular, RV = BV ∩ PV , and

- permutation generated by group Γ if Γ ⊆ Aut(G), V is given by the orbits of Γ in V and E
is a union of orbits of Γ in V ×V . Equivalently, (V , E) is permutation generated, by Aut(V , E),
if Aut(V , E) acts transitively on each colour class in (V , E), ΠV,Γ ⊂ RV ,

⋃
ΓΠV,Γ = ΠV .

�

Proposition 1 (Højsgaard and Lauritzen) S+(V , E) = R+(V , E) if and only if (V , E) is
edge regular, i.e. if and only if G ∈ BV .

�

Proposition 2 (Gehrmann and Lauritzen) Let M be a partition of V . Then restricting µ

to lie inside

Ω(M) = {(µα)α∈V ∈ R
V : µβ = µα whenever β is in the same set as α in M}

in the RCON and RCOR models determined by (V , E) gives equality between the maximum
likelihood and least squares estimators for µ if and only if M is finer than or equal to V and
(M, E) is vertex regular, i.e. if and only if Gµ = (M, E) ∈ PV . Then µ̂ is obtained through
appropriate averaging.

�

Proposition 3 G = (V , E) represents the RCOP model S+(G,Γ) if and only if (V , E) is per-
mutation generated by Γ, i.e. if only if G ∈ ΠV,Γ.

�

Topology of CV , BV , PV , RV and ΠV

Proposition 4The set CV is a complete (non-distributive) lattice with respect to model inclu-
sion, with meet and join operations given below.

G1 ∧ G2 = (V1 ∨ V2, E
′
1 ∨ E ′2) G1 ∨ G2 = (V1 ∧ V2, E

′′
1 ∧ E ′′2 )
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Fewer edges, coarser colouring ⇒ smaller model
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Proposition 5The sets BV , PV , RV and ΠV are (generally non-distributive) lattices, with
meet operation as in CV and join operations given by

G1 ∨S G2 = sup
S
(G1 ∨ G2) for S ∈ {BV ,PV ,RV ,ΠV }.

�

1. (V , E) colour regular

2. (V , E) invariant under σ
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1. (V ∪ N , EF ) equitable wrt φ(G)

2. (V ∪ N , EF ) invariant under σφ

Figure 1: Relationships between G and corresponding coloured factor graph φ(G)

Fact I: For every vertex coloured graph G = (V , E) there exists a coarsest refinement r(V) of V
which is equitable with respect to G (McKay, 1981).

Fact II: For every vertex coloured graph G = (V , E) there exists a unique coarsest refinement of V
which is invariant under Aut(V , E), given by the orbits of Aut(V , E) in V .

Sketch proof of Proposition 5: For BV , PV and RV ,

1. All three sets are stable under ∧ in CV .

2. The same does not hold for ∨, however 1. in Figure 1 together with Fact I for G ∈ CV give

sup
R

(G) = φ−1((r(V ∪ N ), EF )) = (Vsup, Esup), sup
B

= (V , Esup), sup
P

(G) = (Vsup, E).

For ΠV ,

1. It is a Group Theoretic fact (e.g. Chapter 1 in Schmidt (1994)) that the set of subgroups of S|V |
forms a complete lattice with Γ1 ∧ Γ2 = Γ1 ∩ Γ2 and Γ1 ∨ Γ2 = {σ1σ2 : σ1 ∈ Γ1, σ2 ∈ Γ2}.

2. ΠV is stable under ∧, with G1 ∧ G2 being generated by Γ1 ∨ Γ2.

3. The same is not true for ∨, however 2. in Figure 1 together with Fact II for G ∈ CV give

sup
Π
(G) = φ−1((VΠ ∪NΠ, EF ))

where VΠ ∪NΠ denotes the coarsest refinement of V ∪ N satisfying the condition in Fact II.
�

The following examples were obtained with our program GraphCheck which is based on Brendan
McKay’s computer program nauty (http://cs.anu.edu.au/~bdm/nauty/). On a 32-bit processor
nauty can handle graphs with up to 230 vertices, giving a bound of |V |+ |E| < 230 for GraphCheck.
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supR(G) = supΠ(G)
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The lattice structure of the four sets qualifies them for the Edwards-Havránek model selection pro-
cedure (Edwards and Havránek, 1987), which is based on the principle that once a model is rejected
(accepted) all of its submodels (supermodels) are rejected (accepted). We have developed the corre-
sponding algorithm for BV , to be described elsewhere.

Summary

1. We have shown that the four sets BV , PV , RV and ΠV form lattices. In all four sets,

(i) the meet operation agrees with the standard meet by model inclusion,

(ii) the join requires finding the supremum of the model inclusion join inside the given set. Its
computation is implemented in our program GraphCheck.

2. The lattice structure of the four sets qualifies them for the Edwards-Havránek model selection pro-
cedure (Edwards and Havránek, 1987), for which we have developed an algorithm for BV , to be
described elsewhere.

We believe the lattice structure to have further statistical consequences and shall be considering
conjugate priors and likelihood ratio tests for the four considered sets, with particular interest in ΠV .
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