Topology of Graphs Representing Graphical Gaussian Models with Symmetry Constraints

Helene Gehrmann, gehrmann@stats.ox.ac.uk
Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, United Kingdom

Abstract

Gaussian models with symmetries have been of interest for a long time (e.g. Votaw, 1948; Andersson, 1975) whereas the combination with conditional independence restrictions is more recent (e.g. Hylleberg et al., 1993). Hojisgaard and Lauritzen (2008) introduced three types of graphical Caussian edge coloured graphs $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. They identified two sets of coloured graphs which lead to desirable statistical properties of the represented model. We specify two further such sets together with their implications for the represented models, and show that all four sets are lattices with respect to model inclusion. Computing the join of two models requires the computation of a supremum graph which
we have implemented in our computer program GraphCheck. We believe the found structure can be effectively exploited in the study of the corresponding models. One instance of this is the EdwardsHavránek model selection procedure for lattices (Edwards and Havránek, 1987), for which we have developed an algorithm for one of the sets, to be described elsewhere.

Preliminaries

. Graphs: $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ shall be denoting a coloured graph with vertex set V, edge set E and verte and edge colourings \mathcal{V} and \mathcal{E} respectively. $\mathcal{G}=(V, E)$ denotes the corresponding uncoloured graph 2. Partitions: For two partitions $P_{1}(S)$ and $P_{2}(S)$ of a set S we say that $P_{1}(S)$ is finer than $P_{2}(S)$, or equivalently that $P_{2}(S)$ is coarser than $P_{1}(S)$, if every set in $P_{2}(S)$ is a union of sets in $P_{1}(S$ 3. Lattices: A set L is a lattice if for any $a, b \in L$ there is a unique smallest element in L which is larger than both a and b, denoted $a \vee b$, and a unique largest element in L which is smaller than both, denoted by $a \wedge b$.

Graphical Gaussian Models with Symmetries

Graphical Gaussian models are concerned with the distribution of a multivariate random vecto $\mathcal{G}=(V, E)$ represents the model with concentration matrix $K=\Sigma^{-1}$ lying inside $\mathcal{S}^{+}(\mathcal{G})$, the set of (symmetric) positive definite matrices which satisfy

$$
\alpha \beta \notin E \Longrightarrow k_{\alpha \beta}=0 \text { for } \alpha, \beta \in V \text {. }
$$

Hojisgaard and Lauritzen (2008) introduced three types of graphical Gaussian models with symmetry constraints on their parameters, all represented by vertex and edge coloured graphs $\mathcal{G}=(\mathcal{V}, \mathcal{E})$:

1. RCON: Equality between specified elements of the concentration matrix, $K \in \mathcal{S}^{+}(\mathcal{V}, \mathcal{E})$ 2. RCOR: Equality between specified partial correlations, $K \in \mathcal{R}^{+}(\mathcal{V}, \mathcal{E})$
2. RCOP: Restrictions that are generated by permutation symmetry, $K \in \mathcal{S}^{+}(\mathcal{G}, \Gamma)$ with
$\mathcal{S}^{+}(\mathcal{G}, \Gamma)=\mathcal{S}^{+}(\mathcal{G}) \cap\left\{K: G(\sigma) K G(\sigma)^{-1}=K \forall \sigma \in \Gamma\right\}$
For example,

$$
\begin{aligned}
& \mathcal{R}^{+}\left({ }_{0}^{*} \quad{ }_{0}^{* *},{ }_{0}^{*}\right)=\left\{K \in \mathcal{S}^{+}(\mathcal{G}): k_{11}=k_{33}, \rho_{12 \mid 3}=\rho_{23 \mid 1}\right\}
\end{aligned}
$$

They showed:
Linear exponential models
MLE unique
MLE unique
Not scale invariant
RCON RCOP
RCOR
Curved exponential mode
MLE not unicure MLE not unique

- Scale invariant

Graph Colourings

Definition 1 Let the set of vertex and edge coloured graphs with vertex set V be denoted by \mathcal{C}_{V} Definition 1 Let the set of vertex and edge colow
We shall say that the colouring of $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is
-edge regular if in \mathcal{E} every pair of equally coloured edges connects the same vertex colour - edge regular if in \mathcal{E} every pair of equally coloured edges connects the same vertex colo
classes in \mathcal{V}, the set of graphs with such colourings on vertex set V being denoted by \mathcal{B}_{V}, classes in \mathcal{V}, the set of graphs with such colourings on vertex set V being denoted by \mathcal{B}_{V},
vertex regular if in all subgraphs $\mathcal{S}^{u, u^{\prime}, u^{\prime \prime}}$ of \mathcal{G} which are induced by the vertex colour classes - vertex regular if in all subgraphs $\mathcal{S}^{u, u} u^{\prime}, u^{\prime \prime}$ of \mathcal{G} which are induced by the vertex colour classes
$u, u^{\prime} \in \mathcal{V}$ (allowing $u=u^{\prime}$) and the edges inside $u^{\prime \prime} \in \mathcal{E}$ connecting u to u^{\prime} the vertex degree $u, u^{\prime} \in \mathcal{V}$ (allowing $\left.u=u^{\prime}\right)$ and the edges inside $u^{\prime \prime} \in \mathcal{E}$ connecting u to u^{\prime}
is invariant within each vertex colour class, their set being denoted by \mathcal{P}_{V}

- colour regular if it is both edge regular and vertex regular, $\mathcal{R}_{V}=\mathcal{B}_{V} \cap \mathcal{P}_{V}$, and - colour regular
- permutation generated by group Γ if $\Gamma \subseteq$ Aut $(\mathcal{G}), \mathcal{V}$ is given by the orbits of Γ in V and \mathcal{E} - permutation generated by group Γ if $\Gamma \subseteq$ Aut $(\mathcal{G}), \mathcal{V}$ is given by the orbits of Γ in V and \mathcal{E}
is a union of orbits of Γ in $V \times V$. Equivalently, $(\mathcal{V}, \mathcal{E})$ is permutation generated, by Aut $(\mathcal{V}, \mathcal{E})$ if $\operatorname{Aut}(\mathcal{V}, \mathcal{E})$ acts transitively on each colour class in $(\mathcal{V}, \mathcal{E}), \Pi_{V, \Gamma} \subset \mathcal{R}_{V}, \cup_{\Gamma} \Pi_{V, \Gamma}=\Pi_{V}$.

Proposition 1 (Højsgaard and Lauritzen) $\mathcal{S}^{+}(\mathcal{V}, \mathcal{E})=\mathcal{R}^{+}(\mathcal{V}, \mathcal{E})$ if and only if $(\mathcal{V}, \mathcal{E})$ is Proposition 1 (Højsgaard and Lau
edge regular, i.e. if and only if $\mathcal{G} \in \mathcal{B}_{V}$

Proposition 2 (Gehrmann and Lauritzen) Let \mathcal{M} be a partition of V. Then restricting μ o lie inside

$$
\Omega(\mathcal{M})=\left\{\left(\mu_{\alpha}\right)_{\alpha \in V} \in \mathbb{R}^{V}: \mu_{\beta}=\mu_{\alpha} \text { whenever } \beta \text { is in the same set as } \alpha \text { in } \mathcal{M}\right\}
$$

in the RCON and RCOR models determined by $(\mathcal{V}, \mathcal{E})$ gives equality between the maximum likelihood and least squares estimators for μ if and only if \mathcal{M} is finer than or equal to \mathcal{V} and $(\mathcal{M}, \mathcal{E})$ is vertex regular
appropriate averaging.

Proposition $3 \mathcal{G}=(\mathcal{V}, \mathcal{E})$ represents the $R C O P$ model $\mathcal{S}^{+}(\mathcal{G}, \Gamma)$ if and only if $(\mathcal{V}, \mathcal{E})$ is permutation generated by Γ, i.e. if only if $\mathcal{G} \in \Pi_{V, \Gamma}$.

Topology of $\mathcal{C}_{V}, \mathcal{B}_{V}, \mathcal{P}_{V}, \mathcal{R}_{V}$ and Π_{V}

Proposition 4 The set \mathcal{C}_{V} is a complete (non-distributive) lattice with respect to model inclusion, with meet and join operations given below.

$$
\begin{aligned}
& \mathcal{G}_{1} \wedge \mathcal{G}_{2}=\left(\mathcal{V}_{1} \vee \mathcal{V}_{2}, \mathcal{E}_{1}^{\prime} \vee \mathcal{E}_{2}^{\prime}\right) \quad \mathcal{G}_{1} \vee \mathcal{G}_{2}=\left(\mathcal{V}_{1} \wedge \mathcal{V}_{2}, \mathcal{E}_{1}^{\prime \prime} \wedge \mathcal{E}_{2}^{\prime \prime}\right)
\end{aligned}
$$

Proposition 5 The sets $\mathcal{B}_{V}, \mathcal{P}_{V}, \mathcal{R}_{V}$ and Π_{V} are (generally non-distributive) lattices, with neet operation as in \mathcal{C}_{V} and join operations given by

$$
\mathcal{G}_{1} \vee_{S} \mathcal{G}_{2}=\sup _{S}\left(\mathcal{G}_{1} \vee \mathcal{G}_{2}\right) \quad \text { for } S \in\left\{\mathcal{B}_{V}, \mathcal{P}_{V}, \mathcal{R}_{V}, \Pi_{V}\right\} .
$$

Fact I: For every vertex coloured graph $\mathcal{G}=(\mathcal{V}, E)$ there exists a coarsest refinement $r(\mathcal{V})$ of \mathcal{V} which is equitable with respect to \mathcal{G} (McKay, 1981)
Fact II: For every vertex coloured graph $\mathcal{G}=(\mathcal{V}, E)$ there exists a unique coarsest refinement of \mathcal{V} which is invariant under $\operatorname{Aut}(\mathcal{V}, E)$, given by the orbits of $\operatorname{Aut}(\mathcal{V}, E)$ in V.
Sketch proof of Proposition [5: For $\mathcal{B}_{V}, \mathcal{P}_{V}$ and \mathcal{R}_{V}

1. All three sets are stable under \wedge in \mathcal{C}_{V}
2. The same does not hold for V , however 1. in Figure $\mathbb{\|}$ together with Fact I for $\mathcal{G} \in \mathcal{C}_{V}$ give $\underset{\mathcal{R}}{\sup }(\mathcal{G})=\phi^{-1}\left(\left(r(\mathcal{V} \cup \mathcal{N}), E_{F}\right)\right)=\left(\mathcal{V}_{\text {sup }}, \mathcal{E}_{\text {sup }}\right), \quad \sup _{\mathcal{B}}=\left(\mathcal{V}, \mathcal{E}_{\text {sup }}\right), \quad \underset{\mathcal{P}}{\sup }(\mathcal{G})=\left(\mathcal{V}_{\text {sup }}, \mathcal{E}\right)$.
For Π_{V},
3. It is a Group Theoretic fact (e.g. Chapter 1 in Schmidt (1994)) that the set of subgroups of $S_{|V|}$ forms a complete lattice with $\Gamma_{1} \wedge \Gamma_{2}=\Gamma_{1} \cap \Gamma_{2}$ and $\Gamma_{1} \vee \Gamma_{2}=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Gamma_{1}, \sigma_{2} \in \Gamma_{2}\right\}$.
4. Π_{V} is stable under \wedge, with $\mathcal{G}_{1} \wedge \mathcal{G}_{2}$ being generated by $\Gamma_{1} \vee \Gamma_{2}$.
5. The same is not true for V , however 2. in Figure $\mathbb{1}$ together with Fact II for $\mathcal{G} \in \mathcal{C}_{V}$ give

$$
\sup _{\Pi}(\mathcal{G})=\phi^{-1}\left(\left(\mathcal{V}_{\Pi} \cup \mathcal{N}_{\Pi}, E_{F}\right)\right)
$$

where $\mathcal{V}_{\Pi} \cup \mathcal{N}_{\Pi}$ denotes the coarsest refinement of $\mathcal{V} \cup \mathcal{N}$ satisfying the condition in Fact II.
The following examples were obtained with our program GraphCheck which is based on Brendan McKay's computer program nauty (http://cs.anu.edu. au/~bdm/nauty/). On a 32-bit processo nauty can handle graphs with up to 2^{30} vertices, giving a bound of $|V|+|E|<2^{30}$ for GraphChech.

The lattice structure of the four sets qualifies them for the Edwards-Havránek model selection procedure (Edwards and Havránek, 1987), which is based on the principle that once a model is rejected sponding algorithm for \mathcal{B}_{V}, to be described elsewhere.

Summary

1. We have shown that the four sets $\mathcal{B}_{V}, \mathcal{P}_{V}, \mathcal{R}_{V}$ and Π_{V} form lattices. In all four sets, (i) the meet operation agrees with the standard meet by model inclusion,
(ii) the join requires finding the supremum of the model inclusion join inside the given set, It computation is implemented in our program GraphCheck.
2. The lattice structure of the four sets qualifies them for the Edwards-Havránek model selection procedure (Edwards and Havranesk, 1987), for which we have developed an algorithm for \mathcal{B}_{V}, to be cedure (Edwards and
We believe the lattice structure to have further statistical consequences and shall be considering conjugate priors and likelihood ratio tests for the four considered sets, with particular interest in Π_{V}.

Acknowledgements

I would like to tank my supervisor Professor Steffen Lauritzen for his advice and guidance on the subject.

References

Edvards, D. and Havranke, T. (1987). A Fast Model Selection Procedure for Large Families of Modeds. Jourral of the American Statisticich

Itckay, B. (1981). Practioal Graph Somorphism. Congressus Numerantium, 30:55 87.
Schmidt, R. (1994). Subgroup Latitices of Groups. Walter de Gruyter \& Co.
Votaw, D. F. (1988). Testing compound symmetry in normal multivarite distribution. Ann. Math. Statist, 19:47473.

