
Holes and aberration
Hugo Maruri-Aguilar and Henry Wynn

Queen Mary, University of London and London School of Economics
H.Maruri-Aguilar@qmul.ac.uk and H.Wynn@lse.ac.uk

Abstract

Algebraic techniques have been used to identify polynomial models in experimental design [6]. A
feature of models identified with such techniques is that they are of low weighted degree. This
lead to a generalisation of the idea of aberration, i.e. algebraic models are of low aberration. when
designs are fractions of 2k factorial designs, we can further describe models from an elementary
topological viewpoint. That is, models are simplicial complexes and the quantity and quality of
holes of such complexes is described by Betti numbers. In summary, our poster presents two forms
of describing models: by degree and by connectivity. Some examples are included.

Design and design ideal

An experimental design D is a set of n points in d factors, D ⊂ R
d. For indeterminates x1, . . . , xd

consider a subset of the polynomial ring R[x1, . . . , xd] composed by all polynomials that vanish on
the design points. This set is a polynomial ideal which is called the design ideal I(D).

Identification of models with algebra

Two polynomials f, g ∈ R[x1, . . . , xd] are congruent modulo I(D) if f−g ∈ I(D). The quotient ring
R[x1, . . . , xk]/I(D) is the set of equivalence classes for congruence modulo I(D). When considered
as real vector spaces, the following isomorphisms between quotient rings hold:

R[x1, . . . , xd]/I(D) ∼= R[x1, . . . , xd]/〈LT(I(D))〉 ∼= R[D] (1)

Here 〈LT(I(D))〉 is the monomial ideal created by the leading terms of polynomials in I(D), namely
〈LT(I(D))〉 = 〈LT≺(f) : f ∈ I(D)〉; the symbol ≺ refers to a term ordering in T d, the set of all
monomials in x1, . . . , xd; while R[D] is the set of polynomial functions defined on D, see [3].
Recall that the Gröbner basis for I(D) is a subset G ⊂ I(D) such that 〈LT≺(g) : g ∈ G〉 =
〈LT(I(D))〉. For a fixed term ordering ≺, let G be a Gröbner basis for I(D) and let L≺(I(D)) be
the set of all monomials that cannot be divided by the leading terms of the Gröbner basis G, that
is

L≺(I(D)) := {xα ∈ T d : xα is not divisible by LT≺(g), g ∈ G} (2)

The set L(D) = L≺(I(D)) is referred to as the model identified by the design. In statistical terms,
L(D) is a saturated, hierarchical model.
Example 1: For the design D = {(0, 0), (1, 0), (0, 1), (−1, 1), (1,−1)} and a monomial ordering
x2 ≺ x1, the set G≺ = {x2

1 + 2x1x2 + x2
2 − x1 − x2, x

3
2 − x2, x1x

2
2 − x1x2 − x2

2 + x2} is a Gröbner
basis for I(D) and the model identified is L(D) = {1, x1, x2, x1x2, x

2
2}.

A column selection algorithm [1]

The identification of models with algebraic techniques is equivalent to column selection of the
design model matrix using a term ordering for the candidate columns. By row elimination, the
following algorithm retrieves a reduced Gröbner basis for I(D). This algorithm is a variation of
the FGLM algorithm for change of basis [4].

1. Compute the design-model matrix with design points and monomials from set V d
n := {x ∈

Z
d
≥0 :

∏d
i=1

(xi + 1) ≤ n}. Columns are indexed by monomials from V d
n .

2. Reorder the columns using a monomial ordering ≺.

3. Select the first n columns which form a linearly independent set

1 x1 x2 x2
1 x1x2 x2

2 x3
1 · · ·

1 0 0 0 0 0 0
1 1 0 1 0 0 1
1 0 1 0 0 1 0
1 1 −1 1 −1 1 1
1 −1 1 1 −1 1 −1
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Design fan

The collection of models identified by D by changing all possible monomial orderings is called
the algebraic fan on D. The algebraic fan is a finite collection of models A(D) =

⋃
≺ L≺(D),

where the union is carried out over the infinite set of all term orderings ≺. In general this is
a difficult computation for which there are some partial solutions. One alternative is to create
a family of universal weighing ordering vectors using the Hilbert zonotope, see [1]. A different
solution is software Gfan which computes A(D) for a given design ideal. A third alternative, not
fully explored, is a probabilistic search for models.

Models in A(D) correspond to vertexes of the state polytope
S(I), e.g. sum exponent vector in L = {1, x1, x2, x1x2, x

2
2},

ᾱL =
∑

L α = (2, 4).
The state polytope is defined as S(I) = conv(ᾱL : L ∈
A(D)) + R

d
+

(2, 4)

(4, 2)
(3, 3)

S(I)

Example 2: For d = 3, α = 2, n0 = 1, set D to be the central composite design (CCD) with
points {(0, 0, 0), (±1,±1,±1),±ei, i = 1, 2, 3}. There are three models identified by algebra:
1, x1, x2,x3, x

2
1,x

2
2, x

2
3, x1x2, x1x3, x2x3, x1x2x3 plus terms x3

i , x
4
i , x

2
ixj , j 6= i, i = 1, 2, 3.

Aberration

Motivated by the term generator aberration, we would like to identify models with low degree.
Linear aberration gives a weighted (average) degree:

A(w,L) =
1

n

∑
wiᾱLi

with wi ≥ 0,
∑

wi = 1. Models in the algebraic fan minimize A(w,L). This is because models in
A(D) lie in the boundary of S(I).

A special type of designs are generic designs, which mini-
mize A(w,L) over all weights w and over all sets of hier-
archical monomials. Importantly, for generic designs, the
models in A(D) are corner cut models. Corner cut

{1, x1, x2, x1x2} is not corner cut

Bounds for minimal aberration [2]

For fixed w, minimal aberration is computed by minimiza-
tion of aberration over all hierarchical models identifiable
by the design: A∗ = minLA(w,L). Bounds were found for
minimal aberration A∗ over the family of generic designs:

A+ − 1 ≤ A∗ ≤ A+ + 1

where A+ = k · g(w).
Approximated minimal aberration: Ã = db1/dg(w) − a
where a, b are fixed constants. We experimentally observe
that Ã → A∗
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A∗ for designs with d = 2, n = 9.

Fractions of factorial designs 2d

The algebraic techniques exposed above have particular characteristics when the designs are frac-
tions of factorial designs with two levels. The models are squarefree, i.e. (hierarchical) subsets of⊗d

i=1
{1, xi}. For this reason, models can be seen and studied as simplicial complexes. This is due

to the squarefree nature of models and the hierarchical structure. We thus write ∆ for the model
(2) to emphasize its simplicial structure.
The ideal of leading terms 〈LT(I(D))〉 is related to a special ideal created by ∆:

〈LT(I(D))〉 = Ī∆

here I∆ is the squarefree monomial ideal created by the non-faces of ∆. This ideal is the well-known
Stanley-Reisner ideal [5], and Ī is the artinian closure of I.
The complexity of the model ∆ can be studied by the Stanley-Reisner ring R[x1, . . . , xd]/I∆. Note
that this ring is not the same as the quotient ring of Equation (1), i.e. the artinian closure of I∆
is required.

The role of Betti numbersa

Betti numbers stem from topology, and the Betti number of a space counts the maximum number of
cuts that can be made without dividing the space into two pieces. Informally, the k-th Betti number
refers to the number of unconnected k-dimensional surfaces. For instance, the first few Betti
numbers have the following intuitive definitions: β0 is the number of unconnected components,
β1 is the number of two dimensional circles “holes”, and β2 is the number of three dimensional
“holes” or voids.
We aim to relate Betti numbers of the ideal of leading terms β(LT(I(D))) to models that minimize
aberration. A starting point is that for a design fan, Betti numbers of the leading term ideal are
maximal when using graded term ordering.
Currently Betti numbers provide a direct interpretation in terms of the complexity of the boundary
between model ∆ and its complement. Models are categorized by sharing the same Hilbert function.
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Plackett Burman (PB) designs [7]

Designs in this family consist of small fractions of 2d with d factors and n = d+1 runs. The designs
are constructed by circular shifts of a generator and are available for d = 7, 11, 15, 19, 23, . . . PB
designs possess a complicated aliasing table, but they have an orthogonal design-model matrix for
the linear model with all factors

E(y) = θ0 +

d∑

i=1

θixi (3)

PB designs are a popular choice for screening in a first stage of experimentation. We study their
algebraic fan and describe the structure of models with the aid of Betti numbers.
Example 3: PB8 Consider a Plackett-Burman design with eight runs, seven factors a, b, c, d, e, f, g
and generator +−−+− + +. We refer to this design as PB8. Set a block term ordering ≺1 for
which monomials in c, d, e are smaller than monomials in a, b, f, g. The model identified by PB8 is

∆≺1
= {1, e, d, de, c, ce, cd, a},

that is a simplicial complex consisting of two components. The description of ∆ (degree by degree)
is found by computing the Hilbert series of the quotient ring R[a, b, c, d, e, f, g]/〈I(D)〉 which is
HS(s) = 1 + 4s+ 3s2.
A further description of the model border shows that ∆≺1

contains one leading monomial of degree
one (a) and three leading monomials of degree two (de, ce, cd). We now examine the monomial ideal
generated by the leading terms of the design ideal 〈I(D)〉 = 〈f, b, g, a2, ac, ad, ae, c2, e2, d2, cde〉 ⊂
R[a, b, c, d, e, f, g], which has three generators of degree one, seven of degree two and one of degree
three. This precise description degree by degree is read from the Betti diagram of the ideal of
leading terms, i.e. β0,1 = 3, β0,2 = 7, β0,3 = 1, and the border description of ∆ is also read from
the Betti diagram: β6,8 = 1, β6,9 = 3.

0 1 2 3 4 5 6
1: 3 3 1 - - - -
2: 7 30 52 47 24 7 1
3: 1 10 33 52 43 18 3
Tot: 11 43 86 99 67 25 4

Table 1: Betti diagram for PB8 and ≺1.

In contrast, consider a term ordering ≺2 which is DegRevLex. Now the Betti diagram contains
much higher numbers β0,2 = 28 (number of leading terms of 〈I(D)〉) and β6,8 = 7 (number of
leading monomials of ∆). In other words, PB8 identifies a simplicial complex model with seven
disconected components ∆≺2

= {1, a, b, c, d, e, f, g} and a very complex ideal of leading terms.
This is the model for Equation (3).
Now repeat the analysis with a Lex term ordering ≺3. The Betti diagram now shows much smaller
figures β0,1 = 4, β0,2 = 3 and β6,10 = 1. The model ∆≺3

is simpler, being one simplicial complex
completely connected. Correspondingly, its border shares this simplicity.
The results for the 218 models in the algebraic fan of PB8 are summarized in Table 2, where
representatives of six equivalence classes (up to permutation of factors) are shown. Note that
models with the same Hilbert function do not neccesarily share the same Betti numbers. Take
model ∆≺4

with numbers β0,1 = 3, β0,2 = 7 and β6,9 = 3, which are smaller than for the model
∆≺1

(Block).

≺2 (DegRevLex) ≺3 (Lex) ≺4 ≺1 (Block)
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1 + 5s+ 2s2 1 + 7s 1 + 3s+ 3s2 + s3 1 + 6s+ s2 1 + 4s+ 3s2

Table 2: Equivalence classes of models ∆ and corresponding Hilbert Series for PB8.

Example 4: PB12 This design has 12 runs in 11 factors and generator + +−+++−−−+−.
The algebraic fan of PB12 is very complex, showing a rich variety of simplicial models. Despite its
enormous size (around 3×105), models have been classified in nineteen classes (up to permutations
of variables), which in turn share only ten distinct Hilbert Series. Among the different models,
Betti numbers for the model with Hilbert Series 1 + 11s are the largest.
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