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The problem

• We want to fit a hierarchical loglinear model to some
discrete data given under the form of a contingency table.

• We put the Diaconis-Ylvisaker conjugate prior on the
loglinear parameters of the multinomial distribution for the
cell counts of the contingency table.

• We study the behaviour of the Bayes factor as the
hyperparameter α of the conjugate prior tends to 0

• We are led to study the convex hull C of the support of the
multinomial distribution.

• The faces of C are the most important objects in this
study.
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The data in a contingency table

• N objects are classified according to |V |criteria.

• We observe the value of X = (Xγ | γ ∈ V ) which takes its
values (or levels) in the finite set Iγ.

• The data is gathered in a |V |-dimensional contingency
table with

|I| = ×γ∈V |Iγ | cells i.

• The cell counts (n) = (n(i), i ∈ I) follow a
multinomial M(N, p(i), i ∈ I)distribution.

• We denote iE = (iγ , γ ∈ E) and n(iE) respectively the
marginal-E cell and cell count.
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The loglinear model
• We choose a special cell 0 = (0, . . . , 0).
• The set D = {D ⊆ V : D1 ⊂ D ⇒ D1 ∈ D} define the
hierarchical loglinear model.

log p(i) = λ∅ +
∑

D∈D

λD(i)

• We define S(i) = {γ ∈ V : iγ 6= 0} and

j ⊳ i if S(j) ⊆ S(i) and jS(j) = iS(j).

• We change parametrization

p(i) 7→ θi =
∑

j⊳i

(−1)|S(i)\S(j)| log p(j).
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The loglinear model:cont’d

• Define

J = {j ∈ I : S(j) ∈ D}

Ji = {j ∈ J, j ⊳ i}

• Then the hierarchical loglinear model can be written as

log p(i) = θ∅ +
∑

j∈Ji

θj .
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Example

Consider the hierarchical model with

V = {a, b, c}, A = {{a, b}, {b, c}}, Ia = {0, 1, 2} = Ib, Ic = {0, 1},

and i = (0, 2, 1). We have

D = {a, b, c, ab, bc}

J = {(1, 0, 0), (2, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1), (1, 1, 0), (1, 2, 0),

(2, 1, 0), (2, 2, 0), (0, 1, 1), (0, 2, 1)}

Ji = {(0, 2, 0), (0, 0, 1), (0, 2, 1)}

log p(0, 2, 1) = θ∅(0,2,1) + θb
(0,2,1) + θc

(0,2,1) + θb,c
(0,2,1)

= θ(0,0,0) + θ(0,2,0) + θ(0,0,1) + θ(0,2,1)

= θ0 +
∑

j∈Ji

θj
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The multinomial hierarchical model

Since J = ∪i∈IJi, the loglinear parameter is

θJ = (θj , j ∈ J).

The hierarchical model is characterized by J . For i 6= 0, the
loglinear model can then be written

log p(i) = θ0 +
∑

j∈Ji

θj

with log p(0) = θ0. Therefore

p(0) = eθ0 = (1 +
∑

i∈I\{0}

exp
∑

j∈Ji

θj)
−1 = L(θ)−1

and
∏

i∈I

p(i)n(i) =
1

L(θ)N
exp{

∑

j∈J

n(jS(j)θj} = exp{
∑

j∈J

n(jS(j))θj + Nθ0}.
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The model as an exponential family

Make the change of variable

(n) = (n(i), i ∈ I\{0}) 7→ t = (t(iE) = n(iE), E ⊆ V \{∅}, i ∈ I\{0}).

Then
∏

i∈I p(i)n(i) becomes

f(tJ |θJ) = exp







∑

j∈J

n(jS(j))θj − N log(1 +
∑

i∈I\{0}

exp
∑

j∈Ji

θj)







=
exp 〈θJ , tJ〉

L(θJ)N
with θJ = (θj , j ∈ J), tJ = (n(jS(j), j ∈ J)

and L(θJ) = (1 +
∑

i∈I\{0} exp
∑

j∈Ji
θj).

It is an NEF of dimension |J |, generated by the following
measure.
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The generating vectors

The set of functions from J to R is denoted by RJ and we
write any function h ∈ RJ as h = (h(j), j ∈ J), which we can
think of as a |J | dimensional vector in R|J |. Let (ej , j ∈ J) be
the canonical basis of RJ and let

fi =
∑

j∈J,j⊳i ej , i ∈ I.

D f0 fa fb fc fab fac fbc fabc

ea 0 1 0 0 1 1 0 1
eb 0 0 1 0 1 0 1 1
ec 0 0 0 1 0 1 1 1
eab 0 0 0 0 1 0 0 1
ebc 0 0 0 0 0 0 1 1
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The measure

We note that in our example RI is of dimension 8 while RJ

is of dimension 5 and the (fj , j ∈ J) are, of course,
5-dimensional vectors. Consider now the counting measure
in RJ

µJ = δ0 +
∑

i∈I

δfi
.

For θ ∈ RJ , the Laplace transform of µJ is
∫

RJ

e〈θ,x〉µJ(dx) = 1+
∑

i∈I\{0}

e〈θ,fi〉 = 1+
∑

i∈I\{0}

e
∑

j⊳i
θj = L(θ).

Therefore the multinomial f(tJ |θJ) = exp〈θJ ,tJ〉
L(θJ)N is the NEF

generated by µ∗N
J .
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CJ : The convex hull of the support of µJ

Since µJ = δ0 +
∑

i∈I δfi
,

CJ is the open convex hull of 0 ∈ RJ and fj , j ∈ J .

It is important to identify this convex hull since Diaconis and
Ylvisaker (1974) have proven that the conjugate prior to an
NEF, defined by

π(θJ |mJ , α) =
1

I(mJ , α)
e{α〈θJ ,mJ〉−α log L(θJ)}

is proper when the hyperparameters mJ ∈ RJ and α ∈ R

are such that
α > 0 and mJ ∈ CJ .
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The DY conjugate prior

Clearly, we can write the multinomial density as
f(tJ |θJ) = f(tJ |θJ , J) where J represents the model.
Assuming we put a uniform discrete distribution on the set
of models,the joint distribution of J, tJ , θJ is

f(J, tJ , θJ) ∝
1

I(mJ , α)
e{〈θJ ,tJ+αmJ〉−(α+N) log L(θJ)}

and therefore the posterior density of J given tJ is

h(J |tJ) ∝
I( tJ+αmJ

α+N , α + N)

I(mJ , α)
.

Interpretation of the hyper parameter (αmJ , α):

α is the fictive total sample size

α(mj , j ∈ J) represent the fictive marginal counts .
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The Bayes factor between two models

Consider two hierarchical models defined by J1 and J2. To
simplify notation, we will write

h(Jk|tJk
) ∝

I( tk+αmk

α+N , α + N)

I(mk, α)
, k = 1, 2

so that the Bayes factor is

I(m2, α)

I(m1, α)
×

I( t1+αm1

α+N , α + N)

I( t2+αm2

α+N , α + N)
.

We will consider two cases depending on whether
tk

N ∈ Ck, k = 1, 2 or not.
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The Bayes factor between two models

When α → 0, if tk

N ∈ Ck, k = 1, 2, then

I( t1+αm1

α+N , α + N)

I( t2+αm2

α+N , α + N)
→

I( t1
N , N)

I( t2
N , N)

which is finite. Therefore we only need to worry about
lim I(m2,α)

I(m1,α) when α → 0.

When α → 0, if tk

N ∈ C̄k \Ck, k = 1, 2, then, we have to worry
about both limits.
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Limiting behaviour of I(m, α)

Definitions. Assume C is an open nonempty convex set in
Rn.

• The support function of C is hC(θ) = sup{〈θ, x〉 : x ∈ C}

• The characteristic function of C:
JC(m) =

∫

Rn e〈θ,m〉−hC(θ)dθ

Examples of JC(m)

• C = (0, 1). Then hC(θ) = θ if θ > 0 and hC(θ) = 0 if θ ≤ 0.
Therefore hC(θ) = max(0, θ) and

JC(m) =

∫ 0

−∞
eθmdθ +

∫ +∞

0
eθm−θdθ =

1

m(1 − m)
.
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Limiting behaviour of I(m, α)

Examples of JC(m)

• C is the simplex spanned by the origin and the canonical
basis {e1, . . . , en} in Rn and m =

∑n
i=1 miei ∈ C. Then

JC(m) =
n!Vol(C)
∏n

j=0 mi

=
1

∏n
j=1 mi(1 −

∑n
j=1 mi)

.

• J = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)} with C
spanned by fj , j ∈ J and m =

∑

j∈J mjfj. Then

JC(m) =
m(0,1,0)(1 − m(0,1,0))

DabDbc

Dab = m(1,1,0)(m(1,0,0) − m(1,1,0))(m(0,1,0) − m(1,1,0))(1 − m(1,0,0) − m(0,1,0) + m(1,1,0))

Dbc = m(0,1,1)(m(0,0,1) − m(0,1,1))(m(0,1,0) − m(0,1,1))(1 − m(0,0,1) − m(0,1,0) + m(0,1,1))
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Limiting behaviour of I(m, α)

Theorem

Let µ be a measure on Rn,n = |J |, such that C the interior
of the convex hull of the support of µ is nonempty and
bounded. Let m ∈ C and for α > 0, let

I(m,α) =

∫

Rn

eα〈θ,m〉

L(θ)α
dθ.

Then
limα→0α

nI(m,α) = JC(m).

Furthermore JC(m) is finite if m ∈ C.
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Outline of the proof

I(m,α) =

∫

Rn

e〈θ,m〉

L(θ)α
dθ

αnI(m,α) =

∫

Rn

eα〈y,m〉

L( y
α)α

dy by chg. var. y = αθ

L(
y

α
)α = [

∫

S
e

1
α
〈y,x〉µ(dx)]α

=
∫

S
[e〈y,x〉]pµ(dx)

)1/p
for α = 1/p, S = supp(µ)

= ||e〈y,•〉||p → ||e〈y,•〉||∞ as α → 0

= sup
x∈S

e〈y,x〉 = sup
x∈C

e〈y,x〉 = esupx∈C〈y,x〉, C = c.c.h.(S)

αnI(m,α) →

∫

Rn

e〈y,m〉−hC(y)dy = JC(m)
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Limit of the Bayes factor

Let models J1 and J2 be such that |J1| > |J2| and the
marginal counts ti

N are both in Ci. Then the Bayes factor

I(m2, α)

I(m1, α)

I( t1+αm1

α+N , α + N)

I( t2+αm2

α+N , α + N)
∼ α|J1|−|J2|

I( t1
N , N)

I( t2
N , N)

Therefore the Bayes factor tends towards 0, which indicates
that the model J2 is preferable to model J1.

We proved the heuristically known fact that taking α small
favours the sparser model.

We can say that α close to "0 " regularizes the model.
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Some comments

If ti

N are both in Ci, i = 1, 2 and |J1| 6= |J2|, we need not
compute JC(m).

If ti

N are both in Ci, i = 1, 2 and |J1| = |J2|, then we might
want to compute JC(mi)i = 1, 2 . In this case, we have a few
theoretical results. We define the polar convex set C0 of C

C0 = {θ ∈ Rn ; 〈θ, x〉 ≤ 1 ∀x ∈ C}

then

• JC(m)
n! = Vol(C − m)0

• If C in Rn is defined by its K (n − 1)-dimensional faces
{x ∈ Rn : 〈θk, x〉 = ck}, then for D(m) =

∏K
k=1(〈θk, x〉 − ck),

D(m)JC(m) = N(m)
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Some more comments

Extreme points of C̄

The (fi, i ∈ I) form the family of extreme points of C.

There is a program "lrs" that given fi will compute the faces
of C and also will give the orthants of the supporting cones
at each extreme points fi of C. This helps us compute
JC(m) since we split this integration within each region of
C0.
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Limiting behaviour of I(αm+t
α+N , α + N)

We now consider the case when t
N belongs to the boundary

of C. Then each face of C̄ of dimension |J | − 1 is of the form

Fg = {x ∈ C̄ : g(x) = 0}

where g be an affine form on RJ .

Theorem

Suppose t
N ∈ C̄ \ C belongs to exactly M faces of C̄. Then

limα→0α
min(M,|J |)I(

αm + t

α + N
,α + N)

exists and is positive.
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The Bayes factor

Combining the study of the asymptotic behaviour of I(m,α)

and I(αm+t
α+N , α + N), we obtain that

when α → 0, the Bayes factor behaves as follows

I(m2, α)

I(m1, α)

I( t1+αm1

α+N , α + N)

I( t2+αm2

α+N , α + N)

∼ Cα|J1|−|J2|−[min(M1,|J1|)−min(M2,|J2|)]JC1
(m1)

JC2
(m2)

where C is a positive constant.
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Some facets of C

Let C be the set of generators of the hierarchical model.

For each D ∈ C and each j0 ∈ J such that S(j0) ⊂ D define

g0,D =
∑

j;S(j)⊂D

(−1)|S(j)|ej

gj0,D =
∑

j;S(j)⊂D, j0⊳j

(−1)|S(j)|−|S(j0)|ej

and the affine forms

g0,D(t) = 1 + 〈g0,D, t〉

gj0,D(t) = 〈gj0,D, t〉.
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Some facets of C

All subsets of the form

F (j,D) = H(j,D) ∩ C

with

H(j,D) = {t ∈ RJ ; gj,D(t) = 0}, D ∈ C, S(j) ⊂ D

are faces of C

Example a −−− b −−− c. The faces are

tab = 0, ta − tab = 0, tb − tab = 0, 1 − ta − tb + tab = 0

and

tbc = 0, tb − tbc = 0, tc − tbc = 0, 1 − tb − tc + tbc = 0.
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The facets of C when G is decomposable

For decomposable models,

H(j,D) = {m ∈ RJ ; gj,D(m) = 0}, D ∈ C, S(j) ⊂ D

are the only faces of C.
Example a −−− b −−− c. The facets are

tab = 0, j = (1, 1, 0) ta − tab = 0, j = (1, 0, 0)

tb − tab = 0, j = (0, 1, 0) 1 − ta − tb + tab = 0, S(j) = ∅

tbc = 0, j = (0, 1, 1) tb − tbc = 0, j = (0, 1, 0)

tc − tbc = 0, j = (0, 0, 1) 1 − tb − tc + tbc = 0S(j) = ∅.

Warwick April 2010 – p. 26



Some facets when G is a cycle

Theorem Let G = (V,E) be a cycle of order n. Let (a, b) be
an edge of the cycle. Then the hyperplanes

〈sab, t〉 = −ta − tb + 2tab +
∑

c

tc −
∑

e∈E

te =

{

0

an

where an = n−1
2 if n is odd and an = n−2

2 when n is even,
define facets of C.
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Facets for hierarchical {a, b, c}

The 16 facets are given by the following affine forms being
equal to 0:

mab mbc mac

ma − mab mb − mbc mc − mac

mb − mab mc − mbc ma − mac

1 − ma − mb + mab 1 − mb − mc + mbc 1 − ma − mc + mac

mc − mac − mbc + mab ma − mab − mac + mbc mb − mab − mbc + mac

1 − ma − mb − mc + mac + mab + mbc
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Bayesian networks

Steck and Jaakola (2002) considered the problem of the
limit of the Bayes factor when α → 0 for Bayesian networks.

Bayesian networks are not hierarchical models but in some
cases, they are Markov equivalent to undirected graphical
models which are hierarchical models.

Problem:compare two models which differ by one directed
edge only.

Equivalent problem: with three variables binary Xa, Xb, Xc

each taking values in {0, 1}, compare
Model M1: a −−−−b −−−−c: |J1| = 5.
Model M2: the complete model i.e. with A = {(a, b, c)}.
|J2| = 7
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Our results

Model M2: a −−−−b −−−−c: |J2| = 5. The faces
expressed in traditional notation are

n11+ = n10+ = n01+ = n00+ = n+11 = n+10 = n+01 = n+00 = 0

Model M1: |J1| = 7. The faces expressed in traditional
notation are
Example The data is such that n000 = n100 = n101 = 0.
Therefore in M1, t1

N belongs to M1 = 3 faces and in M2, t2
N

belongs to M1 = 2 faces n10+ = 0 = n+00.
Thus the Bayes factor ∼ αd where

d = |J1|−|J2|−[min(|J1,M1)−min(|J2|,M2)] = 7−5−[3−2] = 1
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Steck and Jaakola (2002)

Define the effective degrees of freedom to be

dEDF =
∑

i

I(ni) −
∑

iab

I(n(iab)) −
∑

ibc

I(n(ibc)) +
∑

ib

I(n(ib))

Theorem If dEDF > 0, the Bayes factor tends to 0 and if
dEDF < 0 the Bayes factor tends to +∞. If dEDF = 0, the
Bayes factor can converge to any value.

In our example

dEDF = 5 − 3 − 3 + 2 = 1

Our results agree with SJ in the particular case of Bayesian
networks. Our results give a much finer analysis for a more
general class of problems.
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Example of model search

We study the Czech Autoworkers 6-way table from Edwards
and Havranek (1985).

This cross-classfication of 1841 men considers six potential
risk factors for coronary trombosis:
• a, smoking;
• b, strenuous mental work;
• c, strenuous physical work;
• d, systolic blood pressure;
• e, ratio of beta and alpha lipoproteins;
• f , family anamnesis of coronary heart disease.

Edwards and Havranek (1985) use the LR test and
Dellaportas and Forster (1999) use a Bayesian search with
normal priors on the θ to analyse this data.
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Czech Autoworkers example our method

We use a Bayesian search with

MC3

our prior with α = 1, 2, 3, 32 and then α = .05, .01 and
equal fictive counts for each cell

The Laplace approximation to the marginal likelihood
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Czech Autoworkers example

Search α = 1 α = 2

Dec. bc|ace|ade|f 0.250 bc|ace|ade|f 0.261

bc|ace|de|f 0.104 bc|ace|de|f 0.177

bc|ad|ace|f 0.102 bc|ace|de|bf 0.096

ac|bc|be|de|f 0.060 bc|ad|ace|f 0.072

bc|ace|de|bf 0.051 bc|ace|de|bf 0.065

bc|ace|de|f med bc|ad|ace|de|f med

Graph. ac|bc|be|ade|f 0.301 ac|bc|be|ade|f 0.341

ac|bc|ae|be|de|f 0.203 ac|bc|be|ade|bf 0.141

ac|bc|be|ade|bf 0.087 ac|bc|ae|be|de|f 0.116

ac|bc|ad|ae|be|f 0.083 ac|bc|be|ade|ef 0.059

ac|bc|ae|be|de|bf 0.059

ac|bc|ad|ae|be|de|f med ac|bc|be|ade|f med

Hierar. ac|bc|ad|ae|ce|de|f 0.241 ac|bc|ad|ae|ce|de|f 0.175

ac|bc|ad|ae|be|de|f 0.151 ac|bc|ad|ae|be|de|f 0.110

ac|bc|ad|ae|be|ce|de|f 0.076 ac|bc|ad|ae|be|ce|de|f 0.078

ac|bc|ad|ae|ce|de|bf 0.070 ac|bc|ad|ae|ce|de|bf 0.072

ac|bc|ad|ae|ce|de|f med ac|bc|ad|ae|be|ce|de|f med
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Results for α close to 0

Search α = .5 α = .01

Hierar. ac|bc|ad|ae|ce|de|f 0.3079 ac|bc|ad|ae|ce|de|f 0.2524

ac|bc|ad|ae|be|de|f 0.1926 ac|bc|ad|ae|be|de|f 0.1577

ac|bc|ad|ae|be|ce|de|f 0.0686 ac|bc|ae|ce|de|f 0.1366

ac|bc|ad|ae|ce|de|be 0.0631 ac|bc|d|ae|ce|f 0.1168

ac|bc|ad|ae|ce|de|f med ac|bc|ae|de|f 0.0854

ac|bc|c|ae|be|f 0.0730

ac|bc|ad|ae|ce|f 0.0558

Recall that for α = 1, 2, the most probable model was
ac|bc|ad|ae|ce|de|f with respective probablities 0.241 and
0.175.

As α 7→ 0, the models become sparser but are consistent
with those corresponding to larger values of α.
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Another example

32 3 86 2 56 35 7 0

130 12 59 5 142 91 5 0

Marginal a, b, d, h table from the Rochdale data in
whittaker1990. The cells counts are written in
lexicographical order with h varying fastest and a varying
slowest.
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The three models considered
We will consider three models J0, J1 and J2 such that

(a) J0 is decomposable with cliques {a, d}, {d, b}, {b, h} so
that D as defined in Section 2 is

D0 = {a, b, d, h, (ad), (db), (bh)}, |J0| = 7, M0 = 0.

(b) J1 is a hierarchical model with generating set
{(ad), (bd), (bh), (dh)}. This is not a graphical model and

D1 = {a, b, d, h, (ad), (db), (bh), (dh)}, |J1| = 8 M1 = 0.

(c) J2 is decomposable with cliques {b, d, h}, {a},and

D2 = {a, b, d, h, (ad), (db), (bh), (dh), (bdh)}, |J2| = 8, M2 = 1.
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Asymptotics of B1,0 and B2,0

We have

B1,0 ∼ α|J0|−|J1|−[min(M0,|J0|)−min(M1,|J1|)]JC1
(m1)

JC0
(m0)

= C1,0α
(7−8−(0−0) = Cα−1

B2,0 ∼ α|J0|−|J2|−[min(M0,|J0|)−min(M2,|J2|)]JC2
(m2)

JC0
(m0)

= C2,0α
(7−8−(0−1) = C2,0α

0 = C2,0

Warwick April 2010 – p. 38



The graphs
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