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The problem

e We want to fit a hierarchical loglinear model to some
discrete data given under the form of a contingency table.

e We put the Diaconis-Ylvisaker conjugate prior on the
loglinear parameters of the multinomial distribution for the
cell counts of the contingency table.

e We study the behaviour of the Bayes factor as the
hyperparameter « of the conjugate prior tends to 0

e We are led to study the convex hull C' of the support of the
multinomial distribution.

e The faces of C' are the most important objects Iin this
study.
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The data in a contingency table

e N objects are classified according to |V |criteria.

e We observe the value of X = (X, | v € V) which takes its
values (or levels) in the finite set 1,,.

e The data is gathered in a |V |-dimensional contingency
table with

I = xev|I4| cells i.

e Thecellcounts (n)= (n(¢),i€Z) follow a
multinomial M (N, p(i),: € Z)distribution.

e We denote i = (i4,7 € E) and n(ig) respectively the
marginal-~ cell and cell count.
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The loglinear model

e We choose a special cell 0 = (0, ...,0).
e ThesetD={DCV: Dy CD= Dy €D} define the
hierarchical loglinear model.

log p(i) = Ay + > Ap(i)

e We define S(i) ={ye V: i, # 0} and
jai if S(j) € S(i) and js(;) = is().
e \We change parametrization

p(i) = 0 = Y (=1 Wllogp(j).

1<
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The loglinear model.contd

e Define

J = {jel: S(y) €D}
Ji = {j€J, j<i}

e Then the hierarchical loglinear model can be written as

log p(7) +Z@

1€J;
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Example

Consider the hierarchical model with

= {a,b,c}, A={{a,b},{b,c}}, I,=1{0,1,2} =1, I.={0,1},
and ¢ = (0,2,1). We have
D ={a,b,c,ab,bc}

J =1{(1,0,0),(2,0,0),(0,1,0),(0,2,0),(0,0,1),(1,1,0), (1,2,0),

(
(2,1,0),(2,2,0),( 1.1),(0,2,1)}

log p(0,2,1) = ‘9((2)0,2,1) T 9(0,2,1) + 0021 9(0,2,1)
= 0(0,0,0) T %0,2,0) T 90,0,1) + 00,21

:90‘|‘Z(9j

j€J;
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The multinomial hierarchical model

Since J = U;<7J;, the loglinear parameter is
0y =05, jeJ).

The hierarchical model is characterized by J. For i #£ 0, the
loglinear model can then be written

with log p(0) = 6y. Therefore

p(0)=e” =1+ Y expd 6;) "' =L(H)"
ieI\{0} jeJ;
and

(i 1 . .
[T p(i)*® = N exp{) n(js(;)0;} =exp{>_n(isc))0; + Nbo}.

11 1e€d jed
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The model as an exponential family

Make the change of variable

(n) = (n(i),i € I\{0}) =t = (t(ip) = n(ip), E € V\{0},i € I\{0}).

Then [[,.;p(i)") becomes

Vs

f(ts105) = exp {Zn<j5(j))‘9j — Nlog(1+ » expy 6;)

jeJ ieI\{0} jeJi )

exp (0y,t7) . - N
= L with 6; = (6,5 € J), t;=(n(jsq).J €

It Is an NEF of dimension |.J|, generated by the following
measure.
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The generating vectors

The set of functions from .J to R is denoted by R’ and we
write any function h € R’ as h = (h(j),j € J), which we can

think of as a |.J| dimensional vector in R!/I. Let (e;,j € J) be
the canonical basis of R’ and let

D fO fa fb fc fab fac fbc fabc
ee 1O 1 0 O 1 1 O 1
epb | O 0O 1 0 1 O 1 1
ec1 O O O 1 O 1 1 1
ess | O O O O 1 O O 1
ee. | O O O O O O 1 1
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The measure

We note that in our example R’ is of dimension 8 while R’
Is of dimension 5 and the (f;,j € J) are, of course,

5-dimensional vectors. Consider now the counting measure
in R/
[y = 0o + Z 0f,.
i€T

For # € R/, the Laplace transform of 1 is

/ el > jldr) =1+ Z 0.fi) =14 Z ZWJ_L(H)-
RJ

icT\{0} ic7\{0}

Therefore the multinomial f(t;]0;) = exf<<gj)’fj> is the NEF

generated by p*V.
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C'j: The convex hull of the support of 11

Since p; =60+ D _ic7 07,
C; is the open convex hull of 0 € R/ and fi,j€J.

It is important to identify this convex hull since Diaconis and
Ylvisaker (1974) have proven that the conjugate prior to an
NEF, defined by

L {al0sms)—alog L(0,)}
I(my,«)

W(@J’mj,@) =

is proper when the hyperparameters m; € R/ and o € R
are such that

a>0 and mj;e Cj.
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The DY conjugate prior

Clearly, we can write the multinomial density as

f(ts0;) = f(ts|0;,J) where J represents the model.
Assuming we put a uniform discrete distribution on the set
of models,the joint distribution of J,¢;,0; IS

1
{{05,t;+amj)—(a+N)log L(0)}
f(‘]atJaeJ) X ](mJ,Of)e

and therefore the posterior density of J given ¢ Is

[(A2s o+ N)
h(J|t oty
) S )

Interpretation of the hyper parameter (am, a):
# o Is the fictive total sample size

® o(mj, j € J)representthe Tictive marginal counts .
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The Bayes factor between two models

Consider two hierarchical models defined by J; and J,. To
simplify notation, we will write

[(etome o 4 N
h(Jlt,) o Cain )

k=12
I(my, ) ’ ’

so that the Bayes factor is

I(ma, a) y ](%7@4‘N)

I(my,a)  I(BE2 o+ N)

We will consider two cases depending on whether
L e Cy, k=1,2o0rnot.

Warwick April 2010 — p. 13



The Bayes factor between two models

When o — 0, if & € Ck, k= 1,2, then

I(Eft o+ N) o I(%,N)

a+N R
(2 o+ N)  I(%, N)
which is finite. Therefore we only need to worry about
lim %%w) when o — 0.
1,0)

When a — 0, if & € C;, \ Ck, k = 1,2, then, we have to worry
about both limits.
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Limiting behaviour of I (m, )

Definitions. Assume C' IS an open nonempty convex set in
R".
e The support function of C'is h¢g(0) = sup{(0,z) : x € C}

e The characteristic function of C:
Jo(m) = [p, el0mi=hel®)qg

Examples of Jo(m)

e C=(0,1). Then ho(#) =0if 6 > 0and ho(f) =01if 6 < 0.
Therefore h¢(0) = max(0,6) and

Jo(m) :/ egmd9+/0 e 0dp =

oo m(1l—m)
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Limiting behaviour of I (m, )

Examples of Jo(m)

e ('Is the simplex spanned by the origin and the canonical
basis {e1,...,e,} iIN R and m =", mse; € C. Then

e J=1{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1)} with C
spanned by f;,j € Jand m =} . ;m;f;. Then

m(0,1,0)(1 — m(0,1,0))
DabDbc

= m,1,00(M,0,00 — M(1,1,0)) (M0,1,0) — M(1,1,0)) (1 — M (1,0,0) — M(0,1,0) + ™(1,1,0))

— m(o,1,1)(m(o,o,1) - m(o,1,1))(m(0,1,0) - m(o,1,1))(1 — M(0,0,1) — ™(0,1,0) T+ m(0,1,1))
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Limiting behaviour of I (m, )

Theorem

Let ;, be a measure on R"™,n = |.J|, such that C the interior
of the convex hull of the support of 1. Is nonempty and
bounded. Let m € ¢ and for a > 0, let

e (0,m)
I(m,a) :/n L{0) do.

Then
lim,_ o I(m,a) = Jo(m).

Furthermore Jo(m) Is finite if m € C.
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Outline of the proof

el0m)
I(m,a) = /nL(G)O‘dH
e(y,m)

a"I(m,a) = /Rn L(T) dy by chg. var. y = af

Ly = [ e
S
{y,z)1p L
= [ [eIPu(da)) " fora = 1/p,S = supp(p)
= 1@l = 1| a5 a0
= supeW? = sup ¥ = Weecly®) (0 = c.c.h.(S)
x€eS xeC

a"I(m,a) — /e<y’m>_hc(y)dyzjc(m)

J Rn
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Limit of the Bayes factor

Let models J; and J; be such that |J;| > |J2| and the
marginal counts % are both in C;. Then the Bayes factor

t1 1 1
Km0 (OS850 4 N) 15,

I(my,a) I(222 o+ N) I(%,N)

Therefore the Bayes factor tends towards 0, which indicates
that the model J> is preferable to model J;.

We proved the heuristically known fact that taking o small
favours the sparser model.

We can say that « close to "0 " regularizes the model.

Warwick April 2010 — p. 19



Some comments

If & are both in C;,i = 1,2 and |.J;| # | J2|, we need not
compute Jo(m).

If & are both in C;,i = 1,2 and |.J;| = | Jz|, then we might
want to compute Jo(m;)i = 1,2 . In this case, we have a few
theoretical results. We define the polar convex set C, of C

C'={#cR"; b,z) <1 VzeC}
then

o J2M) _ \ol(C' — m)"

n!
e IfC'In R"Is defined by its K (n — 1)-dimensional faces
{x € R": (0}, x) = ¢}, then for D(m) = [[1—, (0, z) — cx),

D(m)Jg(m) = N(m)

where dearee of V() i1Is < K Warwick Aol 2010 b, 20



Some more comments

Extreme points of C

The (f;,7 € Z) form the family of extreme points of C.

There Is a program "Irs" that given f; will compute the faces
of C' and also will give the orthants of the supporting cones
at each extreme points f; of C'. This helps us compute
Jo(m) since we split this integration within each region of

cv.
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Limiting behaviour of ~ [(22-2 o + N)

We now consider the case when + belongs to the boundary
of C. Then each face of C of dimension |.J| — 1 is of the form

Fy={z€C:g(x)=0}

where ¢ be an affine form on R”.

Theorem

Suppose + € C'\ C belongs to exactly M faces of C. Then

. min am +t
lima_oa™ D 7 ( TN

exists and Is positive.
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The Bayes factor

Combining the study of the asymptotic behaviour of I(m, «)

and I(20L o + N), we obtain that

when o — 0, the Bayes factor behaves as follows

I(ms, 0) I(B5FF" o+ N)

I(my, ) I(2E202 o+ N)

o=l min(My |y ) ~min(My, | Je])] O (1)
JCQ (m2)

where C'Is a positive constant.
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Some facets of

Let C be the set of generators of the hierarchical model.
For each D € C and each jg € J such that S(j9) C D define

g0 = Z (_1)|S(j)|€j

7;5(j5)CD

GjoD = Z (_1)|S(j)|—|5(jo>|ej
]7S(J)CD7 70

and the affine forms

go,p(t) = 1+ (go,p,1)
gjo,D(t) — <gjo,D7t>'
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Some facets of

All subsets of the form
F(j,D)=H(j,D)NC
with
H(j,D)={teR’; g;p(t)=0}, DeC, S(j)c D

are faces of C
Example a« — — — b — — — ¢. The faces are

tap =0, tg —tap =0, tp —tep =0, 1 =1 —tp +tap =0
and

the =0, tp —tpe =0, te —tpe =0, 1 —1p —tc +tp. = 0.
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The facets of C when ( is decomposable

For decomposable models,

H(j,D) ={m e R’ ; g;p(m) =0}, DeC, S(j)C D

are the only faces of C.
Example a — — — b — — — ¢. The facets are

tap = 0,7 = (1,1,0) ta —tap = 0,75 = (1,0,0)
tb—tab—O]—(O,l,O)l—t —tp+tep=0,5(7) =0
e =0,7=1(0,1,1)ty —tp. = 0,5 = (0,1,0)

te —t —0;—(001)1—tb—t+tbc—OS(g):(Z)
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Some facets when ( is a cycle

Theorem Let G = (V, E) be a cycle of order n. Let (a, b) be
an edge of the cycle. Then the hyperplanes

0
<5abat> — tatb+2tab+ztczte{ I
- n

eckE

where a,, = 2 if n is odd and a,, = 52 when n is even,
define facets of C.
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Facets for hierarchical {a,b,c}

The 16 facets are given by the following affine forms being
equal to O:

Mab Mpc Mac
Mg — Mgp mp — Mpc Me — Mac
mpy — Mgp Me — My Mg — Mac
1 —mgqg — mp +myp 1 —mp —me + mpe 1 —mg — me + mge
Me — Mac — Mpe + Map Ma — Mgh — Mac + Mpe mp — Magbh — Mpe + Mac

1 —mg —mp —mec + Mmage +mgp + Mpe
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Bayesian networks

Steck and Jaakola (2002) considered the problem of the
limit of the Bayes factor when o — 0 for Bayesian networks.

Bayesian networks are not hierarchical models but in some

cases, they are Markov equivalent to undirected graphical
models which are hierarchical models.

Problem:compare two models which differ by one directed
edge only.

Equivalent problem: with three variables binary X,, X;, X,
each taking values in {0, 1}, compare

Model My:a — — - —-b— — — —c: |J1| = 5.

Model M,: the complete model i.e. with A = {(a,b,c)}.
| Jo| =7
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Our results

Model Ms:a — — — —b— — — —c: |J2| = 5. The faces
expressed In traditional notation are

N114 = N10+ = N1+ = N0+ = N11 = N410 = Nyo1 = N0 = 0

Model M;: |J1| = 7. The faces expressed in traditional

notation are
Example The data is such that nggg = n100 = n101 = 0.

Therefore in My, 4 belongs to M; = 3 faces and in My, 2
belongs to M; = 2 faces nip: = 0 = niqp.
Thus the Bayes factor ~ o where

d = ‘Jﬂ—‘JQ‘—[min(‘JhMl)—minﬂjg‘,Mg)] = 7—5—[3—2] =1
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Steck and Jaakola (2002)

Define the effective degrees of freedom to be
dEppr = Z I(n;) — Z I(n(ian)) — Z I(n(ipe)) + Z I(n(ip))

Theorem If dgpr > 0, the Bayes factor tends to O and if
dppr < 0 the Bayes factor tends to +co. If dgpr = 0, the
Bayes factor can converge to any value.

In our example
dEDF:5—3—3—|—2:1

Our results agree with SJ in the particular case of Bayesian
networks. Our results give a much finer analysis for a more
general class of problems.

Warwick April 2010 — p. 31



Example of model search

We study the Czech Autoworkers 6-way table from Edwards
and Havranek (1985).

This cross-classfication of 1841 men considers six potential
risk factors for coronary trombosis:

e a, Smoking;

e b, strenuous mental work;

e ¢, strenuous physical work;

e d, systolic blood pressure;

e ¢, ratio of beta and alpha lipoproteins;

e f, family anamnesis of coronary heart disease.

Edwards and Havranek (1985) use the LR test and
Dellaportas and Forster (1999) use a Bayesian search with
normal priors on the ¢ to analyse this data.
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Czech Autoworkers example our method

We use a Bayesian search with

® MC?

& our prior with o = 1, 2, 3,32 and then « = .05, .01 and
equal fictive counts for each cell

# The Laplace approximation to the marginal likelihood
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Czech Autoworkers example

Search a=1 o =2
Dec. bclace|ade| f 0.250 bclace|ade| f 0.261
bclace|de| f 0.104 bclace|de| f 0.177
belad|ace| f 0.102 bclace|del|bf 0.096
ac|bc|be|de| f 0.060 belad|acel f 0.072
bclace|del|bf 0.051 bclace|de|bf 0.065
bclace|de| f med belad|ace|de| f med
Graph. aclbc|be|ade| f 0.301 ac|bc|be|ade| f 0.341
aclbclae|be|de|f  0.203| ac|bclbeladelbf  0.141
aclbc|be|ladelbf  0.087| ac|bc|aelbe|lde|f  0.116
ac|bc|ad|aelbe|f  0.083| ac|bc|beladelef  0.059

aclbclae|be|de|bf  0.059

ac|bc|ad|ae|belde|f med ac|bc|be|ade| f med
Hierar.| ac|bc|ad|ae|ce|de|f 0.241| ac|bc|ad|ae|ce|lde|f 0.175

aclbclad|ae|be|de|f 0.151
aclbclad|ae|be|ce|de|f 0.076

aclbeladlaelceldelbf—0.070

aclbclad|ae|be|de|f 0.110
ac|bc|ad|ae|be|ce|de| f 0.078

aclbeladlaelceldelbf—0.072

W\/I

ac|bc|ad|ae|ce|lde|f med

wul

ac|bc|ad|ae|be|ce|de| f med
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Results for « close to 0

Search o=.5 a = .01

Hierar. | ac|bc|lad|ae|ce|de|f 0.3079|ac|bclad|ae|ce|de|f 0.2524
ac|bc|lad|ae|be|lde|f 0.1926|ac|bc|ad|aelbe|lde|f 0.1577

aclbclad|ae|be|ce|de|f 0.0686| ac|bc|ae|ce|de|f 0.1366
aclbclad|ae|ce|de|be 0.0631| ac|bc|d|ae|ce|f 0.1168
ac|bc|ad|ae|ce|lde|f  med ac|bclaelde|f  0.0854
ac|bc|claelbe|f  0.0730

ac|bc|ad|aelce|f 0.0558

Recall that for o = 1, 2, the most probable model was
ac|bclad|ae|ce|de| f with respective probablities 0.241 and
0.175.

As o — 0, the models become sparser but are consistent
with those corresponding to larger values of «.
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Another example

Marginal a, b, d, h table from the Rochdale data in
whittaker1990. The cells counts are written in

32 3 8 2 56 3570
130 12 59 5 142 91 5 O

lexicographical order with & varying fastest and « varying

slowest.
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The three models considered

We will consider three models Jy, J; and J5 such that

(a) Jy Is decomposable with cliques {a,d}, {d, b}, {b,h} SO
that D as defined in Section 2 Is

Do = {a,b,d, h, (ad), (db), (bh)}, |Jo| = 7, My = 0.

(b) J; Is a hierarchical model with generating set
{(ad), (bd), (bh), (dh)}. This is not a graphical model and

Dy ={a,b,d, h, (ad), (db), (bh), (dh)}, |J1| =8 My = 0.
(c) J» Is decomposable with cliques {b,d, h}, {a},and

Dy = {a,b,d, h, (ad), (db), (bh), (dh), (bdh)}, |Jo| =8, My =1.
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Asymptotics of B;yand By

We have

Big ~ a|Jo\—\J1\—[min(Mo,yJOD—min(Ml,ulD]ng(ml)
JCo(mO)

— Oy 0aT8(0-0) — 1
Byg ~ alfol=IJzl=[min(Mo,] Jo|)—min(Mz,| J2|)] Jo,(m2)
‘]Co (mO)

— 02,004(7_8_(0_1> — 02,0040 = 0270
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