Bayes regularization and the geometry of discrete hierarchical loglinear models

Hélène Massam

York University with G. Letac, Université Paul Sabatier

The problem

• We want to fit a hierarchical loglinear model to some discrete data given under the form of a contingency table.

• We put the Diaconis-Ylvisaker conjugate prior on the loglinear parameters of the multinomial distribution for the cell counts of the contingency table.

• We study the behaviour of the Bayes factor as the hyperparameter α of the conjugate prior tends to 0

• We are led to study the convex hull C of the support of the multinomial distribution.

• The faces of *C* are the most important objects in this study.

The data in a contingency table

• N objects are classified according to |V| criteria.

• We observe the value of $X = (X_{\gamma} | \gamma \in V)$ which takes its values (or levels) in the finite set I_{γ} .

• The data is gathered in a $\left| V \right|$ -dimensional contingency table with

 $|I| = \times_{\gamma \in V} |I_{\gamma}|$ cells *i*.

• The cell counts $(n) = (n(i), i \in \mathcal{I})$ follow a multinomial $\mathcal{M}(N, p(i), i \in \mathcal{I})$ distribution.

• We denote $i_E = (i_{\gamma}, \gamma \in E)$ and $n(i_E)$ respectively the marginal-*E* cell and cell count.

The loglinear model

We choose a special cell 0 = (0,...,0).
The set D = {D ⊆ V : D₁ ⊂ D ⇒ D₁ ∈ D} define the

hierarchical loglinear model.

$$\log p(i) = \lambda_{\emptyset} + \sum_{D \in \mathcal{D}} \lambda_D(i)$$

• We define $S(i) = \{\gamma \in V : i_{\gamma} \neq 0\}$ and

 $j \triangleleft i$ if $S(j) \subseteq S(i)$ and $j_{S(j)} = i_{S(j)}$.

• We change parametrization

$$p(i) \mapsto \theta_i = \sum_{j \triangleleft i} (-1)^{|S(i) \setminus S(j)|} \log p(j).$$

The loglinear model:cont'd

Define

$$J = \{j \in I : S(j) \in \mathcal{D}\}$$
$$J_i = \{j \in J, j \triangleleft i\}$$

• Then the hierarchical loglinear model can be written as

$$\log p(i) = \theta_{\emptyset} + \sum_{j \in J_i} \theta_j.$$

Example

Consider the hierarchical model with

 $V = \{a, b, c\}, \ \mathcal{A} = \{\{a, b\}, \{b, c\}\}, \ I_a = \{0, 1, 2\} = I_b, \ I_c = \{0, 1\},\$

and i = (0, 2, 1). We have

 $\mathcal{D} = \{a, b, c, ab, bc\}$ $J = \{(1, 0, 0), (2, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1), (1, 1, 0), (1, 2, 0), (0, 0, 1), (0,$ $(2, 1, 0), (2, 2, 0), (0, 1, 1), (0, 2, 1)\}$ $J_i = \{(0, 2, 0), (0, 0, 1), (0, 2, 1)\}$ $\log p(0,2,1) = \theta^{\emptyset}_{(0,2,1)} + \theta^{b}_{(0,2,1)} + \theta^{c}_{(0,2,1)} + \theta^{b,c}_{(0,2,1)}$ $=\theta_{(0,0,0)} + \theta_{(0,2,0)} + \theta_{(0,0,1)} + \theta_{(0,2,1)}$ $= \theta_0 + \sum \theta_j$ $j \in J_i$

The multinomial hierarchical model

Since $J = \bigcup_{i \in \mathcal{I}} J_i$, the loglinear parameter is

$$\theta_J = (\theta_j, \ j \in J).$$

The hierarchical model is characterized by J. For $i \neq 0$, the loglinear model can then be written

$$\log p(i) = \theta_0 + \sum_{j \in J_i} \theta_j$$

with $\log p(0) = \theta_0$. Therefore

$$p(0) = e^{\theta_0} = (1 + \sum_{i \in I \setminus \{0\}} \exp \sum_{j \in J_i} \theta_j)^{-1} = L(\theta)^{-1}$$

and

$$\prod_{i \in I} p(i)^{n(i)} = \frac{1}{L(\theta)^N} \exp\{\sum_{j \in J} n(j_{S(j)}\theta_j)\} = \exp\{\sum_{j \in J} n(j_{S(j)})\theta_j + N\theta_0\}.$$

The model as an exponential family

Make the change of variable

 $(n) = (n(i), i \in I \setminus \{0\}) \mapsto t = (t(i_E) = n(i_E), E \subseteq V \setminus \{\emptyset\}, i \in I \setminus \{0\}).$

Then $\prod_{i \in I} p(i)^{n(i)}$ becomes

$$f(t_J|\theta_J) = \exp\left\{\sum_{j\in J} n(j_{S(j)})\theta_j - N\log(1 + \sum_{i\in I\setminus\{0\}} \exp\sum_{j\in J_i} \theta_j)\right\}$$
$$= \frac{\exp\left\langle\theta_J, t_J\right\rangle}{L(\theta_J)^N} \text{ with } \theta_J = (\theta_j, j\in J), \ t_J = (n(j_{S(j)}, j\in J))$$

and $L(\theta_J) = (1 + \sum_{i \in I \setminus \{0\}} \exp \sum_{j \in J_i} \theta_j)$. It is an NEF of dimension |J|, generated by the following measure.

The generating vectors

The set of functions from J to R is denoted by R^J and we write any function $h \in R^J$ as $h = (h(j), j \in J)$, which we can think of as a |J| dimensional vector in $R^{|J|}$. Let $(e_j, j \in J)$ be the canonical basis of R^J and let

 $f_i = \sum_{j \in J, j \triangleleft i} e_j, \quad i \in I.$

The measure

We note that in our example R^I is of dimension 8 while R^J is of dimension 5 and the $(f_j, j \in J)$ are, of course, 5-dimensional vectors. Consider now the counting measure in R^J

$$\mu_J = \delta_0 + \sum_{i \in \mathcal{I}} \delta_{f_i}.$$

For $\theta \in R^J$, the Laplace transform of μ_J is

$$\int_{R^J} e^{\langle \theta, x \rangle} \mu_J(dx) = 1 + \sum_{i \in \mathcal{I} \setminus \{0\}} e^{\langle \theta, f_i \rangle} = 1 + \sum_{i \in \mathcal{I} \setminus \{0\}} e^{\sum_{j \triangleleft i} \theta_j} = L(\theta).$$

Therefore the multinomial $f(t_J | \theta_J) = \frac{\exp\langle \theta_J, t_J \rangle}{L(\theta_J)^N}$ is the NEF generated by μ_J^{*N} .

C_J : The convex hull of the support of μ_J

Since $\mu_J = \delta_0 + \sum_{i \in \mathcal{I}} \delta_{f_i}$,

 C_J is the open convex hull of $0 \in R^J$ and $f_j, j \in J$.

It is important to identify this convex hull since Diaconis and Ylvisaker (1974) have proven that the conjugate prior to an NEF, defined by

$$\pi(\theta_J | m_J, \alpha) = \frac{1}{I(m_J, \alpha)} e^{\{\alpha \langle \theta_J, m_J \rangle - \alpha \log L(\theta_J)\}}$$

is proper when the hyperparameters $m_J \in R^J$ and $\alpha \in R$ are such that

 $\alpha > 0$ and $m_J \in C_J$.

The DY conjugate prior

Clearly, we can write the multinomial density as $f(t_J|\theta_J) = f(t_J|\theta_J, J)$ where *J* represents the model. Assuming we put a uniform discrete distribution on the set of models, the joint distribution of J, t_J, θ_J is

$$f(J, t_J, \theta_J) \propto \frac{1}{I(m_J, \alpha)} e^{\{\langle \theta_J, t_J + \alpha m_J \rangle - (\alpha + N) \log L(\theta_J)\}}$$

and therefore the posterior density of J given t_J is

$$h(J|t_J) \propto \frac{I(\frac{t_J + \alpha m_J}{\alpha + N}, \alpha + N)}{I(m_J, \alpha)}.$$

Interpretation of the hyper parameter $(\alpha m_J, \alpha)$:

- \bullet a is the fictive total sample size
 - $lpha(m_j, \ j \in J)$ represent the fictive marginal counts .

The Bayes factor between two models

Consider two hierarchical models defined by J_1 and J_2 . To simplify notation, we will write

$$h(J_k|t_{J_k}) \propto \frac{I(\frac{t_k + \alpha m_k}{\alpha + N}, \alpha + N)}{I(m_k, \alpha)}, \ k = 1, 2$$

so that the Bayes factor is

$$\frac{I(m_2,\alpha)}{I(m_1,\alpha)} \times \frac{I(\frac{t_1+\alpha m_1}{\alpha+N},\alpha+N)}{I(\frac{t_2+\alpha m_2}{\alpha+N},\alpha+N)}$$

We will consider two cases depending on whether $\frac{t_k}{N} \in C_k, \ k = 1, 2$ or not.

The Bayes factor between two models

When
$$\alpha \to 0$$
, if $\frac{t_k}{N} \in C_k$, $k = 1, 2$, then

$$\frac{I(\frac{t_1+\alpha m_1}{\alpha+N},\alpha+N)}{I(\frac{t_2+\alpha m_2}{\alpha+N},\alpha+N)} \to \frac{I(\frac{t_1}{N},N)}{I(\frac{t_2}{N},N)}$$

which is finite. Therefore we only need to worry about $\lim \frac{I(m_2,\alpha)}{I(m_1,\alpha)}$ when $\alpha \to 0$.

When $\alpha \to 0$, if $\frac{t_k}{N} \in \overline{C}_k \setminus C_k$, k = 1, 2, then, we have to worry about both limits.

Limiting behaviour of $I(m, \alpha)$

<u>Definitions.</u> Assume *C* is an open nonempty convex set in \mathbb{R}^n .

- The support function of *C* is $h_C(\theta) = \sup\{\langle \theta, x \rangle : x \in C\}$
- The characteristic function of *C*: $J_C(m) = \int_{R^n} e^{\langle \theta, m \rangle - h_C(\theta)} d\theta$

Examples of $J_C(m)$

• C = (0, 1). Then $h_C(\theta) = \theta$ if $\theta > 0$ and $h_C(\theta) = 0$ if $\theta \le 0$. Therefore $h_C(\theta) = max(0, \theta)$ and

$$J_C(m) = \int_{-\infty}^0 e^{\theta m} d\theta + \int_0^{+\infty} e^{\theta m - \theta} d\theta = \frac{1}{m(1-m)}$$

Limiting behaviour of $I(m, \alpha)$

Examples of $J_C(m)$

• *C* is the simplex spanned by the origin and the canonical basis $\{e_1, \ldots, e_n\}$ in \mathbb{R}^n and $m = \sum_{i=1}^n m_i e_i \in C$. Then

$$J_C(m) = \frac{n! \text{Vol}(C)}{\prod_{j=0}^n m_i} = \frac{1}{\prod_{j=1}^n m_i (1 - \sum_{j=1}^n m_i)}$$

• $J = \{(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1)\}$ with C spanned by $f_j, j \in J$ and $m = \sum_{j \in J} m_j f_j$. Then

$$J_C(m) = \frac{m_{(0,1,0)}(1 - m_{(0,1,0)})}{D_{ab}D_{bc}}$$

$$D_{ab} = m_{(1,1,0)}(m_{(1,0,0)} - m_{(1,1,0)})(m_{(0,1,0)} - m_{(1,1,0)})(1 - m_{(1,0,0)} - m_{(0,1,0)} + m_{(1,1,0)})$$

$$D_{bc} = m_{(0,1,1)}(m_{(0,0,1)} - m_{(0,1,1)})(m_{(0,1,0)} - m_{(0,1,1)})(1 - m_{(0,0,1)} - m_{(0,1,0)} + m_{(0,1,1)})$$

Limiting behaviour of $I(m, \alpha)$

Theorem

Let μ be a measure on \mathbb{R}^n , n = |J|, such that C the interior of the convex hull of the support of μ is nonempty and bounded. Let $m \in C$ and for $\alpha > 0$, let

$$I(m,\alpha) = \int_{\mathbb{R}^n} \frac{e^{\alpha \langle \theta, m \rangle}}{L(\theta)^{\alpha}} d\theta.$$

Then

$$\lim_{\alpha \to 0} \alpha^n I(m, \alpha) = J_C(m).$$

Furthermore $J_C(m)$ is finite if $m \in C$.

Outline of the proof

$$\begin{split} I(m,\alpha) &= \int_{R^n} \frac{e^{\langle \theta,m \rangle}}{L(\theta)^{\alpha}} d\theta \\ \alpha^n I(m,\alpha) &= \int_{R^n} \frac{e^{\alpha\langle y,m \rangle}}{L(\frac{y}{\alpha})^{\alpha}} dy \text{ by chg. var. } y = \alpha\theta \\ L(\frac{y}{\alpha})^{\alpha} &= \left[\int_{S} e^{\frac{1}{\alpha}\langle y,x \rangle} \mu(dx)\right]^{\alpha} \\ &= \int_{S} [e^{\langle y,x \rangle}]^p \mu(dx) \int^{1/p} \text{ for } \alpha = 1/p, S = supp(\mu) \\ &= ||e^{\langle y,\bullet \rangle}||_p \to ||e^{\langle y,\bullet \rangle}||_{\infty} \text{ as } \alpha \to 0 \\ &= \sup_{x \in S} e^{\langle y,x \rangle} = \sup_{x \in C} e^{\langle y,x \rangle} = e^{\sup_{x \in C} \langle y,x \rangle}, \ C = c.c.h.(S) \\ \underline{\alpha^n I(m,\alpha)} \to \int_{R^n} e^{\langle y,m \rangle - h_C(y)} dy = J_C(m) \end{split}$$

Limit of the Bayes factor

Let models J_1 and J_2 be such that $|J_1| > |J_2|$ and the marginal counts $\frac{t_i}{N}$ are both in C_i . Then the Bayes factor

$$\frac{I(m_2,\alpha)}{I(m_1,\alpha)} \frac{I(\frac{t_1+\alpha m_1}{\alpha+N},\alpha+N)}{I(\frac{t_2+\alpha m_2}{\alpha+N},\alpha+N)} \sim \alpha^{|J_1|-|J_2|} \frac{I(\frac{t_1}{N},N)}{I(\frac{t_2}{N},N)}$$

Therefore the Bayes factor tends towards 0, which indicates that the model J_2 is preferable to model J_1 .

We proved the heuristically known fact that taking α small favours the sparser model.

We can say that α close to "0 " regularizes the model.

Some comments

If $\frac{t_i}{N}$ are both in C_i , i = 1, 2 and $|J_1| \neq |J_2|$, we need not compute $J_C(m)$.

If $\frac{t_i}{N}$ are both in C_i , i = 1, 2 and $|J_1| = |J_2|$, then we might want to compute $J_C(m_i)i = 1, 2$. In this case, we have a few theoretical results. We define the polar convex set C_0 of C

$$C^0 = \{ \theta \in \mathbb{R}^n ; \langle \theta, x \rangle \le 1 \ \forall x \in C \}$$

then

•
$$\frac{J_C(m)}{n!} = \operatorname{Vol}(C-m)^0$$

• If C in \mathbb{R}^n is defined by its K (n-1)-dimensional faces $\{x \in \mathbb{R}^n : \langle \theta_k, x \rangle = c_k\}$, then for $D(m) = \prod_{k=1}^K (\langle \theta_k, x \rangle - c_k)$, $D(m)J_C(m) = N(m)$

where degree of N(m) is < K.

Some more comments

Extreme points of \bar{C}

The $(f_i, i \in \mathcal{I})$ form the family of extreme points of *C*.

There is a program "Irs" that given f_i will compute the faces of *C* and also will give the orthants of the supporting cones at each extreme points f_i of *C*. This helps us compute $J_C(m)$ since we split this integration within each region of C^0 .

Limiting behaviour of $I(\frac{\alpha m+t}{\alpha+N}, \alpha+N)$

We now consider the case when $\frac{t}{N}$ belongs to the boundary of *C*. Then each face of \overline{C} of dimension |J| - 1 is of the form

$$F_g = \{x \in \overline{C} : g(x) = 0\}$$

where g be an affine form on R^J .

Theorem

Suppose $\frac{t}{N} \in \overline{C} \setminus C$ belongs to exactly M faces of \overline{C} . Then

$$\lim_{\alpha \to 0} \alpha^{\min(M,|J|)} I(\frac{\alpha m + t}{\alpha + N}, \alpha + N)$$

exists and is positive.

The Bayes factor

Combining the study of the asymptotic behaviour of $I(m, \alpha)$ and $I(\frac{\alpha m+t}{\alpha+N}, \alpha+N)$, we obtain that

when $\alpha \rightarrow 0,$ the Bayes factor behaves as follows

$$\frac{I(m_2, \alpha)}{I(m_1, \alpha)} \frac{I(\frac{t_1 + \alpha m_1}{\alpha + N}, \alpha + N)}{I(\frac{t_2 + \alpha m_2}{\alpha + N}, \alpha + N)}$$

 $\sim C \alpha^{|J_1| - |J_2| - [\min(M_1, |J_1|) - \min(M_2, |J_2|)]} \frac{J_{C_1}(m_1)}{J_{C_2}(m_2)}$

where C is a positive constant.

Some facets of C

Let C be the set of generators of the hierarchical model. For each $D \in C$ and each $j_0 \in J$ such that $S(j_0) \subset D$ define

$$g_{0,D} = \sum_{\substack{j; S(j) \subset D}} (-1)^{|S(j)|} e_j$$
$$g_{j_0,D} = \sum_{\substack{j; S(j) \subset D, \ j_0 \triangleleft j}} (-1)^{|S(j)| - |S(j_0)|} e_j$$

and the affine forms

$$g_{0,D}(t) = 1 + \langle g_{0,D}, t \rangle$$

$$g_{j_0,D}(t) = \langle g_{j_0,D}, t \rangle.$$

Some facets of C

All subsets of the form

$$F(j,D) = H(j,D) \cap \overline{C}$$

with

$$H(j,D) = \{t \in \mathbf{R}^J ; g_{j,D}(t) = 0\}, D \in \mathcal{C}, S(j) \subset D$$

are faces of *C* Example a - - b - - c. The faces are

$$t_{ab} = 0, \ t_a - t_{ab} = 0, \ t_b - t_{ab} = 0, \ 1 - t_a - t_b + t_{ab} = 0$$

and

$$t_{bc} = 0, t_b - t_{bc} = 0, t_c - t_{bc} = 0, 1 - t_b - t_c + t_{bc} = 0.$$

The facets of ${\cal C}$ when ${\cal G}$ is decomposable

For decomposable models,

$$H(j,D) = \{ m \in \mathbf{R}^J ; g_{j,D}(m) = 0 \}, D \in \mathcal{C}, S(j) \subset D$$

are the only faces of C.

Example a - - - b - - - c. The facets are

$$t_{ab} = 0, j = (1, 1, 0) t_a - t_{ab} = 0, j = (1, 0, 0)$$

$$t_b - t_{ab} = 0, j = (0, 1, 0) 1 - t_a - t_b + t_{ab} = 0, S(j) = \emptyset$$

$$t_{bc} = 0, j = (0, 1, 1) t_b - t_{bc} = 0, j = (0, 1, 0)$$

$$t_c - t_{bc} = 0, j = (0, 0, 1) 1 - t_b - t_c + t_{bc} = 0S(j) = \emptyset.$$

Some facets when G is a cycle

<u>Theorem</u> Let G = (V, E) be a cycle of order *n*. Let (a, b) be an edge of the cycle. Then the hyperplanes

$$\langle s_{ab}, t \rangle = -t_a - t_b + 2t_{ab} + \sum_c t_c - \sum_{e \in E} t_e = \begin{cases} 0 \\ a_n \end{cases}$$

where $a_n = \frac{n-1}{2}$ if *n* is odd and $a_n = \frac{n-2}{2}$ when *n* is even, define facets of *C*.

Facets for hierarchical $\{a, b, c\}$

The 16 facets are given by the following affine forms being equal to 0:

m_{ab}	m_{bc}	m_{ac}
$m_a - m_{ab}$	$m_b - m_{bc}$	$m_c - m_{ac}$
$m_b - m_{ab}$	$m_c - m_{bc}$	$m_a - m_{ac}$
$1 - m_a - m_b + m_{ab}$	$1 - m_b - m_c + m_{bc}$	$1 - m_a - m_c + m_{ac}$
$m_c - m_{ac} - m_{bc} + m_{ab}$	$m_a - m_{ab} - m_{ac} + m_{bc}$	$m_b - m_{ab} - m_{bc} + m_{ac}$
	$1 - m_a - m_b - m_c + m_{ac} + m_{ab} + m_{bc}$	

Bayesian networks

Steck and Jaakola (2002) considered the problem of the limit of the Bayes factor when $\alpha \rightarrow 0$ for Bayesian networks.

Bayesian networks are not hierarchical models but in some cases, they are Markov equivalent to undirected graphical models which are hierarchical models.

<u>Problem:</u>compare two models which differ by one directed edge only.

Equivalent problem: with three variables binary X_a, X_b, X_c each taking values in $\{0, 1\}$, compare Model \mathcal{M}_1 : a - - - -b - - -c: $|J_1| = 5$. Model \mathcal{M}_2 : the complete model i.e. with $\mathcal{A} = \{(a, b, c)\}$. $|J_2| = 7$

Our results

<u>Model M_2 :</u> a - - - b - - c: $|J_2| = 5$. The faces expressed in traditional notation are

 $n_{11+} = n_{10+} = n_{01+} = n_{00+} = n_{+11} = n_{+10} = n_{+01} = n_{+00} = 0$

<u>Model \mathcal{M}_1 :</u> $|J_1| = 7$. The faces expressed in traditional notation are <u>Example</u> The data is such that $n_{000} = n_{100} = n_{101} = 0$. Therefore in \mathcal{M}_1 , $\frac{t_1}{N}$ belongs to $M_1 = 3$ faces and in \mathcal{M}_2 , $\frac{t_2}{N}$ belongs to $M_1 = 2$ faces $n_{10+} = 0 = n_{+00}$. Thus the Bayes factor $\sim \alpha^d$ where

 $d = |J_1| - |J_2| - [min(|J_1, M_1) - min(|J_2|, M_2)] = 7 - 5 - [3 - 2] = 1$

Steck and Jaakola (2002)

Define the effective degrees of freedom to be

$$d_{EDF} = \sum_{i} I(n_i) - \sum_{i_{ab}} I(n(i_{ab})) - \sum_{i_{bc}} I(n(i_{bc})) + \sum_{i_b} I(n(i_b))$$

<u>Theorem</u> If $d_{EDF} > 0$, the Bayes factor tends to 0 and if $d_{EDF} < 0$ the Bayes factor tends to $+\infty$. If $d_{EDF} = 0$, the Bayes factor can converge to any value.

In our example

$$d_{EDF} = 5 - 3 - 3 + 2 = 1$$

Our results agree with SJ in the particular case of Bayesian networks. Our results give a much finer analysis for a more general class of problems.

Example of model search

We study the Czech Autoworkers 6-way table from Edwards and Havranek (1985).

This cross-classfication of 1841 men considers six potential risk factors for coronary trombosis:

- *a*, smoking;
- *b*, strenuous mental work;
- c, strenuous physical work;
- *d*, systolic blood pressure;
- *e*, ratio of beta and alpha lipoproteins;
- *f*, family anamnesis of coronary heart disease.

Edwards and Havranek (1985) use the LR test and Dellaportas and Forster (1999) use a Bayesian search with normal priors on the θ to analyse this data.

Czech Autoworkers example our method

We use a Bayesian search with

- our prior with $\alpha = 1, 2, 3, 32$ and then $\alpha = .05, .01$ and equal fictive counts for each cell
- The Laplace approximation to the marginal likelihood

Czech Autoworkers example

Search	$\alpha = 1$		$\alpha = 2$		
Dec.	bc ace ade f	0.250	bc ace ade f	0.261	
	bc ace de f	0.104	bc ace de f	0.177	
	bc ad ace f	0.102	bc ace de bf	0.096	
	ac bc be de f	0.060	bc ad ace f	0.072	
	bc ace de bf	0.051	bc ace de bf	0.065	
	bc ace de f	med	bc ad ace de f	med	
Graph.	ac bc be ade f	0.301	ac bc be ade f	0.341	
	ac bc ae be de f	0.203	ac bc be ade bf	0.141	
	ac bc be ade bf	0.087	ac bc ae be de f	0.116	
	ac bc ad ae be f	0.083	ac bc be ade ef	0.059	
	ac bc ae be de bf	0.059			
	ac bc ad ae be de f	med	ac bc be ade f	med	
Hierar.	ac bc ad ae ce de f	0.241	ac bc ad ae ce de f	0.175	
	ac bc ad ae be de f	0.151	ac bc ad ae be de f	0.110	
	ac bc ad ae be ce de f	0.076	ac bc ad ae be ce de f	0.078	
	ac bc ad ae ce de bf	0.070	ac bc ad ae ce de bf	0.072	
	ac bc ad ae ce de f	med	ac bc ad ae be ce de f	med	

Warwick April 2010 - p. 34

Results for α close to 0

Search	$\alpha = .5$		$\alpha = .01$	
Hierar.	ac bc ad ae ce de f	0.3079	ac bc ad ae ce de f	0.2524
	ac bc ad ae be de f	0.1926	ac bc ad ae be de f	0.1577
	ac bc ad ae be ce de f	0.0686	ac bc ae ce de f	0.1366
	ac bc ad ae ce de be	0.0631	ac bc d ae ce f	0.1168
	ac bc ad ae ce de f	med	ac bc ae de f	0.0854
			ac bc c ae be f	0.0730
			ac bc ad ae ce f	0.0558

Recall that for $\alpha = 1, 2$, the most probable model was ac|bc|ad|ae|ce|de|f with respective probablities 0.241 and 0.175.

As $\alpha \mapsto 0$, the models become sparser but are consistent with those corresponding to larger values of α .

Another example

323862563570130125951429150

Marginal a, b, d, h table from the Rochdale data in whittaker1990. The cells counts are written in lexicographical order with h varying fastest and a varying slowest.

The three models considered

We will consider three models J_0, J_1 and J_2 such that

(a) J_0 is decomposable with cliques $\{a, d\}, \{d, b\}, \{b, h\}$ so that \mathcal{D} as defined in Section 2 is

 $\mathcal{D}_0 = \{a, b, d, h, (ad), (db), (bh)\}, |J_0| = 7, M_0 = 0.$

(b) J_1 is a hierarchical model with generating set $\{(ad), (bd), (bh), (dh)\}$. This is not a graphical model and

 $\mathcal{D}_1 = \{a, b, d, h, (ad), (db), (bh), (dh)\}, |J_1| = 8 M_1 = 0.$

(c) J_2 is decomposable with cliques $\{b, d, h\}, \{a\}$, and

 $\mathcal{D}_2 = \{a, b, d, h, (ad), (db), (bh), (dh), (bdh)\}, |J_2| = 8, M_2 = 1.$

Asymptotics of $B_{1,0}$ and $B_{2,0}$

We have

$$B_{1,0} \sim \alpha^{|J_0| - |J_1| - [\min(M_0, |J_0|) - \min(M_1, |J_1|)]} \frac{J_{C_1}(m_1)}{J_{C_0}(m_0)}$$

= $C_{1,0} \alpha^{(7-8-(0-0))} = C \alpha^{-1}$
$$B_{2,0} \sim \alpha^{|J_0| - |J_2| - [\min(M_0, |J_0|) - \min(M_2, |J_2|)]} \frac{J_{C_2}(m_2)}{J_{C_0}(m_0)}$$

= $C_{2,0} \alpha^{(7-8-(0-1))} = C_{2,0} \alpha^0 = C_{2,0}$

The graphs

