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Motivation

The present work [3] was motivated by the following two questions:

1. Which support sets occur in the closure of an exponential family?

2. What happens to the results of algebraic statistics in the case of non-algebraic exponential families?

Notation Oriented matroids
X  —the state space (finite set) of cardinality N A signed subset X of X is a pair (X, X ) of disjoint subsets of X. Alter-
A - a(real valued) matrix of size (d + 1) by N, natively, X is a sign vector X € {0,£1}¥. Theset X := X+ U X~ denotes
containing the constant row in its row span the support of X.
P(X) - the probability simplex over X Let C # ) be a collection of signed subsets of X. Then (X,C) is called an

The exponential family & 4 is the set of all probability measures of the form oriented matroid iff

p (C1) C=-C, (symmetry)
1
Py(z) = 7, &P (Z 91'147',.1,> . (C2) forall X,Y €C,if X CY, then X =Y or X = —Y, (incomparability)

i=0
(C3) forall X, Y € C, X # —Y,ande € XT NY ™~ thereisa Z € C such
Here 6 € R4t is a vector of parameters, and Zy ensures normalization. that Zt C (XtuY ™) \{e}and Z- C (X~ UY ")\ {e}.

If A contains only integer entries, then €4 is called algebraic.

Result 1° mplicit description Elements of C are called signed circuits.

Theorem 1. Let &4 be an exponential family. Its closure € 4 equals the set Most important example (“representable matroids”):
Let A be a matrix. Then

(weak elimination)

{PeP(X): P* =P" forallu=uy —u_ € ker A}

C = {(supp(n*),supp(n ")) : n € ker A has inclusion minimal support }

Here PV :=[] . P(z)*®),

TEX
determines an oriented matroid. Equivalently, C consists of the signed

supports of the minimal linear relations among the columns of A.
Theorem (Geiger, Meek, Sturmfels [2]). Let E4 be an algebraic exponential A circuit basis is a set containing exactly one vector v € ker A for each
family. Then €, equals the intersection of the toric variety defined by the poly- | | X €€ such that sgn(v) = X.

nomials

This has to be compared with:

[P = Pl = By =0 E Lyl The dual oriented matroid

with P(X). To every oriented matroid corresponds a dual oriented matroid. Here we
In the algebraic case Hilbert’s theorem ensures that a finite number of only explain the representable case (see [1]):

equations is enough (—Markov bases). This is always true: For every dual vector [ € (R™!)" let N|" := {& € X : I(a;) > 0} and

N, == {z € X : l(az) < 0}. The signed subset sgn*(l) := (N;, N;") is

Theorem 2. Let C be a circuit basis of A. Then called a covector. A covector with inclusion minimal support is a cocircuit.

o The set of cocircuits C* forms an oriented matroid over X, the dual oriented
Ea={PePX): P =P" forallu=uy —u_ €C}. matroid.

It is representable by the following construction: Let A* be a matrix such

D . that the rows of A* span the orthogonal complement of the rows of A.
esult 2: upport sets Then A* “represents” (X,C*).

Theorem 3. Let S C X be nonempty. Then there exists a probability measure

P € &4 with support supp(P) = S if and only if the following holds for all

signed circuits (M, N) € C(A): Oriented matroids anad 0]0) ytOpeS

To a matrix A we can associate a polytope My, the convex hull of its

columns. Conversely, to each polytope we may associate the matrix of its
vertices. Therefore each polytope has an oriented matroid.

Result 3: Parametrization of the closure = Many constructions generalize from polytopes to oriented matroids.
We may also parametrize £4 by the “monomial parametrization” The face lattice of M 4 corresponds to the dual oriented matroid: Faces

are hyperplanes such that M, is contained in one of the closed half-
spaces. Thus facets (maximal faces) correspond to positive cocircuits.

MCS & NCS.

d
1
Pe(z) = 5 [ &" . . =
Ze It is known that the possible support sets of £4 correspond to the faces of

M 4. Using this result, Theorem 3 is related to a general characterization
where &; € (0,00). If A;,, > 0 for all z, then it is possible to parametrize a of faces of “matroid polytopes” due to Las Vergnas[1].
part of the boundary £4 \ £4 by allowing &; = 0 (as long as Z, # 0).

Theorem 4. Let A’ be a matrix the rows of which contain one positive cocircuit Generalization
vector for every positive cocircuit of A. Then E4 = Ear, and the image of the
monomial parametrization of £ xs consists of Exr = Ea.

All three results generalize to non-uniform reference measures.
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