

Exponential Families and Oriented Matroids

Johannes Rauh, Thomas Kahle, Nihat Ay Max Planck Institute for Mathematics in the Sciences

Motivation

The present work [3] was motivated by the following two questions:

- 1. Which support sets occur in the closure of an exponential family?
- 2. What happens to the results of algebraic statistics in the case of non-algebraic exponential families?

Notation

- \mathcal{X} the state space (finite set) of cardinality *N*
- A a (real valued) matrix of size (d + 1) by N,
 - containing the constant row in its row span
- $\mathcal{P}(\mathcal{X})$ the probability simplex over \mathcal{X}

The *exponential family* \mathcal{E}_A is the set of all probability measures of the form

$$P_{\theta}(x) = \frac{1}{Z_{\theta}} \exp\left(\sum_{i=0}^{d} \theta_i A_{i,x}\right)$$

Here $\theta \in \mathbb{R}^{d+1}$ is a vector of parameters, and Z_{θ} ensures normalization. If *A* contains only integer entries, then \mathcal{E}_A is called *algebraic*.

Result 1: Implicit description

Theorem 1. Let \mathcal{E}_A be an exponential family. Its closure $\overline{\mathcal{E}_A}$ equals the set

$$\{P \in \mathcal{P}(\mathcal{X}) : P^{u_+} = P^{u_-} \text{ for all } u = u_+ - u_- \in \ker A\}.$$

Here $P^v := \prod_{x \in \mathcal{X}} P(x)^{v(x)}$.

This has to be compared with:

Theorem (Geiger, Meek, Sturmfels [2]). Let \mathcal{E}_A be an algebraic exponential family. Then $\overline{\mathcal{E}}_A$ equals the intersection of the toric variety defined by the polynomials

 $P^{u_+} = P^{u_-}$ for all $u = u_+ - u_- \in \ker_{\mathbb{Z}} A$

with $\mathcal{P}(\mathcal{X})$.

In the algebraic case Hilbert's theorem ensures that a finite number of equations is enough (\rightarrow Markov bases). This is always true:

Theorem 2. Let C be a circuit basis of A. Then

$$\overline{\mathcal{E}_A} = \{ P \in \mathcal{P}(\mathcal{X}) : P^{u_+} = P^{u_-} \text{ for all } u = u_+ - u_- \in \mathcal{C} \}.$$

Result 2: Support sets

Theorem 3. Let $S \subseteq \mathcal{X}$ be nonempty. Then there exists a probability measure $P \in \overline{\mathcal{E}_A}$ with support supp(P) = S if and only if the following holds for all signed circuits $(M, N) \in \mathcal{C}(A)$:

 $M \subseteq S \quad \Leftrightarrow \quad N \subseteq S.$

Result 3: Parametrization of the closure

We may also parametrize \mathcal{E}_A by the "monomial parametrization"

$$P_{\xi}(x) = \frac{1}{Z_{\xi}} \prod_{i=0}^{d} \xi_i^{A_{i,x}},$$

where $\xi_i \in (0, \infty)$. If $A_{i,x} \ge 0$ for all x, then it is possible to parametrize a part of the boundary $\overline{\mathcal{E}}_A \setminus \mathcal{E}_A$ by allowing $\xi_i = 0$ (as long as $Z_{\xi} \neq 0$).

Theorem 4. Let A' be a matrix the rows of which contain one positive cocircuit vector for every positive cocircuit of A. Then $\mathcal{E}_A = \mathcal{E}_{A'}$, and the image of the monomial parametrization of $\mathcal{E}_{A'}$ consists of $\overline{\mathcal{E}_{A'}} = \overline{\mathcal{E}_A}$.

Oriented matroids

A signed subset *X* of \mathcal{X} is a pair (X^+, X^-) of disjoint subsets of \mathcal{X} . Alternatively, *X* is a sign vector $X \in \{0, \pm 1\}^{\mathcal{X}}$. The set $\underline{X} := X^+ \cup X^-$ denotes the *support* of *X*.

Let $C \neq \emptyset$ be a collection of signed subsets of \mathcal{X} . Then (\mathcal{X}, C) is called an *oriented matroid* iff:

(C1)
$$C = -C$$
, (symmetry)

(C2) for all $X, Y \in C$, if $\underline{X} \subseteq \underline{Y}$, then X = Y or X = -Y, (*incomparability*)

(C3) for all $X, Y \in \mathcal{C}, X \neq -Y$, and $e \in X^+ \cap Y^-$ there is a $Z \in \mathcal{C}$ such that $Z^+ \subseteq (X^+ \cup Y^+) \setminus \{e\}$ and $Z^- \subseteq (X^- \cup Y^-) \setminus \{e\}$.

(weak elimination)

Elements of C are called *signed circuits*.

Most important example ("representable matroids"): Let *A* be a matrix. Then

 $\mathcal{C} = \left\{ (\operatorname{supp}(n^+), \operatorname{supp}(n^-)) : n \in \ker A \text{ has inclusion minimal support} \right\}$

determines an oriented matroid. Equivalently, C consists of the signed supports of the minimal linear relations among the columns of A. A *circuit basis* is a set containing exactly one vector $v \in \ker A$ for each $X \in C$ such that $\operatorname{sgn}(v) = X$.

The dual oriented matroid

To every oriented matroid corresponds a *dual oriented matroid*. Here we only explain the representable case (see [1]):

For every dual vector $l \in (\mathbb{R}^{d+1})^*$ let $N_l^+ := \{x \in \mathcal{X} : l(a_x) > 0\}$ and $N_l^- := \{x \in \mathcal{X} : l(a_x) < 0\}$. The signed subset $\operatorname{sgn}^*(l) := (N_l^+, N_l^-)$ is called a *covector*. A covector with inclusion minimal support is a *cocircuit*. The set of cocircuits \mathcal{C}^* forms an oriented matroid over \mathcal{X} , the *dual oriented matroid*.

It is representable by the following construction: Let A^* be a matrix such that the rows of A^* span the orthogonal complement of the rows of A. Then A^* "represents" (\mathcal{X}, C^*).

Oriented matroids and polytopes

To a matrix A we can associate a polytope \mathcal{M}_A , the convex hull of its columns. Conversely, to each polytope we may associate the matrix of its vertices. Therefore each polytope has an oriented matroid.

 \implies Many constructions generalize from polytopes to oriented matroids.

The face lattice of \mathcal{M}_A corresponds to the dual oriented matroid: Faces are hyperplanes such that \mathcal{M}_A is contained in one of the closed half-spaces. Thus facets (maximal faces) correspond to *positive cocircuits*.

It is known that the possible support sets of $\overline{\mathcal{E}_A}$ correspond to the faces of \mathcal{M}_A . Using this result, Theorem 3 is related to a general characterization of faces of "matroid polytopes" due to Las Vergnas[1].

Generalization

All three results generalize to non-uniform reference measures.

References

[1] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. Ziegler, Oriented matroids, Cambridge University Press, 1993.

[2] D. Geiger, C. Meek, B. Sturmfels, On the toric algebra of graphical models, Ann. Stat. 34 (2006), no. 5, 1463–1492.

[3] J. Rauh, T. Kahle, N. Ay, Support Sets in Exponential Families and Oriented Matroid Theory, submitted to Int. J. Approx. Reas. (arXiv:0906.5462).