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Motivation
The present work [3] was motivated by the following two questions:

1. Which support sets occur in the closure of an exponential family?

2. What happens to the results of algebraic statistics in the case of non-algebraic exponential families?

Notation
X – the state space (finite set) of cardinality N
A – a (real valued) matrix of size (d+ 1) by N ,

containing the constant row in its row span
P(X ) – the probability simplex over X

The exponential family EA is the set of all probability measures of the form

Pθ(x) =
1
Zθ

exp

(
d∑
i=0

θiAi,x

)
.

Here θ ∈ Rd+1 is a vector of parameters, and Zθ ensures normalization.
If A contains only integer entries, then EA is called algebraic.

Result 1: Implicit description
Theorem 1. Let EA be an exponential family. Its closure EA equals the set

{P ∈ P(X ) : Pu+ = Pu− for all u = u+ − u− ∈ kerA}.

Here P v :=
∏
x∈X P (x)v(x).

This has to be compared with:

Theorem (Geiger, Meek, Sturmfels [2]). Let EA be an algebraic exponential
family. Then EA equals the intersection of the toric variety defined by the poly-
nomials

Pu+ = Pu− for all u = u+ − u− ∈ kerZ A

with P(X ).

In the algebraic case Hilbert’s theorem ensures that a finite number of
equations is enough (→Markov bases). This is always true:

Theorem 2. Let C be a circuit basis of A. Then

EA = {P ∈ P(X ) : Pu+ = Pu− for all u = u+ − u− ∈ C}.

Result 2: Support sets
Theorem 3. Let S ⊆ X be nonempty. Then there exists a probability measure
P ∈ EA with support supp(P ) = S if and only if the following holds for all
signed circuits (M,N) ∈ C(A):

M ⊆ S ⇔ N ⊆ S.

Result 3: Parametrization of the closure
We may also parametrize EA by the “monomial parametrization”

Pξ(x) =
1
Zξ

d∏
i=0

ξ
Ai,x

i ,

where ξi ∈ (0,∞). If Ai,x ≥ 0 for all x, then it is possible to parametrize a
part of the boundary EA \ EA by allowing ξi = 0 (as long as Zξ 6= 0).

Theorem 4. Let A′ be a matrix the rows of which contain one positive cocircuit
vector for every positive cocircuit of A. Then EA = EA′ , and the image of the
monomial parametrization of EA′ consists of EA′ = EA.

Oriented matroids
A signed subset X of X is a pair (X+, X−) of disjoint subsets of X . Alter-
natively, X is a sign vector X ∈ {0,±1}X . The set X := X+∪X− denotes
the support of X .
Let C 6= ∅ be a collection of signed subsets of X . Then (X , C) is called an
oriented matroid iff:

(C1) C = −C, (symmetry)

(C2) for all X,Y ∈ C, if X ⊆ Y , then X = Y or X = −Y , (incomparability)

(C3) for all X,Y ∈ C, X 6= −Y , and e ∈ X+ ∩ Y − there is a Z ∈ C such
that Z+ ⊆ (X+ ∪ Y +) \ {e} and Z− ⊆ (X− ∪ Y −) \ {e}.

(weak elimination)

Elements of C are called signed circuits.

Most important example (“representable matroids”):
Let A be a matrix. Then

C =
{
(supp(n+), supp(n−)) : n ∈ kerA has inclusion minimal support

}
determines an oriented matroid. Equivalently, C consists of the signed
supports of the minimal linear relations among the columns of A.
A circuit basis is a set containing exactly one vector v ∈ kerA for each
X ∈ C such that sgn(v) = X .

The dual oriented matroid
To every oriented matroid corresponds a dual oriented matroid. Here we
only explain the representable case (see [1]):
For every dual vector l ∈ (Rd+1)∗ let N+

l := {x ∈ X : l(ax) > 0} and
N−l := {x ∈ X : l(ax) < 0}. The signed subset sgn∗(l) := (N+

l , N
−
l ) is

called a covector. A covector with inclusion minimal support is a cocircuit.
The set of cocircuits C∗ forms an oriented matroid overX , the dual oriented
matroid.
It is representable by the following construction: Let A∗ be a matrix such
that the rows of A∗ span the orthogonal complement of the rows of A.
Then A∗ “represents” (X , C∗).

Oriented matroids and polytopes
To a matrix A we can associate a polytope MA, the convex hull of its
columns. Conversely, to each polytope we may associate the matrix of its
vertices. Therefore each polytope has an oriented matroid.
=⇒Many constructions generalize from polytopes to oriented matroids.

The face lattice of MA corresponds to the dual oriented matroid: Faces
are hyperplanes such that MA is contained in one of the closed half-
spaces. Thus facets (maximal faces) correspond to positive cocircuits.

It is known that the possible support sets of EA correspond to the faces of
MA. Using this result, Theorem 3 is related to a general characterization
of faces of “matroid polytopes” due to Las Vergnas[1].
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Generalization
All three results generalize to non-uniform reference measures.
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