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Hermite polynomial aliasing in Gaussian quadrature
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A representation of some Hermite polynomials, including those of degree
2n — 1, as sum of an element in the polynomial ideal generated by the
roots of the Hermite polynomial of degree n and of a reminder, suggests a
folding of multivariate polynomials over a finite set of points. From this,
the expectation of some polynomial combinations of random variables
normally distributed is computed. This is related to quadrature formulas
and has strong links with designs of experiments.
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|. Stein-Markov operator for standard normal distribution

Define 6(x) = xf(x) — F(x) = —eX2/2% (Fle7?)
and let Z ~ N(0,1) and d" = ;inn. Then
E(g(2)0f(2)) = E((deg(2)) £(2))
E(g(2)0"f(2)) = E(d"g(2) f(2))

For conditions on g, f see Malliavin V Lemma 1.3.2 and Proposition 2.2.3.
Polynomials satisfy these conditions.

v

Q@ H,(x) = 6"1, the monic Hermite polynomial of degree n
Ho=1 Hi(x)=x Ha(x)=x>—-1 Hs(x)=x>-3x

Q@ dé—4dd=id and dH,, = nH,_1 and Hp+1 = xH, — nH,_1
© The formula shows that the H,’s are orthogonal



Ring structure of Hermite polynomials
Let (¢, %) = E(¢(2)(Z)) and h < k. Then

h
(i, %) = (i, Hit) = (L, d"(Hiw)) = 3 _(L, (h> d Hed" )
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Exercise: HoHy = (x* — 1)x = H3 + 2H; H2 = Hoy + § j <,> I"Hoy o

E(H2(2)) = <’1‘) k(k—1)...1=k! E(H(Z)Hp(Z)) =0



An exercise

Let f be a polynomial in one variable with real coefficients and by
polynomial division f(x) = q(x)H,(x) + r(x) where r has degree smaller
than H, and r(x) = f(x) if Hy(x) = 0. The n — 1 degree polynomial r is
fundamental and is referred to as reminder or normal form. Then

E(7(2)) = E(a(2)Hn(2)) + E(r(2))

E
E(q(2) 61") + E(r(2))
E(d"q(2)) +E(r(2)) = E(r(2)) iff E(d"q(Z) =0)

Note that d"q(Z) = 0 if and only if g has degree smaller than n and this
is only if f has degree smaller or equal to 2n — 1. But also

E(d"q(2)) = E(d" X% ci()H:) = (Hny X232 ci(a)Hi) = nlca(q) = 0
for cn(q) = 0.



For k=1,...,nand xq,...,x, € R pairwise distict, define the

X — Xj
k() =11 —
(T

These are indicator polynomial functions of degree n — 1, namely

Ik(xi) = djk, and form a R-vector space basis of the set of polynomials of
degree at most n — 1, P,,_;. Namely if r has degree smaller than n then
r(x) = > p_1 r(xk)lk(x) and for Ay = E(/k(Z)) by linearity

E(r(2)) = >2k=1 r(ax) E(k(2)) = >kq r(xe)Ax-

Putting all together on = {xq,...,x,} and for
f polynomial of degree at most

where P, (X = xx) = E(Ik(Z)) = Ak, cf. standard results on Gaussian
quadrature (Gautschi Chapter 1).




Applications: 1) identification

Let £(x) = SN ck(f)Hi(x), then if N < 2n — 1
> ()M = E(F(2)) = colf)
Hn(xx)=0

forall ist. N+i<2n-1
> F)Hi(x)A = E(F(2)Hi(2)) = ilei(f)
Hn(xx)=0

e.g. degf = n— 1 then all coefficients can be computed exactly.
In general

> F)HiGa) M = Y NF(F(xi) Hi(x)) M
Hn(Xk):O Hn(Xk):O
= E(NF(f(2)H;(2))) = ilci(NF(f))



and 2) confounding

The computation of the normal form introduces a notion of confounding.
For example from Hpy1(x) = xH,(x) — nH,—1(x) and for = meaning
equality holds over D, = {x : Hp(x ) = 0}, easilly Hyy1(x) = —nHp—1(x)
follows. In general let H,x = Zj 0 h”+kH be the Fourier expansion of
Hn4k at Dp. Substituting in the product formula gives

NF(Hpss) = zjf (7) (k) iV NF(Hpk—27)

]
nAk n k n—1
- - n+k—2i 1y,
=2 ()
i=1 j=0

Equating coefficients gives a general recursive formula

nAk n K
n+k __ § : on+k—2i



@ The first confounding relationships are
k | expansion
_anfl
—n(n—1)H,_
—n(n—1)(n—2)Hp,_3 + 3nH,_1
—n(n—1)(n—=2)(n—3)Hp—4 +8n(n— 1)H,_>
— 75y Hn—s + 5nHy—1 +15n(n — 1)(n — 2)Hy—3
— gy Hn—s + 24n(n — 1)(n — 2)(n — 3)H,—4 + 10n(n — 1)(2n — 5)H,

S 1AW

o For f = S0 ¢i(f)H;, we have k =1 and

B
|
—-

NF(f)

Gi(F)H; + co(F)Hp + Cpo (F) NF(Hos1)

s -
|
NIE=)

ci(F)H; + (cn—1(f) — ncpy1(f)) Hp1

o

=

and all coefficients up to degree n — 2 are clean.



lI. Algebraic computation of the weights A,

Orthogonal monic polynomials satisfy three-term-recurrence relation

7Tk+1(t)I(tfak)ﬂk(t)fﬂkﬂ'k_l(t) 71'_1(1')20 ﬂo(t)zl

{tm, me) By = (Thes Tk)

= " _ Note ||m,||> = BnBr_1---Bo
<7Tka 7Tk> <7Tk—177rk—1
For the orthonormal polynomials the Christoffel-Darboux formula hold

Z #o(t) = /B, 0 (6) = Fna (X))

— X —t

with oy =

#1(£)* = /Ba (R (£)Ftn-1(t) = 77 (£)7n(1))

For Hermite polynomials a; = 0, 8, = n, H,(x) = H,(x)/v/n! and
H!(x) = v/nH,_1(x). Substituting above for x;: H,(x;) = 0 gives

1

Hi(xi) () = 0 i i # ZHkx, = nH,1(x)°

0

n

==
i



In matrix form, for H, = [l:/j(x,-)] ‘

H,H, = nd/ag(Hn 1(x):i=1,...,n)
H, ' = Hin tdiag(H % (%) :i=1,...,n)

Now let f € Pp_1 then f(x) =3 7", CJH( x) and f = H,c where
f = [f(xi)]i=1,...n and ¢ = [¢j];. Furthermore

c=H,f =H\n tdiag(H % (x):i=1,...,n)f
= Hf,n_ld/ag(l:lrfl(x,)f xj):i=1,...,n)
1~ ~ .
G = " (i) f (xi)H, %1 (%)
i=1

Apply to f(x) = Ik(x) =

:\H

Hi () H, 2 ()

using lk(x;) = 0jk in (1).

Z}':_(} CkJH( x) the kth Lagrange polynomial



The expected value of k(Z) is

e = E(I(Z chj (F5(x)) = cko

We have proved

Theorem

The weights A\, k=1,...,n are
A = n" 2 ()
Let | be the polynomial of degree n — 1 such that I(xx) = Ak then

Hn(x) =0 Hn(x) =0
I(x)A;_y(x) =" I6)H; 1 (x) =




e Compute E(/k(Z)) once for all
eeg forn=3

0= Hz(x) = x> — 3x
2/3 = I(x)H3 = (0o + O1x + 02x?)(x* — 1)?

reduce degree using x3 = 3x and equate coefficients to obtain

X2

/(X):g_ 6

wIN

Evaluate to find A_ 5 = I(-V3)=¢ = Ay and Ao =1/(0) =

@ The case n = 4 shows that the Ay can be not rational numbers.

e p — I(x) is the interpolating polynomials of the set of points
{()\k,Xk), k= ].7 ey n}.

@ The roots of H, are real but usually not rational numbers. Computer
algebra systems works with integer or rational fields. Working with
algebraic extensions of fields could be slow.

@ Sometimes there is no need to compute explicitly the weights.



Let f(x) be a polynomial and f(x) = q(x)Hn(x) + r(x) where q, r are
unique with r of degree less than n. Let Z ~ N'(0,1). Then f — qH, is
the unique polynomial in P,_1 such that for all m > n

E((f(Z) — q(Z2)Hn(Z))Hm(Z)) =0

Proof.

@ r has degree at most n — 1, then r(x) € Span(H, ..., H,—1). In particular r
is orthogonal to H,, for all m > n.

@ Let there exist g; and g, distinct such that f — g H, L H,, and
f—qH, L Hy, for all m > n. Now (g1 — g2)H, is 0 or has degree not
smaller than n. Furthermore it is orthogonal to H,, for all m > n.
Necessarily it is 0, equivalently g; = go.

From g =350 ¢(q)H; and E ((f =250 cj(q)Han)Hm> = 0 for all
m > n get cy(f)/m! =354 ¢i(q) E(HjHnHm) which can be simplified by
e.g. using the product formula.



lll. Fractions: F C D,, #F = m<n

e Let 17(x) be the polynomial of degree n such that 1x(x) =1 if x € F and 0 if
x € D, \ F and let f be polynomial of degree at most n— 1 and let Z ~ N(0, 1).
Then for P,(X = xx) = Ak

E((F17)(2)) = D fw)A = En (F(X)L#(X)) = Eq (F(X)|X € F) Po(X € F)
xk€F

X — Xj

o Let wr(x) = IT (x —x) = Yo ciHi(x) and note I (x) =[]
X« EF i€ F, itk Xk = Xi

= NF(/k(x), deal(wz(x)) are the Lagrange polynomials for F. For f a polynomial
of degree N, wite f(x) = q(x)wr(x) + r(x) with f(x;) = r(x;) on F and

r(x) = er FOR)IE (x). Let q(x) = 310" bHi(x). Then

E(f(2) = E (i ijJ-(Z)Zc;H;(Z)) LE((2))
j=0 i=0

= boco + brcy + ...+ (N = m) A m)lb(y—myrmCn—mam + O Fxi)AL
xk€F

where \{ = E (NF(/k(x), Ideal(wz(x))).



IVV. Higher dimension

Theorem

Let Zy,...,2Zq iid. ~N(0,1), f € R[xi,...,xq] with deg, f <2n; —1 for
i=1,...,d and

Doyoing = {x= (X1, -+, %¢) €RY : Hp(x1) = Hoy(32) = ... = Hpy(xq) = 0}
Then
E(f(Z,...,24)) = > X0y oy Xd)AD LA
(Xt--+s%n)EDny ...ny

Exercise: let F be the zero set of

g1 =x>—y> =Hy(x)—Hy(y)=0

&=y>-3y =Hs(y)=0

g3 = xy*> —3x = Hy(x) (Ha(y) — 2Hp) =0

For f polynomial there exists unique
re Span (HOa Hl(X)7 Hl(y)a Hl(X)Hl(y), HQ()/)) = Span (1,X,y,Xy,y2) s.t.
f=> qigi+r Ifqu(x,y) = ao+ arHi(x) + a2Hi(y) + asHi(x)Hi(y),
qQ = 91(X) + 92(X)H1(_)/) + 93(X)H2(y), q3 = as + 35H1(_)/) then

E(H(21,22)) = B0, 22)) =272 V3, V3) + V3, = V3) *Siﬁ‘ V3 + (V3 V)




An application

Let f be a polynomial with deg, f,deg, f < n and consider D;, then

n—1
x,y) =Y ciHi(x)H;(y)

ij=0
As deg, (fH), deg, (fHx) < 2n — 1 for all k < n, then
E(f(Z1, Z2)Hi(Z1)Hh(Z2)) = cnkdix||Hk(Z1)[126jn] | H(Z2) ]2

1
Ckh = m Z f(X’y)Hk(X)Hh(y)Ax)\y
(va)GD""

Note if f is the indicator function of a fraction F C D, then

Ckh = Z Hk Hh(y)/\ /\
( Y)EF
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