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Hermite polynomial aliasing in Gaussian quadrature
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A representation of some Hermite polynomials, including those of degree
2n − 1, as sum of an element in the polynomial ideal generated by the
roots of the Hermite polynomial of degree n and of a reminder, suggests a
folding of multivariate polynomials over a finite set of points. From this,
the expectation of some polynomial combinations of random variables
normally distributed is computed. This is related to quadrature formulas
and has strong links with designs of experiments.
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I. Stein-Markov operator for standard normal distribution

Define δf (x) = xf (x)− f ′(x) = −ex2/2 d

dx

(
f (x)e−x

2/2
)

and let Z ∼ N (0, 1) and dn =
dn

dxn
. Then

E (g(Z )δf (Z )) = E ((dg(Z )) f (Z ))

E (g(Z )δnf (Z )) = E (dng(Z ) f (Z ))

For conditions on g , f see Malliavin V Lemma 1.3.2 and Proposition 2.2.3.
Polynomials satisfy these conditions.

1 Hn(x) = δn1, the monic Hermite polynomial of degree n

H0 = 1 H1(x) = x H2(x) = x2 − 1 H3(x) = x3 − 3x

2 dδ − δd = id and dHn = nHn−1 and Hn+1 = xHn − nHn−1
3 The formula shows that the Hn’s are orthogonal



Ring structure of Hermite polynomials

Let 〈φ, ψ〉 = E(φ(Z )ψ(Z )) and h ≤ k . Then

〈HkHh, ψ〉 = 〈Hh,Hkψ〉 = 〈1, dh(Hkψ)〉 =
h∑

i=0

〈1,
(
h

i

)
d iHkd

h−iψ〉

= 〈1,Hkd
hψ〉+

h∑
i=1

〈1,
(
h

i

)
d iHkd

h−iψ〉

= 〈Hh+k , ψ〉+
h∑

i=1

(
h

i

)
k(k − 1) . . . (k − i + 1)〈Hh+k−2i , ψ〉

= 〈Hh+k , ψ〉+〈
h∑

i=1

(
h

i

)(
k

i

)
i !Hh+k−2i , ψ〉

Exercise: H2H1 = (x2 − 1)x = H3 + 2H1 H2
k = H2k +

k∑
i=1

(
k

i

)2

i !H2k−2i

E(H2
k (Z )) =

(
k

1

)
k(k − 1) . . . 1 = k! E(Hk(Z )Hh(Z )) = 0



An exercise

Let f be a polynomial in one variable with real coefficients and by
polynomial division f (x) = q(x)Hn(x) + r(x) where r has degree smaller
than Hn and r(x) = f (x) if Hn(x) = 0. The n − 1 degree polynomial r is
fundamental and is referred to as reminder or normal form. Then

E (f (Z )) = E (q(Z )Hn(Z )) + E (r(Z ))

= E (q(Z ) δ1n) + E (r(Z ))

= E (dnq(Z )) + E (r(Z )) = E (r(Z )) iff E (dnq(Z ) = 0)

Note that dnq(Z ) = 0 if and only if q has degree smaller than n and this
is only if f has degree smaller or equal to 2n − 1. But also
E (dnq(Z )) = E (dn

∑∞
i=0 ci (q)Hi ) = 〈Hn,

∑∞
i=0 ci (q)Hi 〉 = n!cn(q) = 0

for cn(q) = 0.



For k = 1, . . . , n and x1, . . . , xn ∈ R pairwise distict, define the
Lagrange polynomials as

lk(x) =
∏
i :i 6=k

x − xi
xk − xi

These are indicator polynomial functions of degree n − 1, namely
lk(xi ) = δik , and form a R-vector space basis of the set of polynomials of
degree at most n − 1, Pn−1. Namely if r has degree smaller than n then
r(x) =

∑n
k=1 r(xk)lk(x) and for λk = E(lk(Z )) by linearity

E(r(Z )) =
∑n

k=1 r(xk) E(lk(Z )) =
∑n

k=1 r(xk)λk .

Putting all together on Dn = {x : Hn(x) = 0} = {x1, . . . , xn} and for
f polynomial of degree at most 2n − 1 or s.t. cn( f−r

Hn
) = 0

E (f (Z )) = E (r(Z )) =
n∑

k=1

r(xk) E (lk(Z )) =
n∑

k=1

f (xk) E (lk(Z )) = En (f (X ))

where Pn (X = xk) = E (lk(Z )) = λk , cf. standard results on Gaussian
quadrature (Gautschi Chapter 1).



Applications: 1) identification

Let f (x) =
∑N

k=0 ck(f )Hk(x), then if N ≤ 2n − 1∑
Hn(xk )=0

f (xk)λk = E(f (Z )) = c0(f )

for all i s.t. N + i ≤ 2n − 1∑
Hn(xk )=0

f (xk)Hi (xk)λk = E(f (Z )Hi (Z )) = i !ci (f )

e.g. deg f = n − 1 then all coefficients can be computed exactly.
In general∑

Hn(xk )=0

f (xk)Hi (xk)λk =
∑

Hn(xk )=0

NF(f (xk)Hi (xk))λk

= E(NF(f (Z )Hi (Z ))) = i !ci (NF(f ))



and 2) confounding

The computation of the normal form introduces a notion of confounding.
For example from Hn+1(x) = xHn(x)− nHn−1(x) and for ≡ meaning
equality holds over Dn = {x : Hn(x) = 0}, easilly Hn+1(x) ≡ −nHn−1(x)
follows. In general let Hn+k ≡

∑n−1
j=0 hn+k

j Hj be the Fourier expansion of
Hn+k at Dn. Substituting in the product formula gives

NF(Hn+k) ≡ −
n∧k∑
i=1

(
n

i

)(
k

i

)
i ! NF(Hn+k−2i )

= −
n∧k∑
i=1

(
n

i

)(
k

i

)
i !

n−1∑
j=0

hn+k−2i
j Hj

Equating coefficients gives a general recursive formula

hn+k
j = −

n∧k∑
i=1

(
n

i

)(
k

i

)
i !hn+k−2i

j



The first confounding relationships are
k expansion
1 −nHn−1
2 −n(n − 1)Hn−2
3 −n(n − 1)(n − 2)Hn−3 + 3nHn−1
4 −n(n − 1)(n − 2)(n − 3)Hn−4 + 8n(n − 1)Hn−2
5 − n!

(n−5)!Hn−5 + 5nHn−1 + 15n(n − 1)(n − 2)Hn−3

6 − n!
(n−6)!Hn−6 + 24n(n − 1)(n − 2)(n − 3)Hn−4 + 10n(n − 1)(2n − 5)Hn−2

For f =
∑n+1

i=0 ci (f )Hi , we have k = 1 and

NF(f ) =
n−1∑
i=0

ci (f )Hi + cn(f )Hn + cn+1(f ) NF(Hn+1)

≡
n−2∑
i=0

ci (f )Hi + (cn−1(f )− ncn+1(f ))Hn−1

and all coefficients up to degree n − 2 are clean.



II. Algebraic computation of the weights λk
Orthogonal monic polynomials satisfy three-term-recurrence relation

πk+1(t) = (t − αk)πk(t)− βkπk−1(t) π−1(t) = 0 π0(t) = 1

with αk =
〈tπk , πk〉
〈πk , πk〉

and βk =
〈πk , πk〉
〈πk−1, πk−1〉

. Note ||πn||2 = βnβn−1 . . . β0

For the orthonormal polynomials the Christoffel-Darboux formula hold

n−1∑
k=0

π̃k(x)π̃k(t) =
√
βn
π̃n(x)π̃n−1(t)− π̃n−1(x)π̃n(t)

x − t

n−1∑
k=0

π̃k(t)2 =
√
βn
(
π̃′n(t)π̃n−1(t)− π̃′n−1(t)π̃n(t)

)
For Hermite polynomials αn = 0, βn = n, H̃n(x) = Hn(x)/

√
n! and

H̃ ′n(x) =
√
nH̃n−1(x). Substituting above for xi : Hn(xi ) = 0 gives

n−1∑
k=0

H̃k(xi )H̃k(xj) = 0 if i 6= j
n−1∑
k=0

H̃k(xi )
2 = nH̃n−1(xi )

2



In matrix form, for Hn =
[
H̃j(xi )

]
i=1,...,n;j=0,...,n−1

HnHt
n = n diag(H̃2

n−1(xi ) : i = 1, . . . , n)

H−1n = Ht
nn
−1diag(H̃−2n−1(xi ) : i = 1, . . . , n)

Now let f ∈ Pn−1 then f (x) =
∑n−1

j=0 cj H̃j(x) and f = Hnc where
f = [f (xi )]i=1,...,n and c = [cj ]j . Furthermore

c = H−1n f = Ht
nn
−1diag(H̃−2n−1(xi ) : i = 1, . . . , n)f

= Ht
nn
−1diag(H̃−2n−1(xi )f (xi ) : i = 1, . . . , n)

cj =
1

n

n∑
i=1

H̃j(xi )f (xi )H̃
−2
n−1(xi ) (1)

Apply to f (x) = lk(x) =
∑n−1

j=0 ckj H̃j(x) the kth Lagrange polynomial

ckj =
1

n
H̃j(xk)H̃−2n−1(xk)

using lk(xi ) = δik in (1).



The expected value of lk(Z ) is

λk = E (lk(Z )) =
n−1∑
j=0

ckj E
(
H̃j(x)

)
= ck0

We have proved

Theorem

The weights λk , k = 1, . . . , n are

λk = n−1H̃−2n−1(xk)

Let l be the polynomial of degree n − 1 such that l(xk) = λk then Hn(x) = 0 Hn(x) = 0

l(x)H̃2
n−1(x) = n−1 l(x)H2

n−1(x) =
(n − 1)!

n





Notes

Compute E(lk(Z )) once for all

e.g. for n = 3

0 = H3(x) = x3 − 3x

2/3 = l(x)H2
2 = (θ0 + θ1x + θ2x

2)(x2 − 1)2

reduce degree using x3 = 3x and equate coefficients to obtain

l(x) =
2

3
− x2

6

Evaluate to find λ−
√
3 = l(−

√
3) = 1

6 = λ√3 and λ0 = l(0) = 2
3 .

The case n = 4 shows that the λk can be not rational numbers.

p − l(x) is the interpolating polynomials of the set of points
{(λk , xk), k = 1, . . . , n}.
The roots of Hn are real but usually not rational numbers. Computer
algebra systems works with integer or rational fields. Working with
algebraic extensions of fields could be slow.

Sometimes there is no need to compute explicitly the weights.



Theorem

Let f (x) be a polynomial and f (x) = q(x)Hn(x) + r(x) where q, r are
unique with r of degree less than n. Let Z ∼ N (0, 1). Then f − qHn is
the unique polynomial in Pn−1 such that for all m ≥ n

E ((f (Z )− q(Z )Hn(Z ))Hm(Z )) = 0

Proof.

r has degree at most n − 1, then r(x) ∈ Span(H1, . . . ,Hn−1). In particular r
is orthogonal to Hm for all m ≥ n.

Let there exist q1 and q2 distinct such that f − q1Hn ⊥ Hm and
f − q2Hn ⊥ Hm for all m ≥ n. Now (q1 − q2)Hn is 0 or has degree not
smaller than n. Furthermore it is orthogonal to Hm for all m ≥ n.
Necessarily it is 0, equivalently q1 = q2.

From q =
∑

j≥0 cj(q)Hj and E
(

(f −
∑

j≥0 cj(q)HjHn)Hm

)
= 0 for all

m ≥ n get cm(f )/m! =
∑

j≥0 cj(q) E (HjHnHm) which can be simplified by
e.g. using the product formula.



III. Fractions: F ⊂ Dn, #F = m < n

• Let 1F (x) be the polynomial of degree n such that 1F (x) = 1 if x ∈ F and 0 if
x ∈ Dn \ F and let f be polynomial of degree at most n− 1 and let Z ∼ N (0, 1).
Then for Pn(X = xk) = λk

E((f 1F )(Z )) =
∑
xk∈F

f (xk)λk = En (f (X )1F (X )) = En (f (X )|X ∈ F) Pn(X ∈ F)

• Let ωF (x) =
∏

xk∈F
(x − xk) =

∑m
i=0 ciHi (x) and note lFk (x) =

∏
i∈F,i 6=k

x − xi
xk − xi

= NF(lk(x), Ideal(ωF (x)) are the Lagrange polynomials for F . For f a polynomial
of degree N, wite f (x) = q(x)ωF (x) + r(x) with f (xi ) = r(xi ) on F and

r(x) =
∑

xk∈F f (xk)lFk (x). Let q(x) =
∑N−m

j=0 bjHj(x). Then

E (f (Z )) = E

N−m∑
j=0

bjHj(Z )
m∑
i=0

ciHi (Z )

+ E (r(Z ))

= b0c0 + b1c1 + . . .+ ((N −m) ∧m)!b(N−m)∧mc(N−m)∧m +
∑
xk∈F

f (xk)λFk

where λFk = E (NF(lk(x), Ideal(ωF (x))).



IV. Higher dimension

Theorem

Let Z1, . . . ,Zd i.i.d. ∼ N (0, 1), f ∈ R[x1, . . . , xd ] with degxi f ≤ 2ni − 1 for
i = 1, . . . , d and
Dn1...nd = {x = (x1, . . . , xd) ∈ Rd : Hn1(x1) = Hn2(x2) = . . . = Hnd (xd) = 0}.
Then

E (f (Z1, . . . ,Zd)) =
∑

(x1,...,xn)∈Dn1...nd

f (x1, . . . , xd)λn1x1 . . . λ
nd
xd

Exercise: let F be the zero set of g1 = x2 − y2 = H2(x)− H2(y) = 0
g2 = y3 − 3y = H3(y) = 0
g3 = xy2 − 3x = H1(x) (H2(y)− 2H0) = 0

For f polynomial there exists unique
r ∈ Span (H0,H1(x),H1(y),H1(x)H1(y),H2(y)) = Span

(
1, x , y , xy , y2

)
s.t.

f =
∑

qigi + r . If q1(x , y) = ao + a1H1(x) + a2H1(y) + a3H1(x)H1(y),
q2 = θ1(x) + θ2(x)H1(y) + θ3(x)H2(y), q3 = a4 + a5H1(y) then

E(f (Z1, Z2)) = E(r(Z1, Z2)) = 2
f (0, 0)

3
+

f (
√
3,
√
3) + f (

√
3,−
√
3) + f (−

√
3,
√
3) + f (−

√
3,−
√
3)

12



An application

Let f be a polynomial with degx f , degy f < n and consider Dnn then

f (x , y) =
n−1∑
i ,j=0

cijHi (x)Hj(y)

As degx(fHk), degy (fHk) < 2n − 1 for all k < n, then

E (f (Z1,Z2)Hk(Z1)Hh(Z2)) = chkδik ||Hk(Z1)||2δjh||Hh(Z2)||2

ckh =
1

k!h!

∑
(x ,y)∈Dnn

f (x , y)Hk(x)Hh(y)λxλy

Note if f is the indicator function of a fraction F ⊂ Dnn then

ckh =
1

k!h!

∑
(x ,y)∈F

Hk(x)Hh(y)λxλy
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