WOGAS2

Hermite polynomial aliasing in Gaussian quadrature

Giovanni Pistone, Dipartimento di Matematica, Politecnico di Torino, giovanni.pistone@polito.it
Eva Riccomagno, Department of Mathematics, Università di Genova riccomagno@dima.unige.it

A representation of some Hermite polynomials, including those of degree $2 n-1$, as sum of an element in the polynomial ideal generated by the roots of the Hermite polynomial of degree n and of a reminder, suggests a folding of multivariate polynomials over a finite set of points. From this, the expectation of some polynomial combinations of random variables normally distributed is computed. This is related to quadrature formulas and has strong links with designs of experiments.

I. Stein-Markov operator for standard normal distribution

Define $\delta f(x)=x f(x)-f^{\prime}(x)=-e^{x^{2} / 2} \frac{d}{d x}\left(f(x) e^{-x^{2} / 2}\right)$
and let $Z \sim \mathcal{N}(0,1)$ and $d^{n}=\frac{d^{n}}{d x^{n}}$. Then

$$
\begin{aligned}
\mathrm{E}(g(Z) \delta f(Z)) & =\mathrm{E}((d g(Z)) f(Z)) \\
\mathrm{E}\left(g(Z) \delta^{n} f(Z)\right) & =\mathrm{E}\left(d^{n} g(Z) f(Z)\right)
\end{aligned}
$$

For conditions on g, f see Malliavin V Lemma 1.3.2 and Proposition 2.2.3. Polynomials satisfy these conditions.
(1) $H_{n}(x)=\delta^{n}$, the monic Hermite polynomial of degree n

$$
H_{0}=1 \quad H_{1}(x)=x \quad H_{2}(x)=x^{2}-1 \quad H_{3}(x)=x^{3}-3 x
$$

(2) $d \delta-\delta d=i d$ and $d H_{n}=n H_{n-1}$ and $H_{n+1}=x H_{n}-n H_{n-1}$
(3) The formula shows that the H_{n} 's are orthogonal

Ring structure of Hermite polynomials

Let $\langle\phi, \psi\rangle=\mathrm{E}(\phi(Z) \psi(Z))$ and $h \leq k$. Then
$\left\langle H_{k} H_{h}, \psi\right\rangle=\left\langle H_{h}, H_{k} \psi\right\rangle=\left\langle 1, d^{h}\left(H_{k} \psi\right)\right\rangle=\sum_{i=0}^{h}\left\langle 1,\binom{h}{i} d^{i} H_{k} d^{h-i} \psi\right\rangle$

$$
\begin{aligned}
& =\left\langle 1, H_{k} d^{h} \psi\right\rangle+\sum_{i=1}^{h}\left\langle 1,\binom{h}{i} d^{i} H_{k} d^{h-i} \psi\right\rangle \\
& =\left\langle H_{h+k}, \psi\right\rangle+\sum_{i=1}^{h}\binom{h}{i} k(k-1) \ldots(k-i+1)\left\langle H_{h+k-2 i}, \psi\right\rangle \\
& =\left\langle H_{h+k}, \psi\right\rangle+\left\langle\sum_{i=1}^{h}\binom{h}{i}\binom{k}{i} i!H_{h+k-2 i}, \psi\right\rangle
\end{aligned}
$$

Exercise: $H_{2} H_{1}=\left(x^{2}-1\right) x=H_{3}+2 H_{1} \quad H_{k}^{2}=H_{2 k}+\sum_{i=1}^{k}\binom{k}{i}^{2} i!H_{2 k-2 i}$

$$
\mathrm{E}\left(H_{k}^{2}(Z)\right)=\binom{k}{1} k(k-1) \ldots 1=k!\quad \mathrm{E}\left(H_{k}(Z) H_{h}(Z)\right)=0
$$

An exercise

Let f be a polynomial in one variable with real coefficients and by polynomial division $f(x)=q(x) H_{n}(x)+r(x)$ where r has degree smaller than H_{n} and $r(x)=f(x)$ if $H_{n}(x)=0$. The $n-1$ degree polynomial r is fundamental and is referred to as reminder or normal form. Then

$$
\begin{aligned}
\mathrm{E}(f(Z)) & =\mathrm{E}\left(q(Z) H_{n}(Z)\right)+\mathrm{E}(r(Z)) \\
& =\mathrm{E}\left(q(Z) \delta 1^{n}\right)+\mathrm{E}(r(Z)) \\
& =\mathrm{E}\left(d^{n} q(Z)\right)+\mathrm{E}(r(Z))=\mathrm{E}(r(Z)) \quad \text { iff } \mathrm{E}\left(d^{n} q(Z)=0\right)
\end{aligned}
$$

Note that $d^{n} q(Z)=0$ if and only if q has degree smaller than n and this is only if f has degree smaller or equal to $2 n-1$. But also $\mathrm{E}\left(d^{n} q(Z)\right)=\mathrm{E}\left(d^{n} \sum_{i=0}^{\infty} c_{i}(q) H_{i}\right)=\left\langle H_{n}, \sum_{i=0}^{\infty} c_{i}(q) H_{i}\right\rangle=n!c_{n}(q)=0$ for $c_{n}(q)=0$.

For $k=1, \ldots, n$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}$ pairwise distict, define the Lagrange polynomials as

$$
I_{k}(x)=\prod_{i: i \neq k} \frac{x-x_{i}}{x_{k}-x_{i}}
$$

These are indicator polynomial functions of degree $n-1$, namely $I_{k}\left(x_{i}\right)=\delta_{i k}$, and form a \mathbb{R}-vector space basis of the set of polynomials of degree at most $n-1, \mathbb{P}_{n-1}$. Namely if r has degree smaller than n then $r(x)=\sum_{k=1}^{n} r\left(x_{k}\right) I_{k}(x)$ and for $\lambda_{k}=\mathrm{E}\left(I_{k}(Z)\right)$ by linearity $\mathrm{E}(r(Z))=\sum_{k=1}^{n} r\left(x_{k}\right) \mathrm{E}\left(I_{k}(Z)\right)=\sum_{k=1}^{n} r\left(x_{k}\right) \lambda_{k}$.
Putting all together on $\mathcal{D}_{n}=\left\{x: H_{n}(x)=0\right\}=\left\{x_{1}, \ldots, x_{n}\right\}$ and for f polynomial of degree at most $2 n-1$ or s.t. $c_{n}\left(\frac{f-r}{H_{n}}\right)=0$

$$
\mathrm{E}(f(Z))=\mathrm{E}(r(Z))=\sum_{k=1}^{n} r\left(x_{k}\right) \mathrm{E}\left(I_{k}(Z)\right)=\sum_{k=1}^{n} f\left(x_{k}\right) \mathrm{E}\left(I_{k}(Z)\right)=\mathrm{E}_{\mathrm{n}}(f(X))
$$

where $\mathrm{P}_{\mathrm{n}}\left(X=x_{k}\right)=\mathrm{E}\left(I_{k}(Z)\right)=\lambda_{k}$, cf. standard results on Gaussian quadrature (Gautschi Chapter 1).

Applications: 1) identification

Let $f(x)=\sum_{k=0}^{N} c_{k}(f) H_{k}(x)$, then if $N \leq 2 n-1$

$$
\sum_{H_{n}\left(x_{k}\right)=0} f\left(x_{k}\right) \lambda_{k}=\mathrm{E}(f(Z))=c_{0}(f)
$$

for all i s.t. $N+i \leq 2 n-1$

$$
\sum_{H_{n}\left(x_{k}\right)=0} f\left(x_{k}\right) H_{i}\left(x_{k}\right) \lambda_{k}=\mathrm{E}\left(f(Z) H_{i}(Z)\right)=i!c_{i}(f)
$$

e.g. $\operatorname{deg} f=n-1$ then all coefficients can be computed exactly. In general

$$
\begin{aligned}
\sum_{H_{n}\left(x_{k}\right)=0} f\left(x_{k}\right) H_{i}\left(x_{k}\right) \lambda_{k} & =\sum_{H_{n}\left(x_{k}\right)=0} \operatorname{NF}\left(f\left(x_{k}\right) H_{i}\left(x_{k}\right)\right) \lambda_{k} \\
& =\mathrm{E}\left(\operatorname{NF}\left(f(Z) H_{i}(Z)\right)\right)=i!c_{i}(\operatorname{NF}(f))
\end{aligned}
$$

and 2) confounding

The computation of the normal form introduces a notion of confounding. For example from $H_{n+1}(x)=x H_{n}(x)-n H_{n-1}(x)$ and for \equiv meaning equality holds over $\mathcal{D}_{n}=\left\{x: H_{n}(x)=0\right\}$, easilly $H_{n+1}(x) \equiv-n H_{n-1}(x)$ follows. In general let $H_{n+k} \equiv \sum_{j=0}^{n-1} h_{j}^{n+k} H_{j}$ be the Fourier expansion of H_{n+k} at \mathcal{D}_{n}. Substituting in the product formula gives

$$
\begin{aligned}
\operatorname{NF}\left(H_{n+k}\right) & \equiv-\sum_{i=1}^{n \wedge k}\binom{n}{i}\binom{k}{i} i!\operatorname{NF}\left(H_{n+k-2 i}\right) \\
& =-\sum_{i=1}^{n \wedge k}\binom{n}{i}\binom{k}{i} i!\sum_{j=0}^{n-1} h_{j}^{n+k-2 i} H_{j}
\end{aligned}
$$

Equating coefficients gives a general recursive formula

$$
h_{j}^{n+k}=-\sum_{i=1}^{n \wedge k}\binom{n}{i}\binom{k}{i} i!h_{j}^{n+k-2 i}
$$

- The first confounding relationships are

k	expansion
1	$-n H_{n-1}$
2	$-n(n-1) H_{n-2}$
3	$-n(n-1)(n-2) H_{n-3}+3 n H_{n-1}$
4	$-n(n-1)(n-2)(n-3) H_{n-4}+8 n(n-1) H_{n-2}$
5	$-\frac{n!}{(n-5)!} H_{n-5}+5 n H_{n-1}+15 n(n-1)(n-2) H_{n-3}$
6	$-\frac{n!}{(n-6)!} H_{n-6}+24 n(n-1)(n-2)(n-3) H_{n-4}+10 n(n-1)(2 n-5) H_{n-2}$

- For $f=\sum_{i=0}^{n+1} c_{i}(f) H_{i}$, we have $k=1$ and

$$
\begin{aligned}
\operatorname{NF}(f) & =\sum_{i=0}^{n-1} c_{i}(f) H_{i}+\underline{c_{n}(f) H_{n}}+c_{n+1}(f) \operatorname{NF}\left(H_{n+1}\right) \\
& \equiv \sum_{i=0}^{n-2} c_{i}(f) H_{i}+\left(c_{n-1}(f)-n c_{n+1}(f)\right) H_{n-1}
\end{aligned}
$$

and all coefficients up to degree $n-2$ are clean.

II. Algebraic computation of the weights λ_{k}

Orthogonal monic polynomials satisfy three-term-recurrence relation

$$
\pi_{k+1}(t)=\left(t-\alpha_{k}\right) \pi_{k}(t)-\beta_{k} \pi_{k-1}(t) \quad \pi_{-1}(t)=0 \quad \pi_{0}(t)=1
$$

with $\alpha_{k}=\frac{\left\langle t \pi_{k}, \pi_{k}\right\rangle}{\left\langle\pi_{k}, \pi_{k}\right\rangle}$ and $\beta_{k}=\frac{\left\langle\pi_{k}, \pi_{k}\right\rangle}{\left\langle\pi_{k-1}, \pi_{k-1}\right\rangle}$. Note $\left\|\pi_{n}\right\|^{2}=\beta_{n} \beta_{n-1} \ldots \beta_{0}$ For the orthonormal polynomials the Christoffel-Darboux formula hold

$$
\begin{aligned}
\sum_{k=0}^{n-1} \tilde{\pi}_{k}(x) \tilde{\pi}_{k}(t) & =\sqrt{\beta_{n}} \frac{\tilde{\pi}_{n}(x) \tilde{\pi}_{n-1}(t)-\tilde{\pi}_{n-1}(x) \tilde{\pi}_{n}(t)}{x-t} \\
\sum_{k=0}^{n-1} \tilde{\pi}_{k}(t)^{2} & =\sqrt{\beta_{n}}\left(\tilde{\pi}_{n}^{\prime}(t) \tilde{\pi}_{n-1}(t)-\tilde{\pi}_{n-1}^{\prime}(t) \tilde{\pi}_{n}(t)\right)
\end{aligned}
$$

For Hermite polynomials $\alpha_{n}=0, \beta_{n}=n, \tilde{H}_{n}(x)=H_{n}(x) / \sqrt{n!}$ and $\tilde{H}_{n}^{\prime}(x)=\sqrt{n} \tilde{H}_{n-1}(x)$. Substituting above for $x_{i}: H_{n}\left(x_{i}\right)=0$ gives

$$
\sum_{k=0}^{n-1} \tilde{H}_{k}\left(x_{i}\right) \tilde{H}_{k}\left(x_{j}\right)=0 \text { if } i \neq j \quad \sum_{k=0}^{n-1} \tilde{H}_{k}\left(x_{i}\right)^{2}=n \tilde{H}_{n-1}\left(x_{i}\right)^{2}
$$

In matrix form, for $\mathbb{H}_{n}=\left[\tilde{H}_{j}\left(x_{i}\right)\right]_{i=1, \ldots, n ; j=0, \ldots, n-1}$

$$
\begin{aligned}
\mathbb{H}_{n} \mathbb{H}_{n}^{t} & =n \operatorname{diag}\left(\tilde{H}_{n-1}^{2}\left(x_{i}\right): i=1, \ldots, n\right) \\
\mathbb{H}_{n}^{-1} & =\mathbb{H}_{n}^{t} n^{-1} \operatorname{diag}\left(\tilde{H}_{n-1}^{-2}\left(x_{i}\right): i=1, \ldots, n\right)
\end{aligned}
$$

Now let $f \in \mathbb{P}_{n-1}$ then $f(x)=\sum_{j=0}^{n-1} c_{j} \tilde{H}_{j}(x)$ and $\underline{f}=\mathbb{H}_{n} \underline{c}$ where $\underline{f}=\left[f\left(x_{i}\right)\right]_{i=1, \ldots, n}$ and $\underline{c}=\left[c_{j}\right]_{j}$. Furthermore

$$
\begin{align*}
\underline{c} & =\mathbb{H}_{n}^{-1} \underline{f}=\mathbb{H}_{n}^{t} n^{-1} \operatorname{diag}\left(\tilde{H}_{n-1}^{-2}\left(x_{i}\right): i=1, \ldots, n\right) \underline{f} \\
& =\mathbb{H}_{n}^{t} n^{-1} \operatorname{diag}\left(\tilde{H}_{n-1}^{-2}\left(x_{i}\right) f\left(x_{i}\right): i=1, \ldots, n\right) \\
c_{j} & =\frac{1}{n} \sum_{i=1}^{n} \tilde{H}_{j}\left(x_{i}\right) f\left(x_{i}\right) \tilde{H}_{n-1}^{-2}\left(x_{i}\right) \tag{1}
\end{align*}
$$

Apply to $f(x)=I_{k}(x)=\sum_{j=0}^{n-1} c_{k j} \tilde{H}_{j}(x)$ the k th Lagrange polynomial

$$
c_{k j}=\frac{1}{n} \tilde{H}_{j}\left(x_{k}\right) \tilde{H}_{n-1}^{-2}\left(x_{k}\right)
$$

using $I_{k}\left(x_{i}\right)=\delta_{i k}$ in (1).

The expected value of $I_{k}(Z)$ is

$$
\lambda_{k}=\mathrm{E}\left(I_{k}(Z)\right)=\sum_{j=0}^{n-1} c_{k j} \mathrm{E}\left(\tilde{H}_{j}(x)\right)=c_{k 0}
$$

We have proved

Theorem

The weights $\lambda_{k}, k=1, \ldots, n$ are

$$
\lambda_{k}=n^{-1} \tilde{H}_{n-1}^{-2}\left(x_{k}\right)
$$

Let I be the polynomial of degree $n-1$ such that $I\left(x_{k}\right)=\lambda_{k}$ then

$$
\left\{\begin{array}{ll}
H_{n}(x)=0 & H_{n}(x)=0 \\
I(x) \tilde{H}_{n-1}^{2}(x)=n^{-1} & I(x) H_{n-1}^{2}(x)=\frac{(n-1)!}{n}
\end{array}\right\}
$$

Notes

- Compute $\mathrm{E}\left(I_{k}(Z)\right)$ once for all
- e.g. for $n=3$

$$
\begin{aligned}
0 & =H_{3}(x)=x^{3}-3 x \\
2 / 3 & =I(x) H_{2}^{2}=\left(\theta_{0}+\theta_{1} x+\theta_{2} x^{2}\right)\left(x^{2}-1\right)^{2}
\end{aligned}
$$

reduce degree using $x^{3}=3 x$ and equate coefficients to obtain

$$
I(x)=\frac{2}{3}-\frac{x^{2}}{6}
$$

Evaluate to find $\lambda_{-\sqrt{3}}=I(-\sqrt{3})=\frac{1}{6}=\lambda_{\sqrt{3}}$ and $\lambda_{0}=I(0)=\frac{2}{3}$.

- The case $n=4$ shows that the λ_{k} can be not rational numbers.
- $p-I(x)$ is the interpolating polynomials of the set of points $\left\{\left(\lambda_{k}, x_{k}\right), k=1, \ldots, n\right\}$.
- The roots of H_{n} are real but usually not rational numbers. Computer algebra systems works with integer or rational fields. Working with algebraic extensions of fields could be slow.
- Sometimes there is no need to compute explicitly the weights.

Theorem

Let $f(x)$ be a polynomial and $f(x)=q(x) H_{n}(x)+r(x)$ where q, r are unique with r of degree less than n. Let $Z \sim \mathcal{N}(0,1)$. Then $f-q H_{n}$ is the unique polynomial in \mathbb{P}_{n-1} such that for all $m \geq n$

$$
\mathrm{E}\left(\left(f(Z)-q(Z) H_{n}(Z)\right) H_{m}(Z)\right)=0
$$

Proof.

- r has degree at most $n-1$, then $r(x) \in \operatorname{Span}\left(H_{1}, \ldots, H_{n-1}\right)$. In particular r is orthogonal to H_{m} for all $m \geq n$.
- Let there exist q_{1} and q_{2} distinct such that $f-q_{1} H_{n} \perp H_{m}$ and $f-q_{2} H_{n} \perp H_{m}$ for all $m \geq n$. Now $\left(q_{1}-q_{2}\right) H_{n}$ is 0 or has degree not smaller than n. Furthermore it is orthogonal to H_{m} for all $m \geq n$. Necessarily it is 0 , equivalently $q_{1}=q_{2}$.

From $q=\sum_{j \geq 0} c_{j}(q) H_{j}$ and $E\left(\left(f-\sum_{j \geq 0} c_{j}(q) H_{j} H_{n}\right) H_{m}\right)=0$ for all $m \geq n$ get $c_{m}(f) / m!=\sum_{j \geq 0} c_{j}(q) \mathrm{E}\left(H_{j} H_{n} H_{m}\right)$ which can be simplified by e.g. using the product formula.

III. Fractions: $\mathcal{F} \subset \mathcal{D}_{n}, \# \mathcal{F}=m<n$

- Let $1_{\mathcal{F}}(x)$ be the polynomial of degree n such that $1_{\mathcal{F}}(x)=1$ if $x \in \mathcal{F}$ and 0 if $x \in \mathcal{D}_{n} \backslash \mathcal{F}$ and let f be polynomial of degree at most $n-1$ and let $Z \sim \mathcal{N}(0,1)$. Then for $\mathrm{P}_{\mathrm{n}}\left(X=x_{k}\right)=\lambda_{k}$

$$
\mathrm{E}\left(\left(f 1_{\mathcal{F}}\right)(Z)\right)=\sum_{x_{k} \in \mathcal{F}} f\left(x_{k}\right) \lambda_{k}=\mathrm{E}_{\mathrm{n}}\left(f(X) 1_{\mathcal{F}}(X)\right)=\mathrm{E}_{\mathrm{n}}(f(X) \mid X \in \mathcal{F}) \mathrm{P}_{\mathrm{n}}(X \in \mathcal{F})
$$

- Let $\omega_{\mathcal{F}}(x)=\prod_{x_{k} \in \mathcal{F}}\left(x-x_{k}\right)=\sum_{i=0}^{m} c_{i} H_{i}(x)$ and note $I_{k}^{\mathcal{F}}(x)=\prod_{i \in \mathcal{F}, i \neq k} \frac{x-x_{i}}{x_{k}-x_{i}}$
$=\operatorname{NF}\left(I_{k}(x)\right.$, Ideal $\left(\omega_{\mathcal{F}}(x)\right)$ are the Lagrange polynomials for \mathcal{F}. For f a polynomial of degree N, wite $f(x)=q(x) \omega_{\mathcal{F}}(x)+r(x)$ with $f\left(x_{i}\right)=r\left(x_{i}\right)$ on \mathcal{F} and $r(x)=\left.\sum_{x_{k} \in \mathcal{F}} f\left(x_{k}\right)\right|_{k} ^{\mathcal{F}}(x)$. Let $q(x)=\sum_{j=0}^{N-m} b_{j} H_{j}(x)$. Then

$$
\begin{aligned}
& \mathrm{E}(f(Z))=\mathrm{E}\left(\sum_{j=0}^{N-m} b_{j} H_{j}(Z) \sum_{i=0}^{m} c_{i} H_{i}(Z)\right)+\mathrm{E}(r(Z)) \\
& \quad=b_{0} c_{0}+b_{1} c_{1}+\ldots+((N-m) \wedge m)!b_{(N-m) \wedge m} c_{(N-m) \wedge m}+\sum_{x_{k} \in \mathcal{F}} f\left(x_{k}\right) \lambda_{k}^{\mathcal{F}}
\end{aligned}
$$

where $\lambda_{k}^{\mathcal{F}}=\mathrm{E}\left(\operatorname{NF}\left(I_{k}(x), \operatorname{Ideal}\left(\omega_{\mathcal{F}}(x)\right)\right)\right.$.

IV. Higher dimension

Theorem

Let Z_{1}, \ldots, Z_{d} i.i.d. $\sim \mathcal{N}(0,1), f \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ with $\operatorname{deg}_{x_{i}} f \leq 2 n_{i}-1$ for $i=1, \ldots, d$ and
$\mathcal{D}_{n_{1} \ldots n_{d}}=\left\{x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: H_{n_{1}}\left(x_{1}\right)=H_{n_{2}}\left(x_{2}\right)=\ldots=H_{n_{d}}\left(x_{d}\right)=0\right\}$.
Then

$$
\mathrm{E}\left(f\left(Z_{1}, \ldots, Z_{d}\right)\right)=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{D}_{n_{1} \ldots n_{d}}} f\left(x_{1}, \ldots, x_{d}\right) \lambda_{x_{1}}^{n_{1}} \ldots \lambda_{x_{d}}^{n_{d}}
$$

Exercise: let \mathcal{F} be the zero set of

$$
\left\{\begin{aligned}
g_{1}=x^{2}-y^{2} & =H_{2}(x)-H_{2}(y)=0 \\
g_{2}=y^{3}-3 y & =H_{3}(y)=0 \\
g_{3}=x y^{2}-3 x & =H_{1}(x)\left(H_{2}(y)-2 H_{0}\right)=0
\end{aligned}\right.
$$

For f polynomial there exists unique
$r \in \operatorname{Span}\left(H_{0}, H_{1}(x), H_{1}(y), H_{1}(x) H_{1}(y), H_{2}(y)\right)=\operatorname{Span}\left(1, x, y, x y, y^{2}\right)$ s.t.
$f=\sum q_{i} g_{i}+r$. If $q_{1}(x, y)=a_{0}+a_{1} H_{1}(x)+a_{2} H_{1}(y)+a_{3} H_{1}(x) H_{1}(y)$,
$q_{2}=\theta_{1}(x)+\theta_{2}(x) H_{1}(y)+\theta_{3}(x) H_{2}(y), q_{3}=a_{4}+a_{5} H_{1}(y)$ then

$$
\mathrm{E}\left(f\left(Z_{1}, z_{2}\right)\right)=\mathrm{E}\left(r\left(Z_{1}, z_{2}\right)\right)=2 \frac{f(0,0)}{3}+\frac{f(\sqrt{3}, \sqrt{3})+f(\sqrt{3},-\sqrt{3})+f(-\sqrt{3}, \sqrt{3})+f(-\sqrt{3},-\sqrt{3})}{12}
$$

An application

Let f be a polynomial with $\operatorname{deg}_{x} f, \operatorname{deg}_{y} f<n$ and consider $\mathcal{D}_{n n}$ then

$$
f(x, y)=\sum_{i, j=0}^{n-1} c_{i j} H_{i}(x) H_{j}(y)
$$

As $\operatorname{deg}_{x}\left(f H_{k}\right), \operatorname{deg}_{y}\left(f H_{k}\right)<2 n-1$ for all $k<n$, then

$$
\begin{aligned}
\mathrm{E}\left(f\left(Z_{1}, Z_{2}\right) H_{k}\left(Z_{1}\right) H_{h}\left(Z_{2}\right)\right) & =c_{h k} \delta_{i k}\left\|H_{k}\left(Z_{1}\right)\right\|^{2} \delta_{j h}\left\|H_{h}\left(Z_{2}\right)\right\|^{2} \\
c_{k h} & =\frac{1}{k!h!} \sum_{(x, y) \in \mathcal{D}_{n n}} f(x, y) H_{k}(x) H_{h}(y) \lambda_{x} \lambda_{y}
\end{aligned}
$$

Note if f is the indicator function of a fraction $\mathcal{F} \subset \mathcal{D}_{n n}$ then

$$
c_{k h}=\frac{1}{k!h!} \sum_{(x, y) \in \mathcal{F}} H_{k}(x) H_{h}(y) \lambda_{x} \lambda_{y}
$$

Bibliography

- D. A. Cox, J. B. Little, D. O'Shea, Ideals, varieties, and algorithms, Springer-Verlag, 2003, $3^{\text {rd }}$ edn.
- W. Gautschi. Orthogonal Polynomials: computation and Approximation, Oxford University Press, 2004.
- P. Malliavin. Integration and Probability, Springer-Verlag, 1995.
- G. Pistone, E. Riccomagno, H. P. Wynn. Algebraic Statistics. CRC Press, 2001.
- G. Pistone. Algebraic varieties vs. differentiable manifolds in statistical models final chapter in Algebraic and geometric methods in statistics (Gibilisco, Riccomagno, Rogantin and Wynn, eds) Cambridge University Press, 2010.
- W. Schoutens. Stochastic Processes and Orthogonal Polynomials. Springer-Verlag, 2000.

