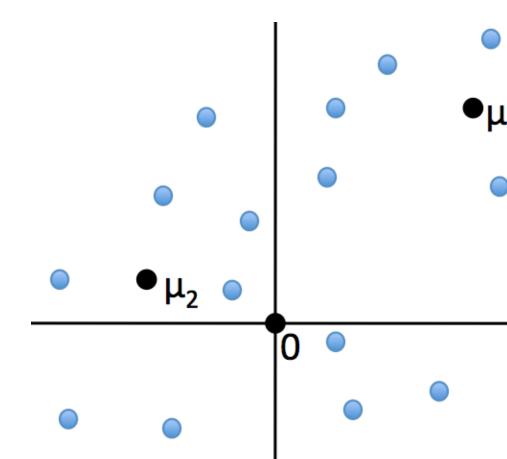


Shape Depth

ECARES & Département de Mathématique, Université Libre de Bruxelles

G. VAN BEVER*, D. PAINDAVEINE, gvbever@ulb.ac.be

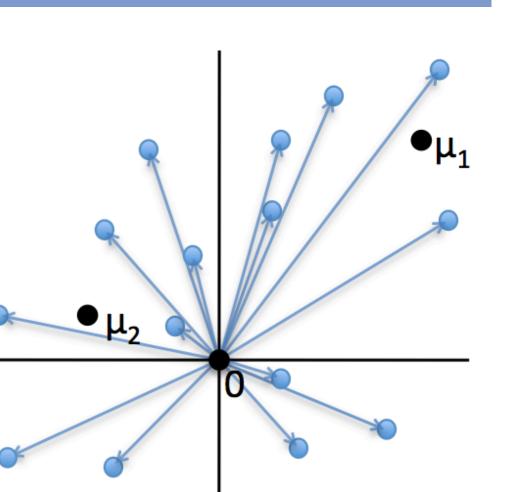
1. Tukey's halfspace depth and Mizera's tangent depth.



- In the multivariate location setup, Tukey (1975) Mizer introduced the notion of halfspace median as to an $\operatorname{argmax}_{\mu \in \mathbb{R}^p} HD(\mu; F_{\mathbf{X}})$, the vector with maximum halfspace depth. Here, depth
 - $HD(\boldsymbol{\mu}; F_{\mathbf{X}}) = \inf_{\mathbf{u} \in S^{p-1}} \mathbb{P}_{F_{\mathbf{X}}} \left\{ \mathbf{u}'(\mathbf{X} \boldsymbol{\mu}) \ge 0 \right\}.$

Mizera (2002) generalized the concept of depth to any parametric model. Given a C^1 objective function $F: \Theta \times \mathcal{X} \to \mathbb{R}$, he defined the tangent depth of $\tilde{\boldsymbol{\theta}} \in \Theta$ as

$$TD\left(\tilde{\boldsymbol{\theta}}, F_{\mathbf{X}}\right) = HD\left(0_p; \nabla_{\boldsymbol{\theta}} F(\tilde{\boldsymbol{\theta}}, \mathbf{X})\right)$$



In the empirical setup, the halfspace depth of μ can be seen as the smallest number of observations one may remove before μ lies outside the convex hull of the remaining data.

With respect to the construction of the maximum likelihood estimator, he suggested $F(\theta, \mathbf{X}) = \log f_{\theta}(\mathbf{X})$ as a candidate for the objective function.

2. The shape parameter.

In many classic multivariate problems, it is sufficient to know a *normalized* version of the dispersion/scatter matrix in order to perform the analysis (PCA, CCA, test of sphericity, etc.)

Definition

A scale functional is a (i) 1-homogeneous function $S : \mathcal{S}_p \to \mathbb{R}_0^+$ (i.e. $S(\lambda \Sigma) = \lambda S(\Sigma)$) such that (ii) S is differentiable, with $\frac{\partial S}{\partial \Sigma_{11}}(\Sigma) \neq 0$ for all $\Sigma \in \mathcal{S}_p$ and (iii) satisfies $S(\mathbf{I}_p) = 1$.

The scale parameter associated with Σ is $\sigma_S^2 = S(\Sigma)$. The shape parameter is $\mathbf{V}_S = \Sigma/S(\Sigma)$. Denote $\mathcal{V}_p^S = \{\mathbf{V} \in \mathcal{S}_p | S(\mathbf{V}) = 1\}$. Classical choices of scale functionals are $S_O(\Sigma) = \Sigma_{11}, S_T(\Sigma) = \operatorname{tr}(\Sigma)/p$ and $S_D(\Sigma) = |\Sigma|^{1/p}$. We are interested in the *shape parameter* of *p*-variate elliptical distributions, with general density

$$\mathbf{x} \mapsto \frac{c_{p,g_1}}{|\mathbf{\Sigma}|^{1/2}} g_1\left(d(\mathbf{x}, \boldsymbol{\theta}; \mathbf{\Sigma})\right) = \frac{\tilde{c}_{p,g}}{|\mathbf{V}_S|^{1/2}} g\left(d(\mathbf{x}, \boldsymbol{\theta}; \mathbf{V}_S)\right) = f_{\boldsymbol{\theta}, \mathbf{V}, g}(\mathbf{x}),$$

where $d(\mathbf{x}, \boldsymbol{\theta}; \mathbf{\Sigma}) = \left((\mathbf{x} - \boldsymbol{\theta})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\theta})\right)^{1/2}, \ \mathbf{\Sigma} \in \mathcal{S}_p.$

3. Shape depth.

Hallin and Paindaveine (2006) showed that the score is given by

$$abla_{\mathbf{V}}F(\mathbf{V},\mathbf{X}) \propto \mathbf{M}_{S}^{\mathbf{V}}\left(\mathbf{V}^{\otimes 2}
ight)^{-1/2} \mathbf{vec}\left(arphi_{g_{1}}(rac{d}{\sigma_{S}})rac{d}{\sigma_{S}}\mathbf{U}\mathbf{U}'-\mathbf{I}_{p}
ight),$$

with $d = d(\mathbf{X}, \boldsymbol{\theta}; \mathbf{V})$, $\mathbf{U} = \mathbf{V}^{-1/2}(\mathbf{X} - \boldsymbol{\theta})/d$ and $\varphi_g = -g'/g$. $\mathbf{M}_S^{\mathbf{V}}$ is the $(p(p+1)/2-1) \times p$ matrix such that $(\mathbf{M}_S^{\mathbf{V}})'(\mathbf{vech})(\mathbf{v}) = \mathbf{vec}(\mathbf{v})$ for all matrix $\mathbf{v} \in \mathcal{S}_p$ such that $(\nabla S(\mathbf{vech}(\mathbf{V}))'(\mathbf{vech}(\mathbf{v})) = 0$. The unspecification of scale σ_S^2 leads to rather consider the efficient scores (obtained from projections along tangent spaces)

$$abla_{\mathbf{V}}^{*}F(\mathbf{V},\mathbf{X}) \propto \mathbf{M}_{S}^{\mathbf{V}} \left(\mathbf{V}^{\otimes 2}\right)^{-1/2} \varphi_{g_{1}}(rac{d}{\sigma_{S}}) rac{d}{\sigma_{S}} \mathbf{vec} \left(\mathbf{U}\mathbf{U}' - rac{1}{p}\mathbf{I}_{p}
ight).$$

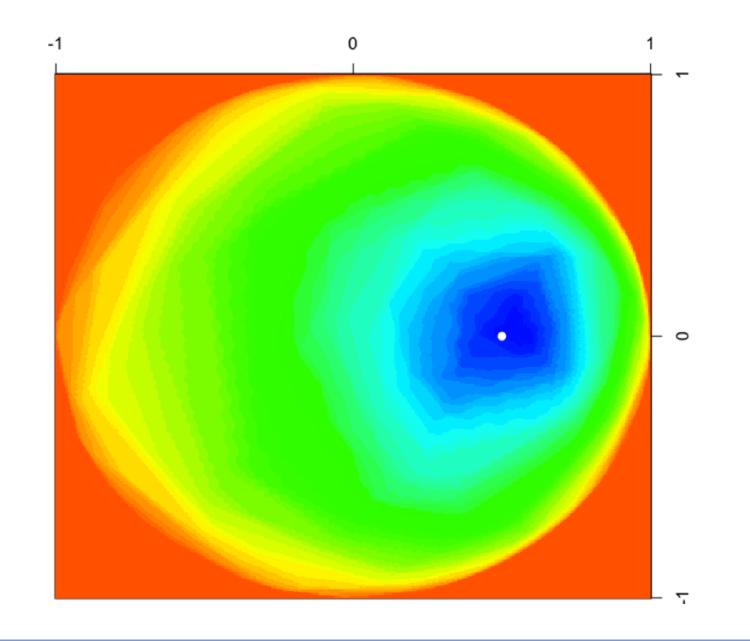
Definition

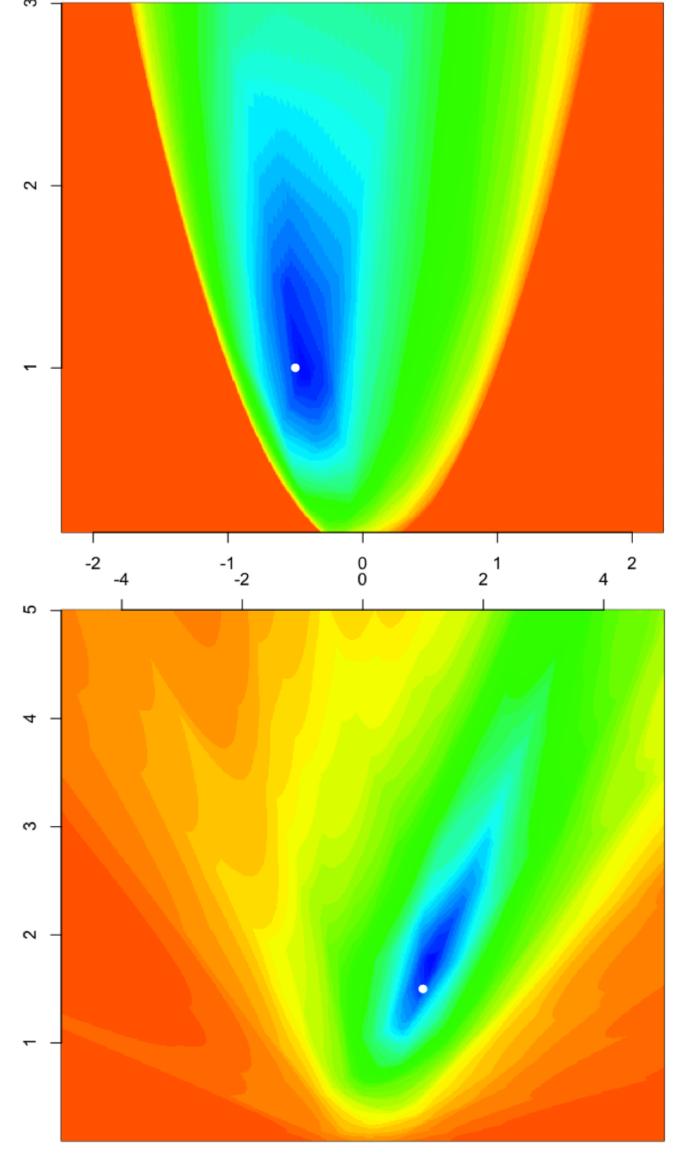
Let S be a scale functional, and
$$\mathbf{V} \in \mathcal{V}_p^S$$
. Define the vector $\mathbf{W} = \mathbf{M}_S^{\mathbf{V}_S} (\mathbf{V}^{\otimes 2})^{-1/2} \operatorname{vec} \left(\mathbf{U}\mathbf{U}' - \frac{1}{p}\mathbf{I}_p \right)$. Then the shape depth of \mathbf{V} is
 $ShD(\mathbf{V}, S, F_{\mathbf{X}}) = HD(\mathbf{0}_p, \mathbf{W})$.

Dimension 2 allows for representations since

$$\begin{aligned} -\mathcal{V}_{2}^{S_{O}} &\cong \left\{ (x,y) \in \mathbb{R}^{2} \, \big| y > x^{2} \right\}, \\ -\mathcal{V}_{2}^{S_{T}} &\cong \left\{ (x,y) \in \mathbb{R}^{2} \, \big| x^{2} + y^{2} < 1 \right\} \\ \text{and} \end{aligned}$$

$$-\mathcal{V}_2^{S_D} \cong \{(x,y) \in \mathbb{R}^2 | y > 0\}.$$





4. Some results.

Theorem 1

For any $\Sigma \in S_p$ and any scale functionals S_1 and S_2 ,

$$ShD\left(\frac{\Sigma}{S_1(\Sigma)}, S_1, F_{\mathbf{X}}\right) = ShD\left(\frac{\Sigma}{S_2(\Sigma)}, S_2, F_{\mathbf{X}}\right).$$

Theorem 2

Let S be a scale functional, **A** a non-singular $p \times p$ matrix and $\mathbf{V} \in \mathcal{V}_p^S$. Then, for all distributions $F_{\mathbf{X}}$,

$$ShD(\mathbf{V}, S, F_{\mathbf{X}}) = ShD\left(\frac{\mathbf{A}\mathbf{V}\mathbf{A}}{S(\mathbf{A}\mathbf{V}\mathbf{A}')}, S, F_{\mathbf{A}\mathbf{X}}\right).$$

References

(1) Hallin, M. and Paindaveine, D. (2006). Semiparametrically efficient rank-based inference for shape I: Optimal rank-based tests for sphericity. Annals of Statistics, Vol. 34, pp. 2707-2756.

(2) Mizera, I. (2002). On depth and deep points: a calculus. Annals of Statistics, Vol. 30, No. 6, pp. 1681-1736.

(3) Tukey, J.W. (1975). Mathematics and the picturing of data. Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2, pp. 523-531.