Special features of probability distributions: which are detectable by algebraic methods?

Nanny Wermuth, Chalmers/ University of Gothenburg, Sweden

Workshop 6-7 April 10, Warwick

A Gaussian one-factor analysis model

for 4 items (i.e. observed variables) is a linear system generated over

- where $\not \boldsymbol{\varnothing}$, the common parent node \boldsymbol{h}, is a hidden variable
- for variables with zero mean and unit variance, let the simple correlation coefficients $\rho_{i h}$, for $i=1,2,3,4$, be positive
- the graph implies $\rho_{i k . h}=0$ for each observed pair $(\boldsymbol{i}, \boldsymbol{k})$ so that $\rho_{i \boldsymbol{k}}=\rho_{i h} \rho_{k h}$ and for observed $i \neq j \neq k \neq s$

$$
\rho_{i k} / \rho_{j k}=\rho_{i s} / \rho_{j s}, \text { the tetrad conditions }
$$

Early results on one-factor analysis models

- Bartlett (1951): if an observed covariance matrix Σ satisfies the tetrad conditions, so does its inverse
- Anderson and Rubin (1956): the tetrad conditions arise with a column vector \boldsymbol{l}, containing $\rho_{i h}$, for $\boldsymbol{Y}_{\boldsymbol{i}}$ observed, $\boldsymbol{Y}_{\boldsymbol{h}}$ the hidden,

$$
\Sigma=l l^{T}+\Delta, \quad \Delta \text { diagonal }
$$

rank one of $l l^{T}$ implies a zero determinant for each 2×2 submatrix
recentlly: Drton, Sturmfels and Sullivan (2006), algebraic factor analysis
disappointing: no new insights regardinjg improper representations
Example of a positive definite correlation matrix, closed form for \boldsymbol{l}

$$
\left(\begin{array}{ccc}
1 & .84 & .60 \\
. & 1 & .38 \\
. & . & 1
\end{array}\right) \quad l=\left(\begin{array}{c}
1.2 \\
.7 \\
.5
\end{array}\right) \Delta=\left(\begin{array}{ccc}
-.44 & .0 & 0 \\
. & .51 & 0 \\
. & . & .75
\end{array}\right)
$$

improper because of the negative residual 'variance' in Δ

A special family of distributions for \boldsymbol{p} symmetric binary variables $A_{s}, s=1, \ldots, p$ i.e. each has two equally probable levels, coded as 1 and -1

We write e.g.
$\pi_{111}^{A_{1} A_{2} A_{3}}=\operatorname{Pr}\left(A_{1}=1, A_{2}=1, A_{3}=1\right)$
$\pi_{1 \mid 11}^{A_{1} \mid A_{2} A_{3}}=\pi_{111}^{A_{1} A_{2} A_{3}} / \pi_{11}^{A_{2} A_{3}}$

Covariance matrix is identical to the correlation matrix \mathbf{P}
with \mathbf{H} upper-triangular, Δ diagonal: triangular decomposition
$\mathbf{P}^{-1}=\mathbf{H}^{\mathrm{T}} \boldsymbol{\Delta}^{-1} \mathbf{H}$

The linear triangular system of exclusively main effects in four variables is (Wermuth, Marchetti and Cox, 2009)

$$
\begin{aligned}
\pi_{i \mid j k l}^{A_{1} \mid A_{2} A_{3} A_{4}} & =\frac{1}{2}\left(1+\eta_{12} i j+\eta_{13} i k+\eta_{14} i l\right) \\
\pi_{j \mid k l}^{A_{2} \mid A_{3} A_{4}} & =\frac{1}{2}\left(1+\eta_{23} j k+\eta_{24} j l\right) \\
\pi_{k \mid l}^{A_{3} \mid A_{4}} & =\frac{1}{2}\left(1+\eta_{34} k l\right) \\
\pi_{l}^{A_{4}} & =\frac{1}{2}
\end{aligned}
$$

$\boldsymbol{\eta}$'s are linear regression coefficients of the binary variables

Example: 200 swiss bank notes of Riedwyl and Flury (1983)
Median-dichotomized values of \boldsymbol{A}_{1} : 145-length of the diagonal, \boldsymbol{A}_{2} : average distance of inner frame to the lower and upper border, $\boldsymbol{A}_{\mathbf{3}}$: average height of the bank note, measured on the left and right; \boldsymbol{A}_{4} : real and forged

Mutual conditional independence of A_{1}, A_{2}, A_{3} given A_{4}

The matrix \mathbf{H} and the correlation matrix $\mathbf{P}=\mathbf{H}^{-1} \Delta \mathbf{H}^{-\mathbf{T}}$ are

$$
\begin{aligned}
& \mathrm{P}=\left(\begin{array}{cccc}
1 & \rho_{14} \rho_{24} & \rho_{14} \rho_{34} & \rho_{14} \\
\cdot & 1 & \rho_{24} \rho_{34} & \rho_{24} \\
\cdot & \cdot & 1 & \rho_{34} \\
\cdot & \cdot & \cdot & 1
\end{array}\right) \mathrm{H}=\left(\begin{array}{cccc}
1 & 0 & 0 & -\rho_{14} \\
& 1 & 0 & -\rho_{24} \\
& & 1 & -\rho_{34} \\
0 & & 1
\end{array}\right) \\
& \delta_{s s}=1-\rho_{s 4}^{2} \text { for } s=1,2,3
\end{aligned}
$$

For the Swiss banknote data -
observed correlation matrix $\hat{\mathbf{P}}$ shows an almost perfect fit to $1 \Perp 2 \Perp 3 \mid 4$

- marginalising over \boldsymbol{A}_{4} introduces strong associations
$\hat{\mathrm{P}}=\left(\begin{array}{cccc}1 & 0.92 & 0.51 & 0.98 \\ . & 1 & 0.49 & 0.95 \\ . & \cdot & 1 & 0.51 \\ . & \cdot & \cdot & 1\end{array}\right) \hat{\mathrm{H}}=\left(\begin{array}{cccc}1 & 0.01 & -0.01 & -0.98 \\ & 1 & -0.01 & -0.93 \\ & & 1 & -0.51 \\ 0 & & & 1\end{array}\right)$
and $\hat{\pi}_{1111}=\hat{\pi}_{-1-1-1-1}=.4$
[What can be learned for this distribution by some algebraic factor analysis ?]

The more general multivariate regression chains
Let $\{1, \ldots, p\}=(a, b, c, d)$

$$
f=f_{a \mid b c d} f_{b \mid c d} f_{c \mid d} f_{d}
$$

gives a factorisation corresponding to the joint or single responses within the chain components a, b, c, d
within each component: covariance graphs (dashed lines)
between components: regressions given the past (arrows)
[within the last component: a concentration graph (full lines)]
see Cox and/or Wermuth (1993, 2004, 2010), Drton (2009) Marchetti and Luparelli (2010), Kang and Tian (2009)

Childhood recollections of 283 healthy adult females

with: $\boldsymbol{a} \Perp c \mid b$ and $S \Perp U \mid A, R$ and $Q \Perp P \mid B$
for the graph graph components: directed acyclic in blocks, concentration graph within last block, covariance graphs within others

Special case: a fully recursive generating process with the independence structure captured by a directed ayclic graph means: for the ordered node set $\boldsymbol{V}=(1,2, \ldots, \boldsymbol{d})$ and variable $\boldsymbol{Y}_{\boldsymbol{i}}$ corresponding to node \boldsymbol{i}, to generate the joint density
start with $\boldsymbol{f}_{\boldsymbol{d}}$
generate $f_{d-1 \mid d}$
generate $f_{d-2 \mid d-1, d}$
generate $f_{1 \mid 2, \ldots, d}$
with univariate conditional densities of almost arbitrary form

We want to predict changes in structure when some variables are ignored and/or subpopulations are studied
which independences are preserved? when are dependences introduced? for which generating dependences are distortions introduced?

Most important needed property of the generated \boldsymbol{f}_{V} : an edge-inducing path is also association-inducing
path: sequence of edges coupling distinct nodes; collider $\mathrm{c}: \mathrm{O} \longrightarrow c \nprec \mathrm{O}$
inner nodes of a path: nodes of a path except for the endpoints
descendant \boldsymbol{i} of \boldsymbol{k} : a path of arrows starting from \boldsymbol{k}, leading to \boldsymbol{i}
$M=\{\varnothing\}$: marginalising set; $C=\{O\}$: conditioning set

Adapted from Pearl (1988): Let $\{a, b, M, C\}$ partition node set \boldsymbol{V}. A path from a to b in $G_{\text {par }}^{V}$ is edge-inducing, iff every inner collider is in C or has a descendant in C and every other inner node is in M

Distributions with edge-inducing paths that are not association inducing In the following $2 \times 2 \times 3$ table (Birch, 1963): $\boldsymbol{U} \Perp \boldsymbol{V} \mid \boldsymbol{W}$ and $\boldsymbol{U} \Perp \boldsymbol{V}$

	$w=1$		$w=2$		$w=3$	
	$v=1$	$v=2$	$v=1$	$v=2$	$v=1$	$v=2$
$u=1$	4	2	2	1	1	4
$u=2$	2	1	4	2	1	4
c. odds-r.		1		1		1

A family for $2 \times 2 \times 4$ tables with $U \Perp V \mid W$ and $U \Perp V$ with edge-inducing paths that are not association inducing (Studeny 2002)
i.e.
$U \leftarrow \not \varnothing \leftarrow V$
with \boldsymbol{U} dependent on $\boldsymbol{W}=\varnothing$ and \boldsymbol{W} dependent on \boldsymbol{V}
does not lead to
$\boldsymbol{U} \nprec \boldsymbol{V}$ with \boldsymbol{U} dependent on \boldsymbol{V}

u	$w=1$		$w=2$	
	$v=1$	$v=2$	$v=1$	$v=2$
1	$(1-\epsilon)(1-\delta)$	$\epsilon(1-\delta)$	$\delta(1-\epsilon)$	$(1-\epsilon)(1-\delta)$
2	$\delta(1-\epsilon)$	$\delta \epsilon$	$\delta \epsilon$	$\epsilon(1-\delta)$
cor	1			1
u	$w=3$		$w=4$	
	$v=1$	$v=2$	$v=1$	$v=2$
1	$\epsilon(1-\delta)$	$\delta \epsilon$	$\delta \epsilon$	$\delta(1-\epsilon)$
2	$(1-\epsilon)(1-\delta)$	$\delta(1-\epsilon)$	$\epsilon(1-\delta)$	$(1-\epsilon)(1-\delta)$
cor	1			1

Both, conditional and marginal independence for connected and edge-minimal graphs only in incomplete families of distributions:

A family of distributions is complete if a function is implied to be zero whenever it has zero expectation for all members of the family
in a complete family with density $\boldsymbol{f}(\boldsymbol{y})$

$$
\int g(y) f(y) d y=0 \Longrightarrow g(y)=0 \text { a.s. }
$$

Lehmann and Scheffé (1955), Mandelbaum and Rüschendorf (1987)
[What has algebraic statistics to say about complete families?]

Other needed properties of the generated \boldsymbol{f}_{V} for deriving consequences for dependences in marginal/conditional distributions

For $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ disjoint subsets of \boldsymbol{V}, the family of distributions of $\boldsymbol{Y}_{\boldsymbol{V}}$ is to satisfy
(1) the intersection property:

$$
a \Perp b \mid c d \text { and } a \Perp c \mid b d \text { imply } a \Perp b c \mid d
$$

(2) the composition property:

$$
a \Perp b \mid d \text { and } a \Perp c \mid d \text { imply } a \Perp b c \mid d
$$

see Dawid (1979), Pearl (1988), Studený (2005) for general discussions

Necessary and sufficient conditions for Gaussian and discrete distributions to satisfy the intersection property: San Martin, Mouchart and Rolin (2005)
they give an example of a family for a $2 \times 3 \times 3$ table without the intersection property and with the marginal 3×3 table

	$j=1$	$j=2$	$j=3$
$i=1$	q_{1}	q_{2}	0
$i=2$	0	0	q_{3}
$i=3$	0	0	q_{4}

containing information common to the two variables i.e. event $\left\{\boldsymbol{A}_{\mathbf{2}}=1\right\}$ is the same as event $\left\{\boldsymbol{A}_{\mathbf{3}} \neq 3\right\}$
instead in the following 5×4 table of probabilities

	$j=1$	$j=2$	$j=3$	$j=4$
$i=1$	q_{11}	0	0	q_{14}
$i=2$	0	q_{22}	q_{23}	0
$i=3$	q_{31}	0	0	q_{34}
$i=4$	0	q_{42}	0	q_{44}
$i=5$	q_{51}	0	q_{53}	0

$\boldsymbol{A}_{\mathbf{2}}$ contains no information about $\boldsymbol{A}_{\mathbf{3}}$ since $\boldsymbol{q}_{i j} \boldsymbol{q}_{i^{\prime} j}>0$ for all \boldsymbol{j} an extension to conditional probabilities $\boldsymbol{q}_{i j \mid k}$ implies that the usual assumption of positive distributions is too strong

In a multivariate regression chain without a concentration graph

- the Markov structure is defined by a set of pairwise
independence statements associated with the missing edges; Kang and Tian (2009)
- for discrete variables a special sequence of multivariate logistic regression parameters gives the composition and the intersection property; Marchetti and Luparrelli (2010)
- for discrete variables, each model defines a curved exponential family; Drton (2009)
[what can be learned from algebraic statistics, say for binary variables about the intersection and the composition property?]

How should the generating process look like to assure the desired properties of f_{V} ?

- use a directed acyclic graph with special properties, called a parent graph
- constrain the types of univariate conditional distributions

The parent graph $G_{\text {par }}^{V}$ is
a directed acyclic graph in node set $\boldsymbol{V}=(1,2, \ldots, d)$ that is

- connected
- has one compatible full ordering of V attached
- is edge-minimal for f_{V}
for $i \nprec k: k$ is a parent of offspring $i ; \operatorname{par}_{i}$: the set of parents of i
edge-minimality of $G_{\text {par }}^{V}$

$$
f_{i \mid \operatorname{par}_{i}} \neq f_{i \mid \operatorname{par}_{i} \backslash l} \text { for each } l \in \operatorname{par}_{i}
$$

(defines a research hypothesis; see Wermuth and Lauritzen, 1989)

Constraints on the generating process for the families of density, \boldsymbol{f}_{V} we denote the past of i by $\mathrm{pst}_{i}=\{i+1, \ldots, d\}$
(1) proper random responses $\boldsymbol{Y}_{\boldsymbol{i}}$ depend just on $\boldsymbol{Y}_{\text {par }}$
$f_{i \mid \text { pst }_{i}}=f_{i \mid \text { par }_{i}}$ for each $i<d$ is varying fully
(2) no constraints on parameters in the future from the past, i.e. parameters of $f_{i \mid \text { par }_{i}}$ variation independent of parameters in $f_{\text {pst }_{i}}$

Consequences of these mild assumptions on the generating process f_{V}

- satisfies the intersection property, the composition property
- is a family of densities of a complete family of distributions
- in $G_{\text {par }}^{V}$ every edge-inducing path is association-inducing
- a graph in node set $N=V \backslash C \cup M$ obtained by conditioning on $C=\{\varnothing\}$ and marginalizing over $M=\{\notin\}$,
$G_{\text {sum }}^{N}$, summarizes independences and distortions in generating dependences as implied by the generating process

A summary graph, $G_{\text {sum }}^{N}$, with $N=V \backslash M \cup C$ is generated from a parent graph (or a multivariate regression graph or a summary in node set \boldsymbol{V} by using a simple set of rules; see Wermuth (2010).

Example 1

A parent graph, a), that generates a multivariate regression chain graph, b)

b)

Example 2

A parent graph, a), generating a summary graph with mixed directed cycles, b)

a)

b)
mixed directed cycles: the 4,4-path with inner nodes 1,2,3 and the 6,6-path via inner node 5 and the double edge for $(6,7)$

Multivariate regression chain graphs are summary graphs without mixed directed cycles

Summary

some of the outstanding features of multivariate regression
chains that can have been generated over a larger parent graph

- pairwise independences define the Markov structure of the graph
- local modelling, flexibility regarding types of variable
- predicting changes in structure regarding independences and generating dependences with the summary graph.

Multivariate regression chains give a flexible tool for capturing development in observational studies and in controlled interventions

The general set-up

Primary responses

Intermediate variables

Background variables

Conditioning only on variables in the past, i.e. variables on equal standing and in the future excluded; with randomized interventions no direct dependences of hypothesized cause(s) on past variables

Direct goals

we want to use the results to improve

- meta-analyses
- the planning of follow-up studies

