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A Gaussian one-factor analysis model

for 4 items (i.e. observed variables) is a linear system generated over

1 2 3 4

h

– where 6 6◦, the common parent node h, is a hidden variable

– for variables with zero mean and unit variance, let the simple

correlation coefficients ρih, for i = 1, 2, 3, 4, be positive

– the graph implies ρik.h = 0 for each observed pair (i, k) so that

ρik = ρihρkh and for observed i 6= j 6= k 6= s

ρik/ρjk = ρis/ρjs, the tetrad conditions
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Early results on one-factor analysis models

– Bartlett (1951): if an observed covariance matrix Σ satisfies the

tetrad conditions, so does its inverse

– Anderson and Rubin (1956): the tetrad conditions arise with a

column vector l, containing ρih, for Yi observed, Yh the hidden,

Σ = llT + ∆, ∆ diagonal

rank one of llT implies a zero determinant for each 2 × 2 submatrix

recentlly : Drton, Sturmfels and Sullivan (2006), algebraic factor analysis
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disappointing: no new insights regardinjg improper representations

Example of a positive definite correlation matrix, closed form for l









1 .84 .60

. 1 .38

. . 1









l =









1.2

.7

.5









∆ =









−.44 .0 0

. .51 0

. . .75









improper because of the negative residual ‘variance’ in ∆
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A special family of distributions for p symmetric binary variables

As, s = 1, ..., p i.e. each has two equally probable levels ,

coded as 1 and −1

We write e.g.

πA1A2A3

111 = Pr(A1 = 1, A2 = 1, A3 = 1)

π
A1|A2A3

1|11 = πA1A2A3

111 /πA2A3

11

Covariance matrix is identical to the correlation matrix P

with H upper-triangular, ∆ diagonal: triangular decomposition

P
−1 = H

T
∆

−1
H
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The linear triangular system of exclusively main effects in four

variables is (Wermuth, Marchetti and Cox, 2009)

π
A1|A2A3A4

i|jkl = 1

2
(1 + η12ij + η13ik + η14il)

π
A2|A3A4

j|kl = 1

2
(1 + η23jk + η24jl)

π
A3|A4

k|l = 1

2
(1 + η34kl)

πA4

l
= 1

2

η’s are linear regression coefficients of the binary variables
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Example: 200 swiss bank notes of Riedwyl and Flury (1983)

Median-dichotomized values of A1: 145-length of the diagonal, A2:

average distance of inner frame to the lower and upper border, A3:

average height of the bank note, measured on the left and right;

A4: real and forged
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Mutual conditional independence of A1, A2, A3 given A4

1 2 3

4

The matrix H and the correlation matrix P = H−1∆H−T are

P =















1 ρ14ρ24 ρ14 ρ34 ρ14

. 1 ρ24ρ34 ρ24

. . 1 ρ34

. . . 1















H =















1 0 0 −ρ14

1 0 −ρ24

1 −ρ34

0 1















δss = 1 − ρ2
s4

for s = 1, 2, 3
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For the Swiss banknote data –

observed correlation matrix P̂ shows an almost perfect fit to 1 ⊥⊥ 2 ⊥⊥ 3|4

– marginalising over A4 introduces strong associations

P̂ =















1 0.92 0.51 0.98

. 1 0.49 0.95

. . 1 0.51

. . . 1















Ĥ =















1 0.01 −0.01 −0.98

1 −0.01 −0.93

1 −0.51

0 1















and π̂1111 = π̂−1−1−1−1 = .4

[What can be learned for this distribution by some algebraic factor analysis ?]
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The more general multivariate regression chains

Let {1, . . . , p} = (a, b, c, d)

f = fa|bcdfb|cdfc|dfd

gives a factorisation corresponding to the joint or single responses

within the chain components a, b, c, d

within each component : covariance graphs (dashed lines )

between components : regressions given the past (arrows )

[within the last component : a concentration graph (full lines )]

see Cox and/or Wermuth (1993, 2004, 2010), Drton (2009) Marchetti

and Luparelli (2010), Kang and Tian (2009)
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Childhood recollections of 283 healthy adult females

S, mother’s

love

T, constraints

by mother

U, role

reversal

R, family

distress

A, sexual

abuse

ba

P, age

B, schooling

c

Q, family

status

with: a ⊥⊥ c|b and S ⊥⊥U |A,R and Q ⊥⊥ P |B

for the graph graph components: directed acyclic in blocks,

concentration graph within last block, covariance graphs within others
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Special case: a fully recursive generating process with the

independence structure captured by a directed ayclic graph means:

for the ordered node set V = (1, 2, . . . , d) and variable Yi

corresponding to node i, to generate the joint density

start with fd

generate fd−1|d

generate fd−2|d−1,d

...

generate f1|2,...,d

with univariate conditional densities of almost arbitrary form
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We want to predict changes in structure when some variables are

ignored and/or subpopulations are studied

which independences are preserved? when are dependences

introduced? for which generating dependences are distorti ons

introduced?

Most important needed property of the generated fV :

an edge-inducing path is also association-inducing
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path : sequence of edges coupling distinct nodes; collider c: ◦ ≻c≺ ◦

inner nodes of a path : nodes of a path except for the endpoints

descendant i of k: a path of arrows starting from k, leading to i

M = { 6 6◦}: marginalising set; C = {2◦ }: conditioning set

Adapted from Pearl (1988): Let {a, b,M,C} partition node set V .

A path from a to b in GV
par

is edge-inducing , iff every inner collider

is in C or has a descendant in C and every other inner node is in M

14



Distributions with edge-inducing paths that are not association inducing

In the following 2 × 2 × 3 table (Birch, 1963): U ⊥⊥ V | W and U ⊥⊥ V

28πuvw

w = 1 w = 2 w = 3

v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

u = 1 4 2 2 1 1 4

u = 2 2 1 4 2 1 4

c. odds-r. 1 1 1

with
∑

w πu+w π+vw/π++w = πu++p+v+ = 1/4
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A family for 2 × 2 × 4 tables with U ⊥⊥ V | W and U ⊥⊥ V with

edge-inducing paths that are not association inducing (Studený 2002)

i.e.

U≺ 6 6◦≺ V

with U dependent on W = 6 6◦ and W dependent on V

does not lead to

U≺ V with U dependent on V
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4πuvw, 0 < ǫ < 1/2, 0 < δ < 1/2

w = 1 w = 2

u v = 1 v = 2 v = 1 v = 2

1 (1 − ǫ)(1 − δ) ǫ(1 − δ) δ(1 − ǫ) (1 − ǫ)(1 − δ)

2 δ(1 − ǫ) δǫ δǫ ǫ(1 − δ)

cor 1 1

w = 3 w = 4

u v = 1 v = 2 v = 1 v = 2

1 ǫ(1 − δ) δǫ δǫ δ(1 − ǫ)

2 (1 − ǫ)(1 − δ) δ(1 − ǫ) ǫ(1 − δ) (1 − ǫ)(1 − δ)

cor 1 1
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Both, conditional and marginal independence for connected and

edge-minimal graphs only in incomplete families of distributions:

A family of distributions is complete if a function is implied to be zero

whenever it has zero expectation for all members of the family

in a complete family with density f(y)
∫

g(y)f(y) dy = 0 =⇒ g(y) = 0 a.s.

Lehmann and Scheffé (1955), Mandelbaum and Rüschendorf (1987)

[What has algebraic statistics to say about complete families?]
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Other needed properties of the generated fV for deriving

consequences for dependences in marginal/conditional distributions

For a, b, c, d disjoint subsets of V , the family of distributions of YV

is to satisfy

(1) the intersection property :

a ⊥⊥ b|cd and a ⊥⊥ c|bd imply a ⊥⊥ bc|d

(2) the composition property :

a ⊥⊥ b|d and a ⊥⊥ c|d imply a ⊥⊥ bc|d

see Dawid (1979) , Pearl (1988), Studený (2005) for general discussions
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Necessary and sufficient conditions for Gaussian and discrete

distributions to satisfy the intersection property: San Martin, Mouchart

and Rolin (2005)

they give an example of a family for a 2 × 3 × 3 table without the

intersection property and with the marginal 3 × 3 table

j = 1 j = 2 j = 3

i = 1 q1 q2 0

i = 2 0 0 q3

i = 3 0 0 q4

containing information common to the two variables i.e. event

{A2 = 1} is the same as event {A3 6= 3}
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instead in the following 5 × 4 table of probabilities

j = 1 j = 2 j = 3 j = 4

i = 1 q11 0 0 q14

i = 2 0 q22 q23 0

i = 3 q31 0 0 q34

i = 4 0 q42 0 q44

i = 5 q51 0 q53 0

A2 contains no information about A3 since qijqi′j > 0 for all j

an extension to conditional probabilities qij|k

implies that the usual assumption of positive distribution s is too strong
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In a multivariate regression chain without a concentration graph

– the Markov structure is defined by a set of pairwise

independence statements associated with the missing edges; Kang

and Tian (2009)

– for discrete variables a special sequence of multivariate logistic

regression parameters gives the composition and the

intersection property ; Marchetti and Luparrelli (2010)

– for discrete variables, each model defines a curved exponential

family ; Drton (2009)

[what can be learned from algebraic statistics, say for binary variables

about the intersection and the composition property?]

22



How should the generating process look like to assure the

desired properties of fV ?

– use a directed acyclic graph with special properties, called a parent graph

– constrain the types of univariate conditional distributions
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The parent graph GV
par

is

a directed acyclic graph in node set V = (1, 2, . . . , d) that is

– connected

– has one compatible full ordering of V attached

– is edge-minimal for fV

for i≺ k: k is a parent of offspring i; pari: the set of parents of i

edge-minimality of GV
par

fi|pari 6= fi|pari\l for each l ∈ pari

(defines a research hypothesis; see Wermuth and Lauritzen, 1989)
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Constraints on the generating process for the families of density, fV

we denote the past of i by psti = {i + 1, . . . , d}

(1) proper random responses Yi depend just on Ypar

fi|psti = fi|pari for each i < d is varying fully

(2) no constraints on parameters in the future from the past, i.e.

parameters of fi|parivariation independent of parameters in fpsti
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Consequences of these mild assumptions on the generating process

fV

– satisfies the intersection property , the composition property

– is a family of densities of a complete family of distributions

– in GV
par

every edge-inducing path is association-inducing

– a graph in node set N = V \ C ∪ M obtained by conditioning

on C = {2◦ } and marginalizing over M = { 6 6◦},

GN
sum

, summarizes independences and distortions in generating

dependences as implied by the generating process
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A summary graph , GN
sum

, with N = V \ M ∪ C is generated

from a parent graph (or a multivariate regression graph or a summary

in node set V by using a simple set of rules; see Wermuth (2010).

Example 1

A parent graph, a), that generates a multivariate regression chain graph, b)

1 1

2 2

3 3

4 4

5 5

7 7

8 8

a) b)

6 6
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Example 2

A parent graph, a), generating a summary graph with mixed directed cycles, b)

11

22 33

44 5

7

8

6

5

7

8

b)a)

6

mixed directed cycles: the 4,4-path with inner nodes 1,2,3 and the

6,6-path via inner node 5 and the double edge for (6,7)

Multivariate regression chain graphs are summary graphs without

mixed directed cycles
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Summary

some of the outstanding features of multivariate regressio n

chains that can have been generated over a larger parent graph

– pairwise independences define the Markov structure of the graph

– local modelling, flexibility regarding types of variable

– predicting changes in structure regarding independences and

generating dependences with the summary graph.
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Multivariate regression chains give a flexible tool for capturing

development in observational studies and in controlled interventions

The general set-up

Primary
responses

B1

B2
*
*
*

R1

R2
*
*
*

I1

I2
*
*
*

J1

J2
*
*
*

K1

K2
*
*
*

Intermediate variables
Background
variables

* * *

Conditioning only on variables in the past , i.e. variables on equal

standing and in the future excluded; with randomized interventions

no direct dependences of hypothesized cause(s) on past vari ables
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Direct goals

we want to use the results to improve

– meta-analyses

– the planning of follow-up studies
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