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A Gaussian one-factor analysis model

for 4 items (i.e. observed variables) is a linear system generated over

1 2\ 3 4
Y
— where ﬁ the common parent node h, is a hidden variable

— for variables with zero mean and unit variance, let the simple

correlation coefficients p;p, fort = 1, 2, 3, 4, be positive

— the graph implies p;x.n, = 0 for each observed pair (%, k) so that
Pik. = PinPrn and forobserved 1 #~ 7 £ k # s

Pik/Pik = Pis/Pjs, the tetrad conditions



Early results on one-factor analysis models

— Bartlett (1951): if an observed covariance matrix 22 satisfies the

tetrad conditions, so does Its inverse

— Anderson and Rubin (1956): the tetrad conditions arise with a

column vector [, containing p;p, for Y; observed, Y}, the hidden,
> =U"+ A, A diagonal

rank one of I implies a zero determinant for each 2 X 2 submatrix

recentlly : Drton, Sturmfels and Sullivan (2006), algebraic factor analysis



disappointing: no new insights regardinjg improper representations

Example of a positive definite correlation matrix, closed form for [
(1 .84 .60) (1.2) (—44 0 0 )
. 1 .38 [ = A= . 01l O
\. . 1) \ .5 / \ . . .75

improper because of the negative residual ‘variance’ in A



A special family of distributions  for p symmetric binary variables
Ag;, s = 1,...,pie. each has two equally probable levels

codedas 1 and —1

We write e.g.

7714111A2A3 = PI'(Al = ]_, A2 — ]_, A3 = ].)

Al |A2A3 _ A1A2A3 A2A3
)11 — T111 UEE!

Covariance matrix is identical to the correlation matrix P

with H upper-triangular, A diagonal: triangular decomposition
P! =HTA-H



The linear triangular system  of exclusively main effects in four
variables is (Wermuth, Marchetti and Cox, 2009)

71';?3-1,52143144 = %(1 + M12%3 + Mistk + 1y142l)
WﬁiiAz&A‘l = (14 1233k + 12431)
7"13?|A4 = 3(1 + n34kl)
71';44 — %

1)’s are linear regression coefficients of the binary variables



Example: 200 swiss bank notes of Riedwyl and Flury (1983)

Median-dichotomized values of Aq: 145-length of the diagonal, As:
average distance of inner frame to the lower and upper border, Ag:

average height of the bank note, measured on the left and right;

A, real and forged




Mutual conditional independence of
~L
4

The matrix H and the correlation matrix P = H1AH T are

.

/ 1 p14p24 P14 P34 P14\

1 P24P34 P24
1 P34

1

0ss =1 — p2, fors =1,2,3

Ala Az, A3 given A4




For the Swiss banknote data -
observed correlation matrix P shows an almost perfect fit to 1 121 3|4

— marginalising over A, introduces strong associations

(1 0.92 0.51 0.98 ) (1 0.01 —0.01 —0.98 )
. 1 0.49 0.95 | .. 1 —0.01 —0.93
P = A =

. . 1 051 1 —0.51

. . . 1 \0 1

and 7T1111 = T—1—-1—-1—-1 = .4

[What can be learned for this distribution by some algebraic factor analysis ?]




The more general multivariate regression chains

Let{1,...,p} = (a, b, c,d)
f — fa|bcdfb|cd.fc|d.fd

gives a factorisation corresponding to the joint or single responses

within the chain components a, b, c, d

within each component : covariance graphs (dashed lines )
between components : regressions given the past (arrows )
[within the last component : a concentration graph (full lines )]

see Cox and/or Wermuth (1993, 2004, 2010), Drton (2009) Marchetti
and Luparelli (2010), Kang and Tian (2009)
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Childhood recollections

of 283 healthy adult females

a b C
S, mother’s
love = A, sexual B, schooling
: 4 abluse \
|
| N |
T, constraints < — R, family < Q, family
by:mithy distress status
|
U, role P, age
reversal

with: a L c¢lband SILU|A, Rand Q 1L P|B

for the graph graph components: directed acyclic in blocks,

concentration graph  within last block, covariance graphs within others
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Special case: a fully recursive generating process with the

Independence structure captured by a directed ayclic graph means:

for the ordered node set V' = (1,2, ..., d) and variable Y;

corresponding to node 1, to generate the joint density

start with fq4

generate fgq_1|4

generate fq_2jd—1,d

generate fq|2,....d

with univariate conditional densities of almost arbitrary form
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We want to predict changes in structure when some variables are

ignored and/or subpopulations are studied

which independences are preserved? when are dependences

introduced? for which generating dependences are distorti ons

introduced?

Most important needed property  of the generated fy :

an edge-inducing path is also association-inducing
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path : sequence of edges coupling distinct nodes; colliderc: O—-c—<—0
Inner nodes of a path : nodes of a path except for the endpoints

descendant 2 of k: a path of arrows starting from k, leading to 2

M = {ﬂ} marginalising set; C = { [Q] }: conditioning set

Adapted from Pearl (1988): Let {a, b, M, C'} partition node set V.
A path from a to bin Gpar IS edge-inducing , iff every inner collider

is in C or has a descendant in C' and every other inner node is in M
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Distributions with edge-inducing paths that are not association inducing

In the following 2 X 2 X 3 table (Birch, 1963): U LV | W andU 1LV

28T yvw
w=1 w = 2 w =3
v=1 v=2 v=1 v=2 v=1 v=2
u=1 4 2 2 1 1 4
u = 2 2 1 4 2 1 4
C. odds-r. 1 1 1

With >, Tutw Tow/ Tptw = TuttPtot = 1/4

15



A family for 2 X 2 X 4 tableswith U 1LV | W and U LV with

edge-inducing paths that are not association inducing (Studeny 2002)
le.

U< <V

with U dependenton W = ﬁand W dependenton V

does not lead to

U <—V with U dependenton V'
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ATpow, 0<e<1/2, 0<d<1/2

w =1 w = 2
u v=1 v =2 v=1 v =2
1 (1—¢€)(1—46) €(1—9) 0(l—e€e) (1—¢€)(1—9)
2 0(1 — €) J€ Je e(1 — d)
cor 1 1

w =3 w =4
u v=1 v =2 v=1 v =2
1 e(1 — 9) de de 0(1 — €)

2 (1—€)(1—-9) do(1—¢€) e(l—9) (1—¢€¢)(1—-9)

cor 1 1
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Both, conditional and marginal independence for connected and

edge-minimal graphs only in incomplete families of distributions:

A family of distributions is complete if a function is implied to be zero

whenever it has zero expectation for all members of the family

In a complete family with density f(y)

[s@)iw) dy=0 = gw)=0as

Lehmann and Scheffé (1955), Mandelbaum and Rischendorf (1987)

[What has algebraic statistics to say about complete families?]
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Other needed properties of the generated fy, for deriving

conseqguences for dependences in marginal/conditional distributions

For a, b, c, d disjoint subsets of V', the family of distributions of Yy,

IS to satisfy

(1) the intersection property

a1l b|cd and a 1L c|bd imply a L bc|d

(2) the composition property

all bldand al c|dimply a 1 bc|d

see Dawid (1979) , Pearl (1988), Studeny (2005) for general discussions
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Necessary and sufficient conditions

for Gaussian and discrete

distributions to satisfy the intersection property: San Martin, Mouchart

and Rolin (2005)

they give an example of a family fora 2 X 3 X 3 table without the

intersection property and with the marginal 3 X 3 table

j=1 j=2 j=3

1 =1 q1 q2 0
1= 2 0 0 qgs
1 =3 0 0 qa

containing information common to the two variables i.e. event

{Ay = 1} isthe same as event { A3 # 3}
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instead in the following 5 X 4 table of probabilities

i=1 j=2 j=3 j=4

1 =1 qgi1i 0 0 di14
1= 2 0 q22 q23 0
1 =3 gsi 0 0 q34
1 =4 0 ga2 0 qa4
1=25 gs1 0 qs53 0

A5 contains no information about Ag since q:jqir; > 0 forall ]
an extension to conditional probabilities q;;x

iImplies that the usual assumption of positive distribution S is too strong
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In a multivariate regression chain without a concentration graph

— the Markov structure is defined by a set of pairwise
Independence statements associated with the missing edges; Kang
and Tian (2009)

— for discrete variables a special sequence of multivariate logistic
regression parameters gives the composition and the

Intersection property ; Marchetti and Luparrelli (2010)

— for discrete variables, each model defines a curved exponential
family ; Drton (2009)

[what can be learned from algebraic statistics, say for binary variables

about the intersection and the composition property?]

22



How should the generating process look like to assure the

desired properties of  fy/?

— use a directed acyclic graph with special properties, called a parent graph

— constrain the types of univariate conditional distributions
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The parent graph GY__is

par

a directed acyclic graph innode set V' = (1,2,...,d) thatis
— connected
— has one compatible full ordering of V" attached

— is edge-minimal for fy

for t <—k: k is a parent of offspring 2; par,: the set of parents of 2

edge-minimality of G,

par

(defines a research hypothesis; see Wermuth and Lauritzen, 1989)
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Constraints on the generating process  for the families of density, fy,
we denote the pastof ¢ by pst, = {¢ +1,...,d}

(1) proper random responses Y; depend just on Y,y

Jipst, = Jfi|par, for each 7 < dis varying fully

(2) no constraints on parameters in the future from the past, i.e.

parameters of fi|parivariation independent of parameters in fpsti
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Consequences of these mild assumptions  on the generating process

fv

— satisfies the intersection property , the composition property
— Is a family of densities of a complete family of distributions

—in G’par every edge-inducing path is association-inducing

—agraphinnode set N = V' \ C U M obtained by conditioning
on C' = { [A } and marginalizing over M = {ﬁ}

GN

sum'’

dependences as implied by the generating process

summarizes independences and distortions in generating
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A summary graph , G with N = V' \ M U C is generated

sum'’

from a parent graph (or a multivariate regression graph or a summary

in node set V' by using a simple set of rules; see Wermuth (2010).

Example 1

A parent graph, a), that generates a multivariate regression chain graph, b)

1@,}% 3 O 8 3 S 8
< O -O%

Yo

\ZZ/ a)

O O
. 7l

or 0=

4 l
- -Oe——O
b)
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Example 2
A parent graph a), generating a summary graph with mixed directed cycles, b)

1 K

g e—o® P
2T is %Z/TES/W\i? 2§ és 6 V7

<«

mixed directed cycles: the 4,4-path with inner nodes 1,2,3 and the

6,6-path via inner node 5 and the double edge for (6,7)

Multivariate regression chain graphs  are summary graphs without

mixed directed cycles
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Summary

some of the outstanding features of multivariate regressio n

chains that can have been generated over a larger parent graph
— pairwise independences define the Markov structure of the graph
— local modelling, flexibility regarding types of variable

— predicting changes in structure regarding independences and

generating dependences with the summary graph.
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Multivariate regression chains  give a flexible tool for capturing

development in observational studies and in controlled interventions

The general set-up

R+ 4 J1 K1 B1

R2 |2 J2 K2 * % * BZ
Primary Background
responses Intermediate variables variables

Conditioning only on variables in the past , i.e. variables on equal
standing and in the future excluded; with randomized interventions

no direct dependences of hypothesized cause(s) on past vari ables
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Direct goals

we want to use the results to improve

— meta-analyses

— the planning of follow-up studies
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