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Algebraic Statistical models

The aim is to describe how algebraic methods can help in defining
and analysing statistical models.

1 x : a control (input) variable

2 θ a basic parameter

3 η a parameter which may (often) be considered as depending on x

(eg a mean)

Definition

An algebraic statistical model is a statement that (η, x , θ) lie on an affine

algebraic variety:

h(η, x , θ) = 0,

together with a statement that the joint distribution of outputs Y1, . . .Yn

depends on

θ, (xi , ηi ), i = 1, . . . , n
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Explicit models

Regression: if η is a mean:

η = f (x , θ)

Then, if g is polynomial we can write

h = η − f (x , θ) = 0

Variance components: may need a double index γij = cov(Yi , Yj)).
But we can have a variety for the covariances, eg (Γ−1)ij = 0 in
conditional independence models.
Loglinear models:

pi = exp(xT θ) = exp{
∑

xiθi}

It appears as if exp kills the algebraic forms but we can write

ti = exp(θi )

giving the power product representation

pi =
∏

t
xi

i
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Implicit models: the use of elimination

Eliminate θ (typically) to get an implicit relationship between xi and
ηi .

Regression. η = Xθ
⇔ KTη = 0

where K = {kij} spans the kernel of X : XTK = 0 eg

ηi = θ0 + θ1xi , x = 0, 1, 2

η1 − 2θ2 + η3 = 0

Toric ideals. [log p] = Xθ

⇔ KT [log p] = 0 ⇔
∑

i

kij log pi = 0,⇔
∏

i

p
kij

i = 1

⇔
∏

i

p
k+
ij

i −
∏

i

p
k−

ij

i = 0, j = 1, . . . , n − p
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Ideals of points and design of experiments

1 A design is a finite set of distinct points, D, in Rd (Qd) and can be
expressed as the solution of a set of equations and can be thought of
as a zero dimensional variety. The set of all polynomials with zeros on
a D is the ideal, I (D).

2 There is a Gröbner basis {gj(x)} for I (D) for a given monomial
ordering: I (D) =< g1(x), . . . , gm(x) >.

3 The quotient ring
K [x1, . . . , xk ]/I (D)

of the ring of polynomials K [x1, . . . , xk ] in x1, . . . , xk forms is a vector
space spanned by a special set of monomials: xα, α ∈ L. These are all
the monomials not divisible by the leading terms of the G-basis and
|L| = |D|.
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6 The set of multi-indices L has the “order ideal” property: α ∈ L

implies β ∈ L for any 0 ≤ β ≤ α. For example, if x2
1x2 in the model

so is 1, x1, x2, x1x2.

7 Any function y(x) on D has a unique polynomial interpolator given by

f (x) =
∑

α∈L

θαxα

such that y(x) = f (x), x ∈ D.

8 The X -matrix is n × n, has rank n and has rows indexed by the design
points and columns indexed by the basis:

X = {xα}x∈D,α∈L

Message: we can always construct a polynomial interpolator
(saturated regression model) over a finite set of design points
.
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One slide on multi-dimensional quadrature

Take a measure ξ, a monomial term ordering: ≺: and a design D and
construct L. For any p(x):

p(x) =
∑

i

si(x)gi(x) +
∑

α∈L

θαxα

We can rewrite r(x) in terms of indicator functions:

r(x) =
∑

z∈D

p(z)Lz(x), where Lz(x) = δx ,z , x , z ∈ D

If Eξ(
∑

si (x)gi (x)) = 0, we have quadrature:

Eξ(p(x)) = Eξ(r(x)) =
∑

z∈D

p(z)E(Lz(x)) =
∑

z∈D

wzp(z)

Choose D : {x : hα(x) = 0, α ∈ M}, where the hα(x) are orthogonal
polynomials wrt ξ in ≺ order?
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Discrete probability models

Assume that we have a discrete probability distribution with support at the
design points:

p(x) > 0, x ∈ D

The we can interpolate

log p(x) =
∑

α∈L

θαxα,

giving a saturated models in the exponential family:

p(x) = exp

(

∑

α∈L

θαxα

)

p0(x)

More generally:

p(x) = exp





∑

α∈L0

θαxα − φ(θ)



 ,

where L0 is L \ {0} and θ excludes θ{0}
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Five parametrizations

At the heart of the algebraic statistics of discrete distributions is the
interplay between five important parameterizations

θα

p(x)

tα = exp (θα)

Moments µα = E (Xα)

Cumulants κα.

In the saturated case we can write α ∈ L. But note importantly: L in
general depends on the monomial order we use.
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Relations

The relations between p, t, µ, κ are all algebraic

p to µ is linear: µ = XTp

µ to κ are the “exp-log” formula.

Start with the “square free” moments: α : αi = 0, 1

µα =
∑

σ∈L

∏

τ∈σ

κτ

σ = [β1|β2| . . .]

“Dummy” to get higher order moments, eg:

µ2,0 = E(X1X
′
1X2), X ′

1 ≡ X1
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Moment and cumulant aliasing

µβ, κβ, β /∈ L can be expressed in terms of µα, κα, α ∈ L

xβ = NF
(

xβ
)

=
∑

α∈L

cα,β xα, x ∈ D

Taking expectations:

µβ = E
(

xβ
)

=
∑

α∈L

cα,β µα

For cumulants:
κβ → µβ → µα → κα
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Submodels 1: sufficient statistics and MLE

Take a subset L′ of monomials: f (x) =
∑

α∈L′⊂L θαxα

For the probability models we get exponential families:

p(x) = exp

(

∑

α∈L′⊂L

θαxα

)

p(x) = exp





∑

α∈L′

0⊂L0

θαxα − φ(θ)





Then, under the usual iid assumptions the sufficient statistics are:

Tα =
∑

sample

xα, α ∈ L′

and the likelihood equations are

XTmα = XTµα, α ∈ L′
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Submodels 2: Kernels and toric ideals

The interplay between the kernel K , toric ideals, Markov bases for
submodels has been well developed

Graphical models are well represented by particular choices of the sub
model: eg conditional independence

p(x) = exp(θ000 + θ100x1 + θ010x2 + θ001x3 + θ101x1x3 + θ011x2x3)

Decomposable graphical models ⇔ square free quadratic toric ideals
⇔ closed form MLEs.

Sufficient statistics are (generalised) margins. MCMC methods
simulate from tables with given margins to give exact conditional
tests.

Kernel ideals plus “saturation” gives G-bases and Markov bases

Live research to taylor Markov bases to the problem at hand

Alternatives to MCMC: linear/integer programming, importance
sampling, lattice point enumeration (latte)
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Boundary models

How to obtain boundary models in which certain are p(x) = 0 limits
of the p(x) > 0?

p(x) = exp(
∑

α∈L′

θαxα) = exp(
∑

z∈D

φzLz(x)),

where φz = log pz and −∞ < φz ≤ 1.

Problem 1: it may be that φ does not cover all extremal rays of the
recession cone (see LP).

Solution 1: extend X to [X : X̃ ] to include all extremal rays.

Solution 2: Find where solutions to KTφ = 0 cut the coordinate
hyperplanes.

Problem 2: We also want to have integer solutions in order to be able
to extend the tα = exp θα, power product parametrization.

Solution A: Hilbert basis

Solution B (better): Only the integer generators of the extremal rays
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Example: 2 × 2 table on [0, 1]2

Binary independence model
:

p(x) = exp(θ00 + θ10x1 + θ20x2), X =









1 0 0
1 1 0
1 0 1
1 1 1









Extremal rays:
p01 p11

p00 p10
=

1 0

1 0

0 1

0 1

0 0

1 1

1 1

0 0

[X : X̃ ] =









1 0 0 1 1
1 1 0 0 1
1 0 1 1 0
1 1 1 0 0









,

p00 = t0 t0t3t4
p10 = t0t1 → t0t1t4
p01 = t0t2 t0t2t3
p11 = tt1t2 t0t1t2

Classical indicator notation not so bad!: log pij = µ + αi + βj
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Curved exponential families

How far can the algebraic methods be used in information geometry
and asymptotics?

MLE, U-statistics, Fisher information,

First, second, ... order efficiency

Test statistics,...

Diff geometry entities, curvature, connections etc
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A beginning: second order efficiency

p(x , θ) = p(θTx − φ(θ))p0(x)

dim θ = n. Want to have a submodel parametrized by u (dim u = p < n:
θ(u). Consider x to be the sufficient statistic. Start with a 1-1 function
into (u, v) space :

θ = F (u, v)

.

Model: θ(u) = F (u, 0)

Estimation: take the MLE of θ under the full model: θ̂

Invert: find (û, v̂) so that

θ̂ = F (û, v̂)

Consider the class θ̃ = F (û, 0)

In Amari there are conditions for first and second order efficiency. Try
to “resolve” these conditions algebraically.
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Using η can be easier

η = E(x) = ▽φ(θ)

Construction via η. Note we have η(u), for the model.

ηi (u, v) = ηi (u) +
∑

j

fj(u, v)vj ,

Finding u. Start with explicit algebraic curved exponential family or
implicit variety for θ and eliminate.

Find fj(u, v)

First and second order efficiency conditions induce conditions on the
fj(u, v).

Theorem:
η(u, v) = η(u) +

∑

j

Qj(u, v)zj ,

Where {zj} is a basis for the kernel of η(u) wrt Fisher metric.
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Conclusions

More on basics: relationship between the parametrizations

Beyond graphical models: eg marginal models, the whole lattice.

Fast algorithms for MCMC and alternatives

Model building

Link to differential geometry

More algebra: monomial ideals, lattices, toric, ....

Computational geometry/topology: eg persistent homology.
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