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Posets, Möbius functions and tree-cumulants



Motivating example Combinatorics of tree cumulants Bayesian tree models

Outline of the talk

Part I: A motivating example: a simple naive Bayes model.

Part II: Posets, cumulant and trees: definitions.

Part III: Bayesian tree models: main results.

With links to some other talks
∗
:

Henry Wynn: there may be more than five interesting coordinate
systems for discrete models (a model based approach needed?).

Elena Stanghellini: for models on trees the algebraic statistics gives
some insight into the identifiability.

∗
Everything is linked to everything.
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Posets, Möbius functions and tree-cumulants



Motivating example Combinatorics of tree cumulants Bayesian tree models

The tripod tree model
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X1,X2,X3,H ∈ {0, 1} with H hidden.

parametric formulation ofMT :

∀α∈{0,1}3 pα =
∑1

h=0 pH(h)pX1|H(α1|h)pX2|H(α2|h)pX3|H(α3|h).

7 free parameters: pH(1) and pXi|H(1|h) for i = 1, 2, 3, h = 0, 1.

The parameter space Θ = [0, 1]7.

The model space

∆7 = {p ∈ R8 : pα ≥ 0,
∑

α∈{0,1}3

pα = 1}.
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Motivating example Combinatorics of tree cumulants Bayesian tree models

Change of coordinates/parameters

“square-free” non-central moments: λI = E(
∏

i∈I Xi) for
I ⊆ {1, 2, 3}, e.g. λ123 = EX1X2X3.

“square-free” central moments: λi = EXi and denoting
Ui = Xi − λi

µij = EUiUj, µ123 = EU1U2U3.

[pα : α ∈ {0, 1}3] 1−1←→ [µI : |I| ≥ 2] + [means].

define ηi = pXi|H(1|1)− pXi|H(1|0) and δ = 1− 2pH(1) then

(pH(1), pXi|H(1, h)) 1−1←→ (δ, ηi, λi)

note that: ηi = Cov(Xi,H)/Var(H) =⇒ E(Ui|H) = ηi(H − EH).
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The new parametrization

MT :

µ12=
1
4(1−δ2)η1η2,

µ13=
1
4(1−δ2)η1η3,

µ23=
1
4(1−δ2)η2η3,

µ123=
1
4(1−δ2)δη1η2η3

general formula
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Application: Identifiability

Case 1: If p ∈MT such that ∀i,j µij 6= 0 then there are exactly
two points in Θ mapping to p. For each i = 1, 2, 3

η2
i =

µ2
123 + 4µ12µ13µ23

µ2
jk

, δ2 =
µ2

123

µ2
123 + 4µ12µ13µ23

Case 2: If µ12 = µ13 = 0 but µ23 6= 0 then η1 = 0 and
µ23 = 1

4 (1− δ2)η2η3.

Case 3: If µij = 0 ∀i,j then the preimage is a collection of
intersecting manifolds
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Application: Identifiability (cont’ed)

b

b

b

b

b

µ12 = µ13 = 0

µ12 = µ23 = 0

µ13 = µ23 = 0

δ2 = 1
η1 = 0η2 = 0

η3 = 0

ΩT

MT
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Other applications

Θ = [0, 1]7, parametrization is a polynomial map =⇒MT is a
semi-algebraic set

the full description given by (Settimi,Smith 1998): e.g.

µ12µ13µ23 =
1
64

(1− δ2)3η2
1η

2
2η

2
3 ≥ 0.

Asymptotic approximations for the marginal likelihood (Rusakov,
Geiger 2005). Assume p̂ ∈MT :

ˆ̀n − 7
2 log n + O(1) if µij 6= 0 ∀i,j,

ˆ̀n − 5
2 log n + O(1) if ∃!i,j µij 6= 0,

ˆ̀n − 4
2 log n + O(1) if µij = 0 ∀i,j.
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Does it generalize?
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Phylogenetic tree models

T = (V,E) with n leaves.

The model given as a map p : Θ→ ∆2n−1 as

MT : px(θ) =
∑
H

∏
v∈V

θ
(v)
yv|ypa(v)

for x ∈ {0, 1}n,

where θ(v)
i|j := p(Yv = i|Ypa(v) = j). example

2|E|+ 1 free parameters θ(r)
1 and ∀(u,v)∈E θ

(v)
1|0 and θ(v)

1|1

the parameter space Θ = [0, 1]2|E|+1
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Partially ordered sets

Partially ordered set (poset) Π is (Π,≥) such that

For all x ∈ Π, x ≤ x (reflexivity)

If x ≤ y and y ≤ x, then x = y (antisymmetry)

If x ≤ y and y ≤ z, then x ≤ z (trasitivity)

All subsets of [n] := {1, . . . , n}: x ≤ y iff x ⊆ y.

All partitions of [n]: x ≤ y iff y is a subpartition of x. For n = 4

x = 13|24, y = 1|3|24 then x ≤ y
0̂ = 1234, 1̂ = 1|2|3|4
|x| = 2, |y| = 3, |0̂| = 1, |1̂| = 4
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The Möbius inversion formula

The Möbius function m : Π×Π→ R such that:

m(x, x) = 1 for all x ∈ Π.

m(x, y) = −∑
x≤z<y m(x, z) for all x < y.

m(x, y) = 0 for all x > y.

Let f , g : Π→ R. Then

g(x) =
∑

y≤x f (y) for all x ∈ Π if and only if

f (x) =
∑

y≤x g(y)m(y, x)
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Poset of tree partitions
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Posets, Möbius functions and tree-cumulants



Motivating example Combinatorics of tree cumulants Bayesian tree models

Tree cumulants

T tree with n leaves, I a subset of leaves

ΠT(I) the poset of all the partitions of I induced by removing
inner nodes together with the Möbius function mT

I

κI =
∑

π∈ΠT(I)

mT
I (0̂I, π)

∏
B∈π

µB

The Möbius inversion gives the inverse map.

Cumulants have a similar definition:
mI(0̂I , π) = (−1)|π|−1(|π| − 1)!

If |I| ≤ 3 then κI = µI
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Binary data

X = (X1, . . . ,Xn) ∈ {0, 1}n with distribution P = [px]x∈{0,1}n

non-central moments: λI for I ⊆ [n]

central moments (+ means): µI such that |I| ≥ 2

tree cumulants (+ means): κI such that |I| ≥ 2
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bc
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1 2

Example: The quartet tree

κI = µI for all |I| ≤ 3

κ1234 = m(0̂, 0̂)µ1234 + m(0̂, (12)(34))µ12µ34
= µ1234 − µ12µ34
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Reparameterization

let δv = 1− 2E(Yv) and ηuv = θ
(v)
1|1 − θ

(v)
1|0 for all (u, v) ∈ E

θ = (θ(r)
1 , θ

(v)
1|0, θ

(v)
1|1) 1−1←→ ω = (δv, ηuv)

note that ηuv = Cov(Yu,Yv)/Var(Yu) and
E(Yv − EYv|Yu) = ηuv(Yu − EYu)

T(I) - a subtree of T spanned on I; r(I), E(I), N(I)

κI =
1
4

(1− δ2
r(I))

∏
v∈N(I)

δdeg(v)−2
v

∏
e∈E(I)

ηe

recall: tripod
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Application: Identifiability

Case 1: If µij 6= 0 ∀i,j then the model is identifiable up to
switching labels and we easily provide the explicit formulae.

Case 2: The preimage of p is infinite but regular.

Case 3: The preimage is a collection of intersecting manifolds.

The parameters identified from triples.

The geometry of fibers determined by zeros in the covariance
matrix.
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Other applications

We can list all the equations and inequalities defining the model.

The new parameterization links to tree metrics.

Let p̂ be sample proportions and assume p̂ ∈MT . Then if µ̂ij 6= 0
as N →∞

log Z(N) = ˆ̀N −
|V|+ |E|

2
log N + O(1).

The formula can be also obtained for the remaining points.
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Final Comments

Quick summary

The product like parameterization of the naive Bayes model
gives a great insight into the model.

We can obtain a similar parameterization for general tree
models.

Generalizations

Does this generalize: for general decomposable graphs, for
non-binary data?

Any other applications?
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Thank you!
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Example: a phylogenetic tree model

Quartet tree
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px(θ) =
∑1

h1,h2=0 θ
(5)
h1
θ
(6)
h2|h1

θ
(1)
x1|h1

θ
(2)
x2|h1

θ
(3)
x3|h2

θ
(4)
x4|h2

11 free parameters

Go back
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