Posets, Möbius functions and tree-cumulants

Piotr Zwiernik (Diane Maclagan, Jim Q. Smith)

Warwick University

wogas2, 7th April 2010

Outline of the talk

• Part I: A motivating example: a simple naive Bayes model.

- Part II: Posets, cumulant and trees: definitions.
- Part III: Bayesian tree models: main results.

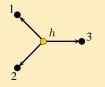
With links to some other talks^{*}:

- Henry Wynn: there may be more than five interesting coordinate systems for discrete models (a model based approach needed?).
- Elena Stanghellini: for models on trees the algebraic statistics gives some insight into the identifiability.

Everything is linked to everything.

The tripod tree model

•
$$X_1, X_2, X_3, H \in \{0, 1\}$$
 with *H* hidden.



• parametric formulation of \mathcal{M}_T :

$$\forall_{\alpha \in \{0,1\}^3} \quad p_{\alpha} = \sum_{h=0}^{1} p_H(h) p_{X_1|H}(\alpha_1|h) p_{X_2|H}(\alpha_2|h) p_{X_3|H}(\alpha_3|h).$$

- 7 free parameters: $p_H(1)$ and $p_{X_i|H}(1|h)$ for i = 1, 2, 3, h = 0, 1.
- The parameter space $\Theta = [0, 1]^7$.
- The model space

$$\Delta_7=\{p\in \mathbb{R}^8:\,p_lpha\geq 0,\sum_{lpha\in\{0,1\}^3}p_lpha=1\}.$$

Change of coordinates/parameters

- "square-free" non-central moments: $\lambda_I = \mathbb{E}(\prod_{i \in I} X_i)$ for $I \subseteq \{1, 2, 3\}$, e.g. $\lambda_{123} = \mathbb{E}X_1X_2X_3$.
- "square-free" central moments: λ_i = EX_i and denoting U_i = X_i - λ_i

$$\mu_{ij} = \mathbb{E}U_i U_j, \quad \mu_{123} = \mathbb{E}U_1 U_2 U_3.$$

•
$$[p_{\alpha}: \alpha \in \{0,1\}^3] \xleftarrow{l-1} [\mu_I: |I| \ge 2] + [\text{means}].$$

• define $\eta_i = p_{X_i|H}(1|1) - p_{X_i|H}(1|0)$ and $\delta = 1 - 2p_H(1)$ then

$$(p_H(1), p_{X_i|H}(1, h)) \stackrel{1-1}{\longleftrightarrow} (\delta, \eta_i, \lambda_i)$$

• note that: $\eta_i = \operatorname{Cov}(X_i, H) / \operatorname{Var}(H) \Longrightarrow \mathbb{E}(U_i | H) = \eta_i (H - \mathbb{E}H).$

The new parametrization

$$\mu_{12} = \frac{1}{4} (1 - \delta^2) \eta_1 \eta_2,$$

$$\mu_{13} = \frac{1}{4} (1 - \delta^2) \eta_1 \eta_3,$$

$$\mu_{23} = \frac{1}{4} (1 - \delta^2) \eta_2 \eta_3,$$

$$\mu_{123} = \frac{1}{4} (1 - \delta^2) \delta \eta_1 \eta_2 \eta_3$$

deneral formula

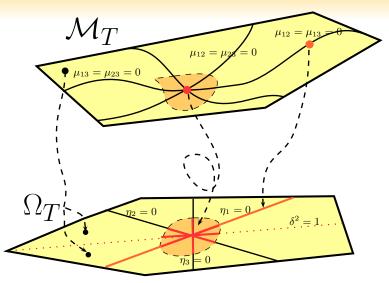
Application: Identifiability

 Case 1: If p ∈ M_T such that ∀_{i,j} µ_{ij} ≠ 0 then there are exactly two points in Θ mapping to p. For each i = 1, 2, 3

$$\eta_i^2 = \frac{\mu_{123}^2 + 4\mu_{12}\mu_{13}\mu_{23}}{\mu_{jk}^2}, \quad \delta^2 = \frac{\mu_{123}^2}{\mu_{123}^2 + 4\mu_{12}\mu_{13}\mu_{23}}$$

- Case 2: If $\mu_{12} = \mu_{13} = 0$ but $\mu_{23} \neq 0$ then $\eta_1 = 0$ and $\mu_{23} = \frac{1}{4}(1 \delta^2)\eta_2\eta_3$.
- Case 3: If µ_{ij} = 0 ∀_{i,j} then the preimage is a collection of intersecting manifolds

Application: Identifiability (cont'ed)



Other applications

• $\Theta = [0, 1]^7$, parametrization is a polynomial map $\Longrightarrow \mathcal{M}_T$ is a semi-algebraic set

• the full description given by (Settimi,Smith 1998): e.g.

$$\mu_{12}\mu_{13}\mu_{23} = \frac{1}{64}(1-\delta^2)^3\eta_1^2\eta_2^2\eta_3^2 \ge 0.$$

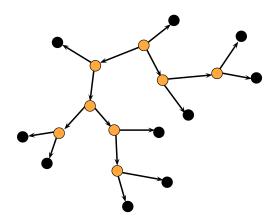
 Asymptotic approximations for the marginal likelihood (Rusakov, Geiger 2005). Assume p̂ ∈ M_T:

•
$$\hat{\ell}_n - \frac{7}{2}\log n + O(1)$$
 if $\mu_{ij} \neq 0 \ \forall_{i,j}$,

•
$$\hat{\ell}_n - \frac{5}{2}\log n + O(1)$$
 if $\exists !_{i,j} \mu_{ij} \neq 0$,

•
$$\hat{\ell}_n - \frac{4}{2} \log n + O(1)$$
 if $\mu_{ij} = 0 \ \forall_{i,j}$

Does it generalize?



Phylogenetic tree models

- T = (V, E) with *n* leaves.
- The model given as a map $p: \Theta \to \Delta_{2^n-1}$ as

$$\mathcal{M}_T: \qquad p_x(heta) = \sum_{\mathcal{H}} \prod_{v \in V} heta_{y_v \mid y_{\mathsf{pa}(v)}}^{(v)} ext{ for } x \in \{0,1\}^n,$$

where
$$\theta_{i|j}^{(v)} := p(Y_v = i | Y_{pa(v)} = j)$$
. \blacktriangleright example

• 2|E| + 1 free parameters $\theta_1^{(r)}$ and $\forall_{(u,v)\in E} \theta_{1|0}^{(v)}$ and $\theta_{1|1}^{(v)}$

• the parameter space $\Theta = [0, 1]^{2|E|+1}$

Partially ordered sets

Partially ordered set (poset) Π is (Π, \geq) such that

- For all $x \in \Pi$, $x \le x$ (reflexivity)
- If $x \le y$ and $y \le x$, then x = y (antisymmetry)
- If $x \le y$ and $y \le z$, then $x \le z$ (trasitivity)
- All subsets of $[n] := \{1, \ldots, n\}$: $x \le y$ iff $x \subseteq y$.
- All partitions of [n]: $x \le y$ iff y is a subpartition of x. For n = 4

•
$$x = 13|24, y = 1|3|24$$
 then $x \le y$

•
$$\hat{0} = 1234, \hat{1} = 1|2|3|4$$

•
$$|x| = 2$$
, $|y| = 3$, $|\hat{0}| = 1$, $|\hat{1}| = 4$

The Möbius inversion formula

The Möbius function $m: \Pi \times \Pi \rightarrow \mathbb{R}$ such that:

• m(x, x) = 1 for all $x \in \Pi$.

•
$$m(x, y) = -\sum_{x \le z < y} m(x, z)$$
 for all $x < y$.

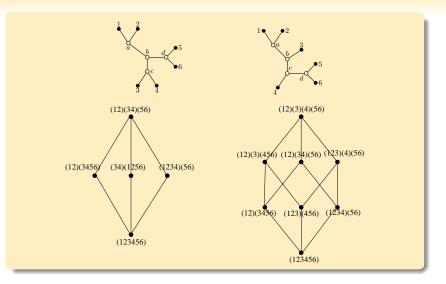
•
$$m(x, y) = 0$$
 for all $x > y$.

Let $f, g: \Pi \to \mathbb{R}$. Then

•
$$g(x) = \sum_{y \le x} f(y)$$
 for all $x \in \Pi$ if and only if

•
$$f(x) = \sum_{y \le x} g(y)m(y,x)$$

Poset of tree partitions



Tree cumulants

- *T* tree with *n* leaves, *I* a subset of leaves
- Π_T(I) the poset of all the partitions of I induced by removing inner nodes together with the Möbius function m^T_I

$$\kappa_I = \sum_{\pi \in \Pi_T(I)} m_I^T(\hat{\mathbf{0}}_I, \pi) \prod_{B \in \pi} \mu_B$$

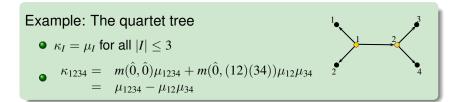
- The Möbius inversion gives the inverse map.
- Cumulants have a similar definition: $m_I(\hat{0}_I, \pi) = (-1)^{|\pi|-1}(|\pi|-1)!$

• If
$$|I| \leq 3$$
 then $\kappa_I = \mu_I$

Binary data

•
$$\mathbf{X} = (X_1, \dots, X_n) \in \{0, 1\}^n$$
 with distribution $P = [p_x]_{x \in \{0, 1\}^n}$

- non-central moments: λ_I for $I \subseteq [n]$
- central moments (+ means): μ_I such that $|I| \ge 2$
- tree cumulants (+ means): κ_I such that $|I| \ge 2$



Reparameterization

• let
$$\delta_v = 1 - 2\mathbb{E}(Y_v)$$
 and $\eta_{uv} = \theta_{1|1}^{(v)} - \theta_{1|0}^{(v)}$ for all $(u, v) \in E$

•
$$\theta = (\theta_1^{(r)}, \theta_{1|0}^{(v)}, \theta_{1|1}^{(v)}) \stackrel{1-1}{\longleftrightarrow} \omega = (\delta_v, \eta_{uv})$$

• note that
$$\eta_{uv} = \text{Cov}(Y_u, Y_v)/\text{Var}(Y_u)$$
 and $\mathbb{E}(Y_v - \mathbb{E}Y_v|Y_u) = \eta_{uv}(Y_u - \mathbb{E}Y_u)$

$$T(I)$$
 - a subtree of T spanned on I; $r(I)$, $E(I)$, $N(I)$

$$\kappa_I = \frac{1}{4} (1 - \delta_{r(I)}^2) \prod_{v \in N(I)} \delta_v^{\deg(v) - 2} \prod_{e \in E(I)} \eta_e$$

recall: tripod

Application: Identifiability

- Case 1: If µ_{ij} ≠ 0 ∀_{i,j} then the model is identifiable up to switching labels and we easily provide the explicit formulae.
- Case 2: The preimage of *p* is infinite but regular.
- Case 3: The preimage is a collection of intersecting manifolds.
- The parameters identified from triples.
- The geometry of fibers determined by zeros in the covariance matrix.

Other applications

- We can list all the equations and inequalities defining the model.
- The new parameterization links to tree metrics.
- Let \hat{p} be sample proportions and assume $\hat{p} \in \mathcal{M}_T$. Then if $\hat{\mu}_{ij} \neq 0$ as $N \to \infty$

$$\log Z(N) = \hat{\ell}_N - \frac{|V| + |E|}{2} \log N + O(1).$$

• The formula can be also obtained for the remaining points.

Final Comments

Quick summary

- The product like parameterization of the naive Bayes model gives a great insight into the model.
- We can obtain a similar parameterization for general tree models.

Generalizations

- Does this generalize: for general decomposable graphs, for non-binary data?
- Any other applications?

Thank you!

Posets, Möbius functions and tree-cumulants

20 / 21

Bayesian tree models

Example: a phylogenetic tree model

