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The problem

e The data Is given by a |V |-dimensional contingency table
classifying N individuals according to V criteria.

e We consider the class of hierarchical loglinear models.

e The cell counts follow a multinomial distribution with
density f(t;0) = e\t —Nk(©),

604(9,m> —ak(0)
I(m,a)

e The conjugate prior for 4 is of the form = (6) =
e The Bayes factor between model 1 and model 2 is

](mz,a)[(%,&—l—]\f)

I(my, o) [(22 o+ N)

Big =

e \We study the behaviour of By, as o« — 0.
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Objects of interest

°

the generating measure u for the multinomial
distribution

the convex hull C' of the support of u
The characteristic function J of the convex polytope C
The polar set of C

© o o o

the face of C containing the data and its dimension k.

The result

By ~ o/
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The data in a contingency table

e N objects are classified according to |V |criteria.

e We observe the value of X = (X, | v € V) which takes its
values (or levels) in the finite set 1,,.

e The data is gathered in a |V |-dimensional contingency
table with

1| = xev|I4| cells i.

e Thecellcounts (n)= (n(:),i€Z) follow a
multinomial M (N, p(i),: € Z)distribution.

e We denote i = (i4,7 € E) and n(ig) respectively the
marginal- = cell and cell count.
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The hierarchical loglinear model

e We choose a special cell 0 = (0, ...,0).
e The generatingsetisD={DCV: DyC D= D, e€D}.
e We write S(i) = {yeV: iy #0} and

jai if S(j) € S(i) and jgj) = is(s).

e The parametrization: p(i) — 6; = 3. (—1)F\SGl 1og p(4).

e Define

1<

J = {j€l: S €D}
Ji = {j€J, j<i}

e Then the hierarchical loglinear model can be written as

logp(i) = 0y + » 6; with logp(0) = 6.

) .
JI7
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The multinomial hierarchical model

p(0) = e = (1+ 3 i p g0y €XP ey 05) " = L(6)~" and

[[p(i)*® = L(el)N exp{ > n(js(;))0;} =exp{d> n(js;))0; + Nbo}.
el

jEJ jEJ

Then [[,.;p(i)"¥ becomes

f(ts10s)

exp Zn(jg(j))ﬁj — Nlog(1 + Z exp Z Hj)}

jed ie\{0}  jeJi
expO0,Ly) _ (0,5)~Nk(6,)
L(6)N
with 0y, = (0,5 € J), t; = (n(jg),J € J) and
L(07) = (L4 >_ienqor €XP 2_jey, 05)-

Warwick April 2011 —p. 6



The measure generating the multinomial

Let (e;,5 € J) be the canonical basis of R’ and let

fi:ZjEJ,jdi?i’ 1€ l. FrG=a————b————c¢
D | fo fa fo fe  fav  fac  foe  fabe
€a 0 1 0 0 1 1 0 1
ep 0 0 1 0 1 0 1 1
€c 0 0 0 1 0 1 1 1
€ab 0 0 0 0) 1 0) 0 1
Ehe 0 0 0 0) 0 0) 1 1
Here RT = R® while R/ = R?.

The Laplace transform of ;.; =

> ier 0y, 1s, for 0 € RY,

/ el > da:—1+z ef”’—lJrZ e2ii% = [ L(0).
RJ

icT\{0}

icT\{0}
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The DY conjugate prior

Therefore the multinomial f(t;]0;) = e}f(g)j)’]@ is the NEF

generated by p*".

C'y Is the open convex hull of the support of u:
fi,» € I are the extreme points

The Diaconis and Ylvisaker (1974) conjugate prior for 8

L {a@sms)—alogL(6.))
I(my,«)

(0 r|my, o) =

IS proper when the hyperparameters m; € Cy and o > 0.
Interpretation of the hyper parameter (am, a):

® o Is the fictive total sample size
® o(mj, j € J)represent the fictive marginal counts .
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The Bayes factor between two models

The posterior density of J given ¢ IS

[(A2s o+ N)
h(Jt atN
( | J) X ](mJ,C\{)

Consider two hierarchical models defined by J; and J,. The
Bayes factor is

Big = X

We will consider two cases depending on whether
L e Cy, k=1,20rnot.
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The Bayes factor between two models

When a — 0,

oif &2 € Cy, k=1,2, then

I(hE o+ N) - I(%,N)

N
I(teme o+ N) T I(%,N)
which is finite. Therefore we only need to worry about
li I(ma2,a)
11 [(ml,oz)'

o if & € Cp \ Cy, k=1,2, then, we have to worry about

I( tl:f]:’;’l QY _|_N)

I(t2+—|(_)‘]<]n2 _|_N> '

lim %zi ag and lim
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The characteristic function of ('

Definitions. Assume C' Is an open nonempty convex set in
R™.

e The support function of C'is he(0) = sup{(0,z) : z € C}

e The characteristic function of C:
Jo(m) = [p, e\0m)=hc(0) gg

Examples of Jo(m)

e C=(0,1). Then ha(#) =01if 0 > 0and ha(d) =01if 6 < 0.
Therefore h¢(6) = max(0,6) and

0 ~+00 1
Jo(m) = / e d +/ !0 =
0

s m(1l—m)
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Examples of Jo(m)

Examples of Jo(m)

e ('Is the simplex spanned by the origin and the canonical
basis {e1,...,e,} iN R"and m = > ", m;e; € C. Then

y_ nvol(©) _ 1
JC( )_ H;L:O m; - H?:l mi(l — Z?:l mz)

e J=1{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1)} with C
spanned by f;,5 € Jand m = ZJEJ m; f;. Then

mo,1,0)(1 —m(0,1,0))

Jo(m) =

( ) DabDbc
Dop = m(l,l,O)(m(l,0,0) - m(l,l,o))(m(o,l,O) . "77’(1,1,0))(1 — ™(1,0,0) ~ ™(0,1,0) T m(171,0))
Dpe = m(0,1,1)(M(0,0,1) = ™(0,1,1)) (M (0,1,0) = ™(0,1,1)) (1 = M(0,0,1) = M(0,1,0) +M(0,1,1))
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Limiting behaviour of I(m, )

Theorem

Let , be a measure on R™,n = |.J|, such that C the interior
of the convex hull of the support of 1 Is nonempty and
bounded. Let m € ¢ and for a > 0, let

e (0,m)
I(m,a):/ L{0) do.

Then
limg_0a™I(m, o) = Jo(m).

Furthermore Jgo(m) Is finite if m € C.
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Outline of the proof

el0:m)
I(m,a) = / L(@)O‘de

a(y,m)
a"I(m,a) = / i}(ﬂ)o‘ dy by chg. var. y = af

-

ULy = ([ e

1/p
— /[e@v@]pu(d;p)) for o =1/p, S = supp(p)
S

=[], = [|e¥*||oc as o — 0

— Sup 6(:(],.’13) — Sup 6<y7$> — esupw60<y7x>7 O — Chull(S)
xesS xeC
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Limit of the Bayes factor

Let models J; and J, be such that |J;| > |J2| and the data
are in C;,8 =1,2. Then the Bayes factor

titam, 1
I[(mg, ) {("7F @+ N) &|J1|—|J2|](tW’N)

I(my,a) I(2t22 o+ N) I(%,N)

Therefore the Bayes factor tends towards 0, which indicates
that the model J; is preferable to model J;.

We proved the heuristically known fact that taking o small
favours the sparser model.

We can say that « close to "0 " regularizes the model.
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Important properties

We define the polar convex set C° of C
={0ec R"; (0,xr) <1 Ve e(C}

then

o 5 —Vol(C—m)° = [, 7=y

For the second equality, make the change of variable
0=0/(1+ (0", m))

e If C'In R" is defined by its K (n — 1)-dimensional faces
(z € R": (O, z) = ¢}, then for D(m) = [, (0, z) — cz),

D(m)Jo(m) = N(m)

where degree of N(m) is < K.
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Limiting behaviour of J(22-% o + N)

We now consider the case when £ € C'\ C.
We write 225 = Am 4 (1 — \) 5 with X =

a+N

First step: Prove that when a — 0i.e. A = 0 and < ~ belongs
to a face of C of dimension £, then
s

lim A% Jo(dm + (1 — V)

exist and Is positive.

Second step: Show that lim A/I=*D()\) exist and is positive
with

N

DY) = Jo(Am + (1= \y) - )

(=) T+ (1= \)y,
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am—+t

Limiting behaviour of I

a+N

a+ N)

This will prove that

lim a(171F) (2t

N
a—0 Oé—|—N’&+ )

exists and is positive and therefore

](mg,oz) I(O‘Z@if\ftla@ + N)
Bio = X
’ I(my, o)  [(222f2 o+ N)

[ J1]—|J2

~ « % al

ki—|J1|)—(k2—|J2|) _

afr—k2.
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Outline of the proof of

t
lim A% 7~ (\ 1 —\)—
Jm c(Am + ( )N)

where we note m =0 and & =y

9

| I

Jo((1 - Ny)

n!

do
=IO =000 = [ G

Parametrize C'°: consider the face F' of C containing y. The dual face FofCeis

F={0ecColb,f)=1VfecI}={0ecC°|H,y) =1}

Cut C? into "slices” F. = {# € C°; (8,y) = 1 — ¢} and show vol,,_1 F, ~ ce¥

/ do _ /OO vol,, _1 Fede _ /OO f(e)de
e (1—1 =M@,y Jo A—0 =0 -e)+  Jo (1—(1-=X1)(1—e)+L

Using f(€) ~ c ¥ we will now show that
limy_,o A% [° f(e)de 7T = C B(k + 1,n — k), and this concludes the

: (1—(1—\)(1—e¢)
proof.
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Some facets of

Let D be the generating set of the hierarchical model.
For each D € D and each jy € J such that S(jy) C D define

g0 = Z (_1)|S(j)|€j

7;5(j)CD
Gjo.D = Z (_1)\S(j)\—\5(jo)|€j

and the affine forms

go.p(t) = 1+ (go.n,1)
9jo,0(t) = (Gjo,D: 1)
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Some facets of

All subsets of the form

F(j,D)=H(j,D)nC
with H(j, D) = {t e R” ; g; p(t) =0}, D€ C, S(j) C D
C = {maximal elements of D}, are facets of C.

Example a — — — b — — — ¢. The facets are

tap =0, tag —tap =0, tp —tp =0, 1 =1 —tp +tap =0
and

the =0, tp —tpe =0, te —lpe =0, 1 =1 —tc +tpe = 0.
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The facets of C when (5 is decomposable

For decomposable models,
H(j,D) ={m e R’ ; g;p(m) =0}, De€C, S(j)C D

are the only faces of C.

Example a — — — b — — — ¢. The facets are
tap =0,7 = (1,1,0); ta —tay = 0,7 = (1,0,0)
tb_tabzoajz(())la()); 1_ta_tb‘|‘ta,b:07 S(]):®
the = 0,7 = (0,1,1); ty — toe = 0,7 = (0,1,0)
tc_tbc:()aj:(07071>; 1_tb_tc_|_tbC:07 S(]>:®
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The facets: traditional notation

Example « — — — b — — — ¢. For binary data, the facets are
Ntgy =0 = nii4+
N(tg —tae) =0 = niyy —nip = niot
Nty —tap) =0 = nj14 —nii+ = no1+
N(l—ts—tp+tw) =0 = N —nipq —niiq +nii4 = Noo+
Ntpe =0 = n4n
Nty —toe) =0 = mni10
N(te—toe) =0 = nyo1
N =ty —te+tpe) =0 = ni0
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The facets: traditional notation

Example: The complete model. Then C = {abc} and the
facets are

Nitgpe =0 = nin1

N(tep — tare) =0 = n110

N(tpe = tape) =0 = mnon

N(tae —tape =0 = nio1

N(ta —tap — tac +tape) =0 = nigo

N(ty — tap — the +tare) =0 = no10

N(te —tac — tpe +tape) =0 = mngo1

N1 —tg—ty —te+tap +tpe +tac — tae =0 = nooo
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Steck and Jaakola (2002)

Steck and Jaakola (2002) considered the problem of the
limit of the Bayes factor when o — 0 for Bayesian networks.

Bayesian networks are not hierarchical models but in some

cases, they are Markov equivalent to undirected graphical
models which are hierarchical models.

Problem: compare two models which differ by one directed
edge only.

Equivalent problem: with three variables binary X,, X;, X,
each taking values in {0, 1}, compare
Model My a — — - —-b— — — —c: |J1| = 5.

Model M,: the complete model i.e. with A = {(a,b,c)}.
| Jo| =7
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Generalization of S&J (2002)

They define

dppr =) _6(n@)— > dn(ia) — Y 6(niy,)+ > 6(nlip))

1€l tab€ZLgb the €Lpce ip €Ly

where §(z) = 0ifz = 0 and §(z) = 1 otherwise. They show

, 0 if depp >0
limg—0B1,2 = _
+oo If dgpp <0

We show that dppr = k1 — ko and more generally if C; and S; the set of cliques and
separators of the decomposable model J;, i = 1, 2. We define

dppr = > D o) = D D dmGs) - (D D dmlic) - D D 8(nlis))

ceCric€Elc SeS11g5€lg CceCoicEeEl SeSqi1g€lg

Then if the data belongs to faces F; of dimension k; for the two arbitrary decomposable
graphical models J;, i = 1, 2 respectively, then, dgpr = k1 — k2. We do not need facets for
decomposable models. We just look at the cell counts.
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