Counterexamples for optimal scaling of Metropolis-Hastings chains with rough target densities

Jure Vogrinc. University of Warwick.

30-th April 2021, 1pm UK time

Abstract

For sufficiently smooth targets of product form it is known that the variance of a single coordinate of the proposal in RWM (random walk Metropolis) and MALA (Metropolis adjusted Langevin algorithm) should optimally scale as n^{-1} and as $n^{-1/3}$ with dimension n, and that the acceptance rates should be tuned to 0.234 and 0.574. We establish counterexamples to demonstrate that smoothness assumptions of the order of $C^1(\mathbb{R})$ for RWM and $C^3(\mathbb{R})$ for MALA are indeed required if these scaling rates are to hold. The counterexamples identify classes of marginal targets for which these guidelines are violated, obtained by perturbing a standard normal density (at the level of the potential for RWM and the second derivative of the potential for MALA) using roughness generated by a path of fractional Brownian motion with Hurst exponent H. For such targets the RWM and MALA proposal variances should optimally be scaled as $n^{1/H}$ and as $n^{-1/(2+H)}$ and will then obey anomalous acceptance rate guidelines. We will discuss the framework developed to deliver these counterexamples and its possible applications.

This is joint work with Wilfrid Kendall

References

 Vogrinc, Jure, and Wilfrid S. Kendall. "Counterexamples for optimal scaling of Metropolis-Hastings chains with rough target densities." The Annals of Applied Probability 31, no. 2 (2021): 972-1019.