Interacting Particle Approximations of Feynman-Kac Formulae for Pure Jump Processes

Letizia Angeli

Joint work with: Adam Johansen, Stefan Grosskinsky

13th November 2020
Motivations

- Interest in studying the dynamical large deviations of stochastic models, e.g.
 - chemical reactions
 - glassy dynamics
 - particle current in lattice gases
 - heat waves in climate models

- Interacting Particle Approximations (IPAs):
 - CLONING ALGORITHM [C. Giardinà et al. (2006), V. Lecomte and J. Tailleur (2007)]
The Setting: Pure Jump Markov Processes

- E, locally compact (Polish) state space
 - e.g. spin systems with $E = \{-1, 1\}^\Lambda$, Λ lattice
 - or exclusion processes with $E = \{0, 1\}^\Lambda$

- $C_b(E)$, set of bounded continuous functions on E with norm
 $\|f\| := \sup_{x \in E} |f(x)|$

- X_t, continuous-time pure jump Markov process on E, with initial distribution μ_0. Denote:
 - $\lambda(x) \in C_b(E)$, $\lambda(x) > 0$, escape rate at state $x \in E$.
 - $p(x, dy)$, the probability of jumping from x to y, when a jump occurs
 - $W(x, dy)$, the overall transition rate, i.e.
 \[W(x, dy) := \lambda(x) \cdot p(x, dy) \]
Infinitesimal Description of Pure Jump Markov Processes

\(\mathcal{L} \) - infinitesimal generator of \(X_t \)

\[
\frac{d}{dt} \mathbb{E}_x[f(X_t)] = \mathbb{E}_x[\mathcal{L}f(X_t)]
\]

where \(f \in C_b(E) \) observable.

For pure jump Markov processes, we can write

\[
\mathcal{L}f(x) = \int_E W(x, dy) (f(y) - f(x)), \quad f \in C_b(E)
\]

where \(W(x, dy) \) is the overall transition rate.
Feynman-Kac Measures

Let X_t be a jump process on E with generator \mathcal{L} and initial distribution μ_0, and let $\mathcal{V} \in \mathcal{C}_b(E)$ be a potential function.

Feynman-Kac measures associated to (X_t, \mathcal{V})

$$\nu_t(f) := \mathbb{E}_{\mu_0} \left[f(X_t) \exp \left(\int_0^t \mathcal{V}(X_s) ds \right) \right], \quad \mu_t(f) := \frac{\nu_t(f)}{\nu_t(1)}.$$
Feynman-Kac Measures

Let X_t be a jump process on E with generator \mathcal{L} and initial distribution μ_0, and let $\mathcal{V} \in C_b(E)$ be a potential function.

Feynman-Kac measures associated to (X_t, \mathcal{V})

$$\nu_t(f) := E_{\mu_0}\left[f(X_t) \exp\left(\int_0^t \mathcal{V}(X_s) ds\right)\right], \quad \mu_t(f) := \frac{\nu_t(f)}{\nu_t(1)}.$$

Remark. We can write ν_t in terms of μ_t,

$$\nu_t(f) = \mu_t(f) \cdot \exp\left(\int_0^t \mu_s(\mathcal{V}) ds\right)$$
Feynman-Kac Measures

Let X_t be a jump process on E with generator \mathcal{L} and initial distribution μ_0, and let $\mathcal{V} \in C_b(E)$ be a potential function.

Feynman-Kac measures associated to (X_t, \mathcal{V})

$$\nu_t(f) := \mathbb{E}_{\mu_0} \left[f(X_t) \exp \left(\int_0^t \mathcal{V}(X_s)ds \right) \right], \quad \mu_t(f) := \frac{\nu_t(f)}{\nu_t(1)}.$$

Remark. We can write ν_t in terms of μ_t,

$$\nu_t(f) = \mu_t(f) \cdot \exp \left(\int_0^t \mu_s(\mathcal{V})ds \right)$$

Evolution Equation

$$\frac{d}{dt} \mu_t(f) = \mu_t \left(\mathcal{L}f + \mathcal{V}f - \mu_t(\mathcal{V}) f \right)$$
McKean Interpretation

There exists a (non-unique) family of non-linear probability generators $(\tilde{\mathcal{L}}_\mu)$, $\mu \in \mathcal{P}(E)$, s.t.

$$\mu(\tilde{\mathcal{L}}_\mu(f)) = \mu(\mathcal{V}f) - \mu(\mathcal{V}) \cdot \mu(f).$$

Thus $\mu_t = \text{Law}(\overline{X}_t)$, where \overline{X}_t stochastic process associated to the generator $\overline{\mathcal{L}}_{\mu_t} := \mathcal{L} + \tilde{\mathcal{L}}_{\mu_t}$.
McKean Interpretation

There exists a (non-unique) family of non-linear probability generators \((\tilde{\mathcal{L}}_\mu)\), \(\mu \in \mathcal{P}(E)\), s.t.

\[
\mu(\tilde{\mathcal{L}}_\mu(f)) = \mu(\mathcal{V}f) - \mu(\mathcal{V}) \cdot \mu(f) .
\]

Thus \(\mu_t = \text{Law}(\overline{X}_t)\), where \(\overline{X}_t\) stochastic process associated to the generator \(\overline{\mathcal{L}}_{\mu_t} := \mathcal{L} + \tilde{\mathcal{L}}_{\mu_t}\).

Possible constructions \(\tilde{\mathcal{L}}_\mu\) are in the form

\[
\tilde{\mathcal{L}}_\mu f(x) = \int_E \tilde{\mathcal{W}}(x, y)(f(y) - f(x)) \mu(dy) ,
\]

with

\[
\tilde{\mathcal{W}}(x, y) = (\mathcal{V}(x) - c)^- + (\mathcal{V}(y) - c)^+ , \ c \in \mathbb{R}
\]

\[
\tilde{\mathcal{W}}(x, y) = (\mathcal{V}(y) - \mathcal{V}(x))^+ .
\]
An interacting particle approximation is a family of N-particle systems $X^N_t := (X^1_t, \ldots, X^N_t) \in E^N$, $N \in \mathbb{N}$, with empirical distribution

$$\mu^N_t := m(X^N_t) = \frac{1}{N} \sum_i \delta_{X^i_t}.$$
Interacting Particle Approximations

An interacting particle approximation is a family of N-particle systems $X^N_t := (X^1_t, \ldots, X^N_t) \in E^N$, $N \in \mathbb{N}$, with empirical distribution

$$\mu^N_t := m(X^N_t) = \frac{1}{N} \sum_i \delta_{X^i_t}.$$

Find sufficient conditions s.t. $\mu^N_T(f) \sim \mu_T(f)$ and, in particular, s.t. for any $p \geq 2$, there exists $c_p > 0$ (indep. of N or T)

$$\sup_{T \geq 0} \mathbb{E} \left[|\mu^N_T(f) - \mu_T(f)|^p \right]^{1/p} \leq \frac{c_p \|f\|}{N^{1/2}},$$

for any $f \in C_b(E)$ and $N \in \mathbb{N}$ large enough.
MEAN FIELD PARTICLE SYSTEM

Clones

Time

● = Mutation ❌ = Selection
MEAN FIELD PARTICLE SYSTEM

CLONING PROCESS
Assumptions

Denoting by L^N the generator, the carré du champ is

$$\Gamma_{L^N}(F, F)(\bar{x}) := L^N(F^2)(\bar{x}) - 2F(\bar{x})L^N(F)(\bar{x}).$$

Conditions

(0) **ASYMPTOTIC STABILITY** of μ_t:

$$\exists \rho \in (0, 1) \text{ s.t. } |\mu_t(f) - \mu_\infty(f)| \leq c \|f\| \rho^t$$

independently of the initial distribution μ_0 ;

(1) $X_0^1, \ldots, X_0^N \sim \mu_0$ i.i.d. random variables;
Assumptions

Denoting by L^N the generator, the carré du champ is

$$\Gamma_{L^N}(F, F)(x) := L^N(F^2)(x) - 2F(x) L^N(F)(x).$$

Conditions

(0) **ASYMPTOTIC STABILITY** of μ_t:

$$\exists \rho \in (0, 1) \ s.t. \ \left| \mu_t(f) - \mu_\infty(f) \right| \leq c \|f\| \rho^t$$

independently of the initial distribution μ_0;

(1) $X^1_0, \ldots, X^N_0 \sim \mu_0$ i.i.d. random variables;

Moreover, for $F(x) = m(x)(f)$ with $f \in C_b(E)$,

(2) $L^N(F)(x) = m(x)(\mathcal{L}m(\cdot)(f))$;
Assumptions

Denoting by L^N the generator, the carré du champ is

$$\Gamma_{L^N}(F, F)(\bar{x}) := L^N(F^2)(\bar{x}) - 2F(\bar{x}) L^N(F)(\bar{x}) .$$

Conditions

(0) **ASYMPTOTIC STABILITY** of μ_t:

$$\exists \rho \in (0, 1) \text{ s.t. } |\mu_t(f) - \mu_\infty(f)| \leq c \|f\| \rho^t$$

independently of the initial distribution μ_0;

(1) $X_0^1, \ldots, X_0^N \sim \mu_0$ i.i.d. random variables;

Moreover, for $F(\bar{x}) = m(\bar{x})(f)$ with $f \in C_b(E)$,

(2) $L^N(F)(\bar{x}) = m(\bar{x})(\overline{L} m(\cdot)(f))$;

(3) $\Gamma_{L^N}(F, F)(\bar{x}) \leq \frac{c\|f\|^2}{N}$;
Assumptions

Denoting by L^N the generator, the carré du champ is

$$\Gamma_{L^N}(F, F)(\bar{x}) := L^N(F^2)(\bar{x}) - 2F(\bar{x}) L^N(F)(\bar{x}).$$

Conditions

(0) **ASYMPTOTIC STABILITY** of μ_t:

$$\exists \rho \in (0, 1) \text{ s.t. } \left| \mu_t(f) - \mu_\infty(f) \right| \leq c \|f\| \rho^t$$

independently of the initial distribution μ_0;

(1) $X_0^1, \ldots, X_0^N \sim \mu_0$ i.i.d. random variables;

Moreover, for $F(\bar{x}) = m(\bar{x})(f)$ with $f \in C_b(E)$,

(2) $L^N(F)(\bar{x}) = m(\bar{x})(\mathcal{L}_{m}(\cdot)(f))$;

(3) $\Gamma_{L^N}(F, F)(\bar{x}) \leq \frac{c\|f\|^2}{N}$;

(4) $\sup_{t \geq 0} |\{i \in 1, \ldots, N \mid X_t^i \neq X_{t-}^i\}| \leq K$ a.s., K indep. of N.‌
Mean Field Particle Approximations

For $F(x) = m(x)(f)$ with $f \in \mathcal{C}_b(E)$,

$$L^N(F)(x) = \sum_{i=1}^{N} (\mathcal{L} + \tilde{\mathcal{L}}_{m(x)})(f)(x_i) = m(x)(\overline{\mathcal{L}}_{m(\cdot)}(f))$$

$$\Gamma_{LN}(F, F)(x) = \frac{1}{N} m(x)(\Gamma_{\mathcal{L} + \tilde{\mathcal{L}}_{m(x)}}(f, f)) \leq \frac{c\|f\|^2}{N}$$
Cloning Algorithm (1/2)

Figure: Illustration of a single cloning-mutation event.

\[L^N(F)(\mathbf{x}) = \sum_{i=1}^{N} \lambda(x_i) \int_E p(x_i, dy) \sum_{A \in \mathcal{N}} \pi_x(x_i, A) \cdot (F(x^A_{x_i}; i, y) - F(\mathbf{x})) \]
Cloning Algorithm (2/2)

Choosing $\pi_{\mathbf{x}}(x_i, A)$ s.t.

$$\sum_{A \mid j \in A} \pi_{\mathbf{x}}(x_i, A) = \frac{\tilde{W}(x_j, x_i)}{N \cdot \lambda(x_i)},$$

for N large enough, then

$$L^N(F)(\mathbf{x}) = m(\mathbf{x})(\overline{\mathcal{L}}_{m(\cdot)}(f)),$$

for $F(\mathbf{x}) = m(\mathbf{x})(f)$ with $f \in \mathcal{C}_b(E)$.
Cloning Algorithm (2/2)

Choosing $\pi_{x_i}(x_i, A)$ s.t.

$$
\sum_{A|j \in A} \pi_{x_i}(x_i, A) = \frac{\tilde{W}(x_j, x_i)}{N \cdot \lambda(x_i)},
$$

for N large enough, then

$$
L_N^N(F)(x) = m(x)(\mathcal{L}_{m(\cdot)}(f)),
$$

for $F(x) = m(x)(f)$ with $f \in C_b(E)$.

Moreover, if

$$
\sum_{A|j,k \in A} \pi_{x_i}(x_i, A) \leq \frac{C}{N^2},
$$

then

$$
\Gamma_{L_N}(F, F)(x) \leq \frac{c\|f\|^2}{N}.
$$
Assumptions

Denoting by L^N the generator, the carré du champ is

$$\Gamma_{L^N}(F, F)(\bar{x}) := L^N(F^2)(\bar{x}) - 2F(\bar{x}) L^N(F)(\bar{x}).$$

Conditions

(0) **ASYMPTOTIC STABILITY** of μ_t:

$$\exists \rho \in (0, 1) \text{ s.t. } |\mu_t(f) - \mu_\infty(f)| \leq c \|f\| \rho^t$$

independently of the initial distribution μ_0;

(1) $X_0^1, \ldots, X_0^N \sim \mu_0$ i.i.d. random variables;

Moreover, for $F(\bar{x}) = m(\bar{x})(f)$ with $f \in C_b(E)$,

(2) $L^N(F)(\bar{x}) = m(\bar{x})(\overline{L}m(\cdot)(f))$;

(3) $\Gamma_{L^N}(F, F)(\bar{x}) \leq \frac{c\|f\|^2}{N}$;

(4) $\sup_{t \geq 0} \left| \{i \in 1, \ldots, N \mid X_t^i \neq X_{t-}^i\} \right| \leq K \text{ a.s., } K \text{ indep. of } N.$
Martingale interpretation of conditions (2)-(4)

\[M^N_t(\phi.) := \mu^N_t(\phi_t) - \mu^N_0(\phi_0) - \int_0^t \mu^N_s(\partial_s \phi_s + \overline{L}_{\mu^N_s}(\phi_s)) \, ds \]

is a martingale with

\[\langle M^N(\phi.) \rangle_0^t \leq \int_0^t c \frac{\|\phi_s\|^2}{\mathcal{N}} \, ds; \quad |\Delta M^N_t(\phi.)| \leq \frac{2K \|\phi_t\|}{\mathcal{N}}. \]

Technical Lemma

Let \(\mathcal{N} \) be a square-integrable martingale with \(\sup_t |\Delta \mathcal{N}_t| \leq a \). Then,

\[\sup_{t \leq T} \mathbb{E}[|\mathcal{N}_t|^{2q}] \leq c_q \sum_{k=1}^q a^{2^q - 2^k} \mathbb{E}[\left(\langle \mathcal{N} \rangle_T\right)^{2^{k-1}}], \quad \forall q \in \mathbb{N}. \]
THEOREM
Under Assumptions (0)-(4), there exists $c'>0$ s.t.

$$\sup_{T \geq 0} \left| \mathbb{E} \left[\mu_N^T(f) - \mu_T(f) \right] \right| \leq \frac{c' \|f\|}{N},$$

and, for any $p \geq 2$, there exists $c_p > 0$ s.t.

$$\sup_{T \geq 0} \mathbb{E} \left[\left(\mu_N^T(f) - \mu_T(f) \right)^p \right]^{1/p} \leq \frac{c_p \|f\|}{N^{1/2}},$$

for any $f \in C_b(E)$ and $N \in \mathbb{N}$ large enough.
References

L. Angeli, S. Grosskinsky, and A. M. Johansen.
Limit theorems for cloning algorithms.

L. Angeli, S. Grosskinsky, A. M. Johansen, and A. Pizzoferrato.
Rare event simulation for stochastic dynamics in continuous time.

P. Del Moral and L. Miclo.
Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering.

C. Giardina, J. Kurchan, and L. Peliti.
Direct evaluation of large-deviation functions.

M. Rousset.
On the control of an interacting particle estimation of Schrödinger ground states.