# Parameterizing and Simulating from Causal Models

Robin J. Evans University of Oxford

Algorithms and Computationally Intensive Inference Seminar
University of Warwick
13th October 2023

### Collaborators







This is joint work with Vanessa Didelez (Leibniz Institute for Prevention Research and Epidemiology - BIPS), and Xi Lin and Daniel Manela (Oxford)

### Outline

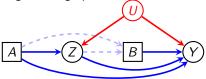
- 1. Motivation
- 2. Marginal Models
- 3. Frugal Parameterization and Main Results
- 4. Simulations
- 5. Other Applications

## Outline

- 1. Motivation
- 2. Marginal Models
- 3. Frugal Parameterization and Main Results
- 4. Simulations
- 5. Other Applications

# A Dynamic Treatment Model

Consider the following causal graph.



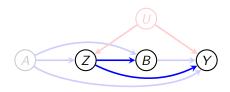
#### Here:

- A, B are treatments given by a doctor;
- Z is an intermediate outcome;
- Y is a final outcome:
- *U* represents unobserved confounders.

Suppose we're interested in interventions on A and B.

What would happen if **everyone** were given treatments (A, B) = (a, b)? i.e. we want P(Y | do(A = a, B = b)).

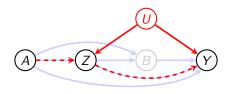
#### Identification



How can we identify  $P(Y \mid do(A = a, B = b))$ ?

Just regressing on the treatments fails, because Z is a confounder of the causal effect of B on Y.

#### Identification



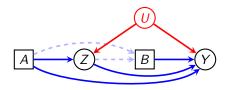
How can we identify  $P(Y \mid do(A = a, B = b))$ ?

Just regressing on the treatments fails, because Z is a confounder of the causal effect of B on Y.

Regressing on the treatments and covariates **also** fails, as Z is a mediator of the effect of A on Y and a collider opening a non-causal path.

Here, Z is a **time-varying confounder** (aka 'treatment-confounder feed-back').

#### Identification



Under 'standard' causal assumptions, we can identify P(Z, Y | do(A = a, B = b)) using **inverse probability weighting**:

$$p(z,y \mid do(a,b)) = \frac{p(a,z,b,y)}{p(a) \cdot p(b \mid a,z)}.$$

Alternatively, we can use the g-formula (Robins, 1986):

$$p(z,y \mid do(a,b)) = p(z \mid a) \cdot p(y \mid a,z,b).$$

Marginalizing over z then yields:

$$p(y \mid do(a,b)) = \int_{\mathcal{Z}} \frac{p(a,z,b,y)}{p(a) \cdot p(b \mid a,z)} dz = \int_{\mathcal{Z}} p(z \mid a) \cdot p(y \mid a,z,b) dz.$$

# Marginal Structural Models (MSMs)

Models of p(y|do(a,b)) are marginal structural models (Robins, 2000).

**MSMs** are very popular in epidemiology, as **time-varying confounding** is simply 'removed' by suitable weighting.

#### **Examples:**

- 1. ART therapy ('when to start', 'when to switch') for HIV-patients with CD4 count as time-varying confounder;
- 2. survival of Cystic Fibrosis patients under sustained treatments ('always' vs. 'never');
- 3. cancer-screening attendance ('regular' vs. 'delayed' vs. 'never') with cancer incidence or mortality outcomes;
- 4. assessing side effects of (sustained or combined) anti-diabetic drug use in type-2 diabetes patients.

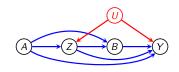
# Marginal Structural Models (MSMs)

However, papers that **simulate** from them do so in **indirect** ways.

### **Examples**

- Young et al. (2008, 2010) give two different approaches to simulating from MSMs using special cases of other models and computing the implied parameters.
- Havercroft and Didelez (2012) try simulating such that  $p(y \mid do(a, b))$  does not depend upon a. Their approach requires removing the direct effect  $Z \rightarrow Y$ .
- Keogh et al. (2021) use fully conditional (additive or Cox) hazard models and then work out the implied MSMs.

### **Obstacles**



Simulating from MSMs is hard.

#### Why?

In discussing marginal structural models Robins (2000, p107) notes:

"...the difficulty in performing likelihood-based inference... since the likelihood is a **computational nightmare**."

The g-formula (alternative to IPTW) suffers from the **g-null paradox** (Robins and Wasserman, 1997).

### The G-null Paradox

Robins and Wasserman (1997) show that specifying seemingly nice parametric models for  $Z \mid A$  and  $Y \mid A, Z, B$  lead to it being (almost) **impossible** for the null hypothesis to hold.

$$Z \mid A \sim \mathsf{Bernoulli}(\mathsf{expit}(\alpha A))$$

$$\mathbb{E}[Y \mid A, Z, B] = A\beta_a + Z\beta_z + B\beta_b.$$

Then we can compute:

$$\mathbb{E}[Y \mid do(A, B)] = A\beta_a + B\beta_b + \operatorname{expit}(\alpha A) \cdot \beta_z.$$

Hence g-null holds 
$$\iff \beta_a = 0 \text{ and } \alpha \cdot \beta_z = 0$$
  $\iff \text{ either } Y \perp \!\!\!\perp A, Z \mid B \text{ or } \left\{ \begin{array}{c} Z \perp \!\!\!\perp A \\ Y \perp \!\!\!\perp A \mid Z, B \end{array} \right\}.$ 

This is **much more restrictive** than the hypothesis of interest.

Lesson: just specifying nice models for all conditionals is **not helpful** if we want data under a specific causal hypothesis.

#### Further Problems

Another approach to overcoming (some of) these problems is to use models that are **over-parameterized** and/or not **congenial**.

### Example

Some propose to consider separate marginal and conditional specifications:

$$\operatorname{logit} \mathbb{E}[Y \mid A] = \alpha_0 + \alpha_a A$$
$$\operatorname{logit} \mathbb{E}[Y \mid A, B] = \beta_0 + \beta_a A + \beta_b B.$$

However, **only trivial models** satisfy these restrictions for any  $\alpha_0, \alpha_a, \beta_0, \beta_a$  if  $\beta_b \neq 0$ , because the logit function is not **collapsible**.

# **Objectives**

There are three broad objectives for our proposal.

- **1 Parameterization.** Describe a joint distribution P of all variables (confounders, treatments, outcomes) that:
  - obeys an explicitly provided parameterization of the causal functional of interest;
  - allows the rest of the distribution to be as flexible as possible;
  - remains coherent and unambiguous.
- **2 Simulation.** Obtain samples from *P* such that:
  - observationally the data exhibit complex confounding structures;
  - under an intervention they **obey the causal model**.
- **3 Fitting.** Allow for fitting typically performed semi-paramerically (e.g. marginal structural models), using **likelihood-based methods**.

## Outline

- 1. Motivation
- 2. Marginal Models
- 3. Frugal Parameterization and Main Results
- 4. Simulations
- 5. Other Applications

# Marginal Models

$$p^*(z, y \mid a, b) \equiv p(z, y \mid do(a, b))$$
$$= p(z \mid a) \cdot p(y \mid a, z, b).$$

Given interventional distribution  $P^*$  suppose we have:

- a model for  $p^*(y | a, b)$ ;
- a model for  $p^*(z | a, b) = p(z | a)$ .



#### Question

These do not fully specify  $p^*(z, y | a, b)$  so what else do we need?

#### **Answer**

Some sort of (conditional) **dependence measure** for Y and Z under  $P^*$  (e.g. a conditional odds ratio or copula):

$$\phi_{ZY|AB}^*(z,y\mid a,b).$$

# Marginal Tension

We've seen that there is generally a tension between:

- simple specification of the **joint distribution** *P*, in order to facilitate simulation and likelihood-based inference;
- simple specification of the **target of inference**  $p^*(y \mid a, b)$  (i.e. some interventional marginal quantity) in order that it is interpretable;
- enforcing marginal **constraints** implied by the causal model. (In our case this was  $Z \perp \!\!\! \perp B \mid A$  under  $P^*$ .)

Our proposal resolves these as best one can.

### Outline

- 1. Motivation
- 2. Marginal Models
- 3. Frugal Parameterization and Main Results
- 4. Simulations
- 5. Other Applications

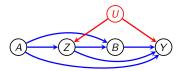
## Setup

In general, we consider three groups of variables:

- X treatments and effect modifiers
- Y outcome(s) of interest
- Z other variables to be marginalized

These can all be vector valued.

Note that there is not necessarily a strict causal order on Z, X and Y: in our example, we had X = (A, B).



Object of interest is  $p^*(y|x)$  for some interventional  $P^*$ .

# Cognate Distributions

We need a **marginal** parameterization, but some of the 'margins' we are interested in are non-standard.

Let  $w(z \mid x)$  be a **kernel function**:

- $w(z \mid x) \geq 0$ ;
- $\int_{\mathcal{Z}} w(z \mid x) dz = 1$  for each x.

We allow it to be a (smooth) function of p(z, x).

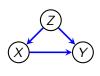
#### Definition

We say  $p^*(y|x)$  is **cognate** to p(y|x) (within p(z,x,y)) if

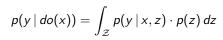
$$p^*(y \mid x) \equiv \int_{\mathcal{Z}} p(y \mid x, z) \cdot w(z \mid x) dz.$$

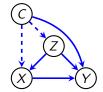
# Cognate Distributions: Examples

#### **Examples**



$$p(y \mid x) = \int_{\mathcal{Z}} p(y \mid x, z) \cdot p(z \mid x) dz$$





$$p(y \mid c; do(x)) = \int_{\mathcal{Z}} p(y \mid c, z, x) \cdot p(z \mid c) dz$$

$$p(Y(x) \mid x') = \int_{\mathcal{Z}} p(y \mid x, z) \cdot p(z \mid x') dz.$$

(Here Y(x) is the **potential outcome** for Y when X is set to x.)

Note that  $\mathbb{E}[Y(0) \mid X = 1]$  appears in the **effect of treatment on the treated** estimand.

# Frugal Parameterization

#### **Definition**

A **frugal parameterization** consists of three separate (smooth and regular) parametric models for:

- p(z,x) ('the past');
- $p^*(y|x)$  (distribution of interest);
- $\phi_{ZY|X}^*(z,y|x)$  (a dependence measure).

The distribution of interest can be any that is cognate to  $p(y \mid x)$ .

#### These quantities:

- specify the whole distribution P;
- can be chosen to be variation independent;
- have no redundancy.

#### Main Result

#### **Theorem**

Consider an outcome Y, and causally prior variables X and Z. Then we can **smoothly parameterize** the joint distribution P with a frugal parameterization of

$$p(z,x)$$
  $p^*(y|x)$   $\phi_{ZY|X}^*(z,y|x),$ 

where  $p^*(y \mid x)$  is cognate to  $p(y \mid x)$ , if and only if P can also be smoothly parameterized by the same models applied to

$$p(z,x)$$
  $p(y|x)$   $\phi_{ZY|X}(z,y|x).$ 

(That is, the ordinary conditional and the dependence measure in P.)

Can choose distinct parts of second list to be **variation independent**, in which case same is true for the first.

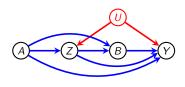
This gives us the **best of both worlds**: a coherent joint distribution and a marginal specification of our choice.

## Outline

- 1. Motivation
- 2. Marginal Models
- 3. Frugal Parameterization and Main Results
- 4. Simulations
- 5. Other Applications

# Copula Model Example

Consider the two-step dynamic model from Havercroft and Didelez (2012).



#### Then:

- Simulate  $A, B \sim \text{Bernoulli}(\frac{1}{2})$  independently;
- Obtain conditional quantiles of Y, Z from a Gaussian copula with correlation  $2 \exp it(1 + a/2) 1$ ;
- Using inversion, set  $Z \mid A = a \sim \text{Exp}(\exp(0.2a 0.3));$
- Set  $Y \mid do(A = a, B = b) \sim N(-0.5 + 0.2a + 0.3b, 1);$

#### After rejection sampling:

•  $B \mid A = a, Z = z \sim \text{Bernoulli}(\exp(a/2 + z/2))$ .

We take a sample of size  $n = 10^4$  using the R package causl (Evans, 2021, https://github.com/rje42/causl).

# Results (Outcome Regression)

We fit the naïve outcome regression model

$$\mathbb{E}[Y \mid A = a, B = b] = \beta_0 + \beta_A a + \beta_B b + \beta_{AB} ab.$$

|             | truth | estimate | bias   | s.e.  | z-value | p-value              |
|-------------|-------|----------|--------|-------|---------|----------------------|
| intercept   | -0.5  | -0.564   | -0.064 | 0.021 | -3.12   | $1.7 	imes 10^{-3}$  |
| Α           | 0.2   | 0.156    | -0.044 | 0.030 | -1.44   | 0.15                 |
| В           | 0.3   | 0.448    | 0.148  | 0.028 | 5.22    | $1.8 \times 10^{-7}$ |
| $A \cdot B$ | 0.0   | 0.047    | 0.047  | 0.040 | 1.18    | 0.24                 |

# Results (IPW)

We estimate the inverse weights by fitting a logistic regression for  $B \mid A, Z$ :

logit 
$$P(B = 1 \mid A = a, Z = z) = \alpha_0 + \alpha_A a + \alpha_Z z + \alpha_{AZ} az$$
.

We then **inverse weight** each observation by  $\hat{p}(b \mid a, z)$ , and fit the outcome model using these inverse weights.

The bias is very small:

|             | truth | estimate | bias   | s.e.  | z-value | p-value |
|-------------|-------|----------|--------|-------|---------|---------|
| intercept   | -0.5  | -0.489   | 0.011  | 0.021 | 0.49    | 0.62    |
| Α           | 0.2   | 0.196    | -0.004 | 0.032 | -0.14   | 0.89    |
| В           | 0.3   | 0.302    | 0.002  | 0.029 | 0.08    | 0.94    |
| $A \cdot B$ | 0.0   | 0.003    | 0.003  | 0.042 | 0.07    | 0.95    |

This suggests that (i) our simulation is working well; and (ii) IPW works.

# Results (Maximum Likelihood Estimation)

Since we have a parametric model, we can also evaluate the likelihood and compute the MLE

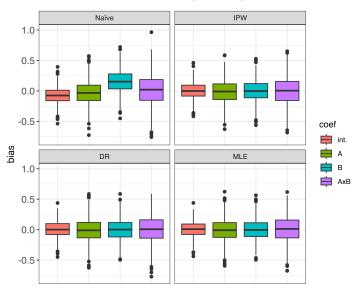
Comparison with MLE is very useful for simulation, because it provides an optimally **efficient** comparator.

|             | truth | estimate | bias   | s.e.  | z-value | p-value |
|-------------|-------|----------|--------|-------|---------|---------|
| intercept   | -0.5  | -0.490   | 0.010  | 0.019 | 0.53    | 0.60    |
| Α           | 0.2   | 0.195    | -0.005 | 0.027 | -0.20   | 0.84    |
| В           | 0.3   | 0.302    | 0.002  | 0.026 | 0.08    | 0.94    |
| $A \cdot B$ | 0.0   | 0.010    | 0.010  | 0.034 | 0.28    | 0.78    |

However, we don't recommended using MLE in practice, because **misspecification** may lead to poor estimates.

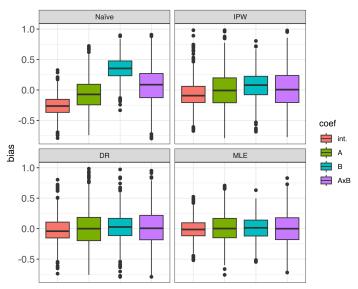
# Results

Bias over 1,000 fits to simulated data (n = 250).



### Results

With a stronger  $Z \to B$  edge ( $\mathbb{E}[B \mid A, Z] = \exp it(a/2 + z)$ ):

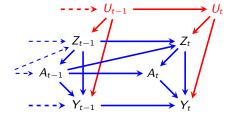


### Outline

- 1. Motivation
- 2. Marginal Models
- 3. Frugal Parameterization and Main Results
- 4. Simulations
- 5. Other Applications

# Survival Analysis

We can also parameterize, simulate from, and fit survival models, such as **Cox Marginal Structural Models** with our method.



Specify a model for:

$$P(Y_t \mid Y_{t-1} = 0; do(A_1, ..., A_t))$$

where we marginalize over time-varying covariates  $Z_1, \ldots, Z_t$ .

This resolves an open problem in the literature: methods for simulating from Cox MSMs have been proposed, but they cannot **specify the** marginal structure in as much generality we can (e.g. Keogh et al., 2021).

# Example: Survival Models

With the frugal parameterization simulation is easy even under a null hypothesis; e.g.:

$$P(Y_t | Y_{t-1} = 0; do(a_1, ..., a_t)) = P(Y_t | Y_{t-1} = 0).$$

Can also easily incorporate, for e.g., a stationarity assumption:

$$P(Y_t | Y_{t-1} = 0; do(A_t = a)) = g(a).$$

Young and Tchetgen Tchetgen (2014) note that this is **not at all** trivial.

"We therefore may be limited to simulation scenarios with the proposed algorithm to unrealistic settings if we wish simultaneously to generate data under the null."

# Sensitivity Analysis

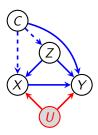
Note that since we have control over the propensity score model, it is comparatively easy to evaluate the effect of using the wrong model.

### Example

Suppose we fit using a logistic regression model, but the true propensity uses a different link function (e.g. probit).

Or perhaps the truth is a random forest model.

We can also see the effect of having unobserved confounders that are not included in the model.



# 'Many Data'

A more fundamental use for frugal parameterization is to allow for the **integrated causal analysis** of different types of studies.

Want to leverage data from **multiple sources** (different subjects, populations, and experimental settings) to improve causal learning.



- randomized controlled trials;
- observational cross-sectional and longitudinal studies;
- case-control studies:
- •

We call this the paradigm of Many Data.

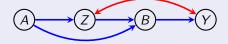
Using our parameterization we can **jointly** describe these models (e.g. Lin and Evans, 2023).

### The Verma Constraint

Richardson et al. (2023) consider **nested** Markov models, which allow for **generalized** conditional independence constraints.

The frugal parameterization allows us to fit (some) nested models very easily.

### Example



Constraint is that

$$p(y \mid do(a,b)) = \sum_{z} p(z \mid a) \cdot p(y \mid a, z, b)$$

is independent of A.

We can explicitly fit and test this constraint using (e.g.) likelihood ratio.

# Summary

- We have presented the frugal parameterization, and used methods from marginal modelling to simulate from causal models;
- we can also fit these models using likelihood-based methods;
- this is a marginal parameterization: there is a rich literature on marginal models to consider for other causal problems.
- We envisage applications to marginal structural models, survival models, dynamic treatment regimes, structural nested models, stationarity, transportability, sensitivity analysis, data fusion (Many Data) ...;
- can also simulate from arbitrary instrumental variables models.

### Limitations

Mediation models are still difficult to simulate from!

# Thank you!

### References I

Bergsma and Rudas. Marginal log-linear parameters, Ann. Statist., 2002.

Evans. causl, R package. https://github.com/rje42/causl, 2021.

Evans and Didelez. Parameterizing and Simulating from Causal Models (with discussion), *JRSS-B*, 2023.

Havercroft and Didelez. Simulating from marginal structural models with time-dependent confounding, *Stat. Med.*, 2012.

Keogh, Seaman, Gran, Vansteelandt. Simulating longitudinal data from marginal structural models using the additive hazard model, *Biom. J.*, 2021.

Lin and Evans. Many Data: Combine experimental and observational data through a power likelihood. *arXiv:2304.02339*, 2023.

Richardson, Evans, Robins, Shpitser. Nested Markov properties for acyclic directed mixed graphs, *Ann. Statist.*, 2023.

Robins. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect, *Math. Modelling*, 1986.

Robins. Marginal structural models versus structural nested models as tools for causal inference. In *Statistical Models in Epidemiology, the Environment, and Clinical Trials*, (pp. 95–133). 2000.

### References II

Robins and Wasserman. Estimation of Effects of Sequential Treatments by Reparameterizing DAGs, *UAI*, 1997.

Young, Hernán, Picciotto and Robins. Simulation from Structural Survival Models under Complex Time-Varying Data Structures. *JSM Proceedings, Section on Statistics and Epidemiology*, 2008.

Young, Hernán, Picciotto and Robins. Relation between three classes of structural models for the effect of a time-varying exposure on survival. *Lifetime Data Analysis*, 2010.

Young and Tchetgen Tchetgen. Simulation from a known Cox MSM using standard parametric models for the g-formula, *Stat. Med.*, 2014.

### Joint distribution

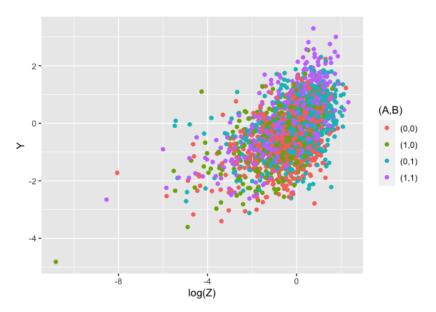
Let P be the distribution of interest,  $P^*$  its interventional counterpart.

We have

$$p^*(z,x,y) = p(z,x,y) \cdot \frac{p^*(z,x)}{p(z,x)}$$
$$= p(z,x,y) \cdot \frac{p^*(x) \cdot w(z \mid x)}{p(x,x)}$$
$$= p^*(x) \cdot w(z \mid x) \cdot p(y \mid z,x).$$

Note this factorization is not in the (standard) causal order.

### Plot of Data



### Structural Nested Mean Models

A **structural nested mean model** is defined by considering *blips* of treatment at each time-point; e.g.

$$\theta(\overline{z}_t, \overline{x}_{t-1}) := b_t(\overline{z}_t, \overline{x}_{t-1}, 1) - b_t(\overline{z}_t, \overline{x}_{t-1}, 0)$$

where

$$b_t(\overline{z}_t, \overline{x}_{t-1}, \underline{x}) := \mathbb{E}[Y | \overline{z}_t, \overline{x}_{t-1}; do(X_t = \underline{x}, \underline{X}_{t+1} = 0)].$$

These models are more flexible than marginal structural models, as they allow for the incorporation of the covariate history into the causal effect.

### Structural Nested Mean Models

We can also parameterize this using a frugal parameterization at each time t.

#### Definition

Consider for t = 1, ..., T:

- $P(z_t, x_t | \overline{z}_{t-1}, \overline{x}_{t-1})$  (i.e. 'the past');
- $\theta(\overline{z}_t, \overline{x}_{t-1})$  (the parameter of interest);
- a conditional dependence measure between Y and  $Z_t$  given  $\overline{X}_t, \overline{Z}_{t-1}$ .

Then one can see that by building up from time t-1 to time t we go from

$$\mathbb{E}[Y \mid \overline{z}_{t-1}, \overline{x}_{t-1}; do(\underline{0}_t)] \quad \text{to} \quad \mathbb{E}[Y \mid \overline{z}_t, \overline{x}_t; do(\underline{0}_{t+1})];$$

i.e. the same thing with t replaced by t + 1.

## Example

Suppose we wish to model

$$Y \mid do(X = x) \sim \mathsf{Gamma}(\mu_x, \phi \mu_x^2)$$

where  $\mathbb{E}[Y \mid do(X = x)] = \mu_x = \exp(\beta_0 + \beta_1 x)$ ; along with specifying that

$$Z \sim N(\nu, \ au^2),$$
  $\log X \mid \{Z = z\} \sim N(lpha_0 + lpha_1 z, \sigma^2)$ 

and that there is a Gaussian copula between Y and Z with partial correlation  $2 \exp it(\gamma_0 + \gamma_1 x) - 1$ .

This specification is guaranteed to give a unique joint distribution, for any values of  $\nu, \tau^2, \alpha_0, \alpha_1, \beta_0, \beta_1, \phi, \gamma_0, \gamma_1$  and  $\sigma^2$ .

## Example

Suppose we pick:

$$egin{array}{lll} lpha_0 = -1 & lpha_1 = 1 & eta_0 = -4 & eta_1 = 0.5 \\ \gamma_0 = 0.5 & \gamma_1 = 0.02 & 
u = 0 & \sigma^2 = au^2 = 1 & \phi = 2 \end{array}$$

We can simulate very quickly to obtain (say)  $10^4$  observations from  $P^*$ .

# Copula Model Example

Recall our simulation with  $n = 10^4$  observations.

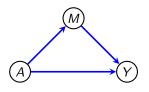
If we fit an ordinary (i.e. unweighted) linear model with

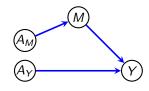
$$\mathbb{E}[Y \mid A = a, B = b] = \beta_0 + \beta_A a + \beta_B b + \beta_{AB} ab,$$

then the results are wrong:

| parameter   | truth | estimate | bias   | s.e.  | z-value | p-value               |
|-------------|-------|----------|--------|-------|---------|-----------------------|
| intercept   | -1.0  | -1.120   | -0.120 | 0.022 | -5.53   | $3.16 \times 10^{-8}$ |
| Α           | 0.5   | 0.550    | 0.050  | 0.033 | 1.52    | 0.13                  |
| В           | 0.5   | 0.656    | 0.156  | 0.028 | 5.51    | $3.67 \times 10^{-8}$ |
| $A \cdot B$ | 0.0   | -0.061   | -0.061 | 0.041 | -1.47   | 0.14                  |

### Mediation Models





Non-parametric mediation models typically ask what would happen if distinct treatment values were passed to the outcome Y and the mediator M, so they ask (e.g.) about the **natural** (in)direct effect (NDE/NIE):

$$NDE = \mathbb{E}[Y \mid do(A_M = 0, A_Y = 1)] - \mathbb{E}[Y \mid do(A_M = 0, A_Y = 0)]$$
  
 $NIE = \mathbb{E}[Y \mid do(A_M = 1, A_Y = 1)] - \mathbb{E}[Y \mid do(A_M = 0, A_Y = 1)].$ 

The difficulty for the frugal parameterization is that we must enforce  $Y \perp \!\!\! \perp A_M \mid A_Y, M$  and model  $p(y \mid a_M, a_Y)$ ; this does not usually lead to congenial models.

# Generalising Odds Ratios

Let p be a density for X, Y.

The **odds ratio** for X,Y is the equivalence class of functions  $\phi_{XY}$  such that

$$\phi_{XY}(x,y) = \rho(x,y) \cdot u(x) \cdot v(y).$$

some functions u, v > 0.

#### Some points to note:

- defined for any distribution with a density;
- p is a member of the equivalence class;
- there's no requirement for p to be positive;
- iterative proportional fitting recovers the joint distribution.

# **Specifying Margins**

Let  $r_{XY}(x, y)$  be a joint distribution with odds ratio  $\phi_{XY}$ .

#### **Theorem**

Let  $p_X$  and  $p_Y$  be densities such that  $p_X \ll r_X$  and  $p_Y \ll r_Y$ . Then there exists a unique joint distribution with margins  $p_X$ ,  $p_Y$  and odds ratio  $\phi_{XY}$ .

This follows from Csiszár (1975).

This is a form of **variation independence**: we can paste together essentially any dependence structure with any margins and get a distribution.

# Odds Ratio Examples

- For discrete variables this reduces to the 'usual' odds ratio;
- for Gaussian variables:

$$\phi_{XY} \sim \exp\left(\frac{
ho xy}{\sigma_x \sigma_y (1 - 
ho^2)}\right)$$

• multivariate *t*-distribution  $(\mathbf{x} = (x, y)^T)$ :

$$\phi_{XY} \sim \left(1 + \nu^{-1} \boldsymbol{x}^T \Sigma^{-1} \boldsymbol{x}\right)^{-\nu/2 - 1}$$

# Margins

Let's think about the simplest example of this kind.



$$p(y \mid do(x)) = \sum_{z} p(z)p(y \mid x, z).$$

This is a 'margin' of the joint distribution

$$p^*(z,y\mid x)\equiv p(z)p(y\mid x,z).$$

To work with  $P^*$  we need to model the XY-margin (because that's the quantity of interest) and the XZ-margin (to enforce the independence).

So what's left to know?

### Odds Ratios



Bergsma and Rudas' results show that the remaining information is precisely the odds ratio between Y and Z conditional upon X.

Any additional information given the dependence ratio,  $p(y \mid do(x))$ , and p(x, z) would be redundant.

### **Odds Ratios**



There's nothing to stop us specifying that the parameters  $\beta$  and  $\gamma$  are from this model:

logit 
$$p(y | x, z) = \mu + \alpha x + \beta z + \gamma xz$$
.

But  $\mu$  and  $\alpha$  are **not free**.

Take home message—you can have part of a nice model on X, Y, Z that includes  $p(y \mid do(x))$ ; just don't expect all of it!

## g-null Paradox Illustration

Suppose that we have continuous X and Y, but binary Z.



An innocuous seeming model would be:

$$\mathbb{E}[Y \mid X = x, Z = z] = \mu + \beta x + \gamma z.$$

But:

$$\mathbb{E}[Y \mid X = x] = \sum_{z} \mathbb{E}[Y \mid X = x, Z = z] \cdot P(Z = z \mid X = x)$$
$$= \mu + \beta x + \gamma P(Z = 1 \mid X = x).$$

Now  $P(Z=1 \mid X=x)$  can't be a linear function of x (unless it's constant). So  $\mathbb{E}[Y \mid X=x]$  is only a linear function if either:

- $Z \perp \!\!\! \perp X$ ; or
- $\gamma = 0$  (so  $Y \perp \!\!\! \perp Z \mid X$ ).