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Setting

• Observation space Y, equipped with some reference measure µ.

• Parameter space Θ, equipped with some probability measure ν.

• A non-negative function ϱ : Y ×Θ → [0,∞) such that

∀θ ∈ Θ: Z (θ) =

∫
Y
ϱ(y |θ)µ(dy) ∈ (0,∞).
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Setting – II

Given y ∈ Y consider the density (w.r.t. (Θ, ν)):

p(θ|y) = 1

Cy

ϱ(y |θ)
Z (θ)

,

with normalizing constant Cy =
∫
Θ

ϱ(y |θ)
Z(θ) ν(dθ).

One can interpret p(θ|y) as posterior density with

• Likelihood function ϱ(y |θ)
Z(θ) .

• Prior distribution ν.
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Setting – III

Goal: Given observation ȳ extract information from distribution π, where

π(dθ) = p(θ|ȳ)ν(dθ) = 1

Cȳ

ϱ(ȳ |θ)
Z (θ)

ν(dθ).

Problems:

• Evaluating Z (·) is computationally infeasible.

• Normalizing constant Cȳ is not known.

So π contains two unknown quantities and is therefore called doubly intractable.

However, we still want to extract information from π.
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Classical MCMC in our setting

Classical MCMC methods use a Markov Chain (ξ̃n)n∈N0 such that:

• (ξ̃n)n∈N0 has kernel K , i.e., P(ξ̃n ∈ A|ξ̃n−1 = θn−1) = K (θn−1,A).

• The ‘limit distribution’ is given by π.

• Limit theorems ensure that (ξ̃1, . . . , ξ̃n) approximates π (in some sense).

What is required for implementing such a method?

• Not knowing Cȳ is fine.

• Not having access to Z (θ) is problematic.
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Methods for the doubly intractable setting

A number of methods have been suggested and studied to tackle the doubly
intractable setting, including

• Approximate Bayesian Computation (ABC) algorithms Marin et al. (2012); ...

• Noisy MCMC Alquier et al. (2016); Habeck et al. (2020); ...

• Pseudo-marginal methods Andrieu and Roberts (2009); ...

• Auxiliary variable methods Møller et al. (2006); Murray et al. (2006); ...

• ...

Let me also recommend the review paper Park and Haran (2018) about MCMC
methods in the doubly intractable setting.
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Our approach: Adaptive MCMC

Recently, there were promising results in biophysics Eltzner et al. (2023), Habeck
(2014).

Additionally, one can prove that adaptive MCMC methods work in the doubly
intractable setting Atchadé et al. (2013); Liang et al. (2016).

Goal: Better understanding of error behaviour of adaptive MCMC.

This talk:

• Introduce (some basics) of adaptive MCMC.

• Provide error bounds in the doubly intractable setting.

• Have a look at a toy example, the Ising model.
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Some basics of adaptive MCMC

Adaptive MCMC methods construct a sequence of random variables (ξ̃n)n∈N0 via

• A family of transition kernels {Kγ}γ .
• A sequence of random variables (Γn)n∈N.

Each ξ̃n is specified by

P
[
ξ̃n ∈ A | ξ̃n−1 = x , Γn−1 = γ

]
= Kγ(x ,A).

• (ξ̃n)n∈N in general is non-markovian.

• Each transition kernel Kγ may have a different invariant distribution πγ .
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Back to the doubly intractable setting

Idea: Approximate Z by Zn and work with

pn(θ|ȳ) =
1

C
(n)
ȳ

ϱ(ȳ |θ)
Zn(θ)

,

with distribution πn(dθ) = pn(θ|ȳ)ν(dθ).

Having already computed θ0, θ1 . . . , θn use the following scheme:

1) Compute (randomized) estimator Zn for Z .

2) Sample (approximately) via MCMC from πn; return result θn+1.
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Illustration

θ0

Z0

π0

θ1

θ0, θ1

Z1

π1

θ2

... (θk )
n
k=0

Zn

πn

θn+1...

...
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Some properties of the process

Sequence (θn)n∈N0 provides a realization of a sequence of random variables (ξn)n∈N0 .

Some observations:

• Each ξn+1 is related to kernel KZn and limit distribution πn.

• In each step kernel and limit distribution change.

• ξn+1 may depend on the whole history ξ0, . . . , ξn.

Question: Can we use (ξn)n∈N0 to approximate π (in some sense)?
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Some known results

Given certain regularity conditions adaptive MCMC algorithms satisfy

• A strong law of large numbers for bounded functions Atchadé et al. (2013).

• A weak law of large numbers for integrable functions Liang et al. (2016).

That is, we have

lim
n→∞

1

n

n∑
j=1

h(ξj) =

∫
Θ
h(θ)π(dθ),

almost surely, or in probability for a suitable class of functions.

Question: Can we have bounds of the error?
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Theoretical results – some assumptions

We consider the following “regularity conditions”:

• We assume that Z and the estimators Zn are contained in a suitable class of
functions C .

• Given ξn = yn and Zn = zn we assume that

ξn+1 ∼ Kmn
zn (yn, ·).

• Assume that for any z ∈ C kernel Kz has invariant distribution πz and that for
any n ∈ N0 holds

sup
θ∈Θ

∥∥Kmn
Zn

(θ, ·)− πn
∥∥
tv

≤ r ,

for some r ∈ (0, 1).
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Theoretical results – Error bound

Theorem

Assume the above regularity conditions and that for n ∈ N0 a.s. holds

E|Zn(θ)− Z (θ)|2 ≤ an and sup
θ∈Θ

∥∥Kmn
Zn

(θ, ·)− πn
∥∥
tv

≤ rn,

where (an)n∈N0 , (rn)n∈N0 ∈ RN0 . Then, for any n ∈ N and h ∈ L∞(Θ, ν) we have

E

∣∣∣∣∣∣1n
n∑

j=1

h(ξj)−
∫
Θ
h(θ)π(dθ)

∣∣∣∣∣∣
2

≤ C ∥h∥2∞

1

n
+

1

n

n∑
j=1

(aj + r2j )

 ,

where C ∈ (0,∞) does not depend on h or n.
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A nice consequence

The above result in particular yields a convergence rate which is uniform over all h
with ∥h∥∞ ≤ 1.

Corollary

Under the assumptions of the above theorem, there exists a constant C ∈ (0,∞) such
that for any n ∈ N holds

sup
∥h∥∞≤1

E

∣∣∣∣∣∣1n
n∑

j=1

h(ξj)−
∫
Θ
h(θ)π(dθ)

∣∣∣∣∣∣
2

≤ C

1

n
+

1

n

n∑
j=1

(aj + r2j )

 .
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Theoretical results – CLT

Theorem

Assume the regularity conditions above and that for some α > 1/2 and n ∈ N0 holds

E|Zn(θ)− Z (θ)|2 ≲ 1

nα
and sup

θ∈Θ

∥∥Kmn
Zn

(θ, ·)− πn
∥∥
tv

≲
1

nα
.

Then, for any measurable and bounded h, with σ(h)2 = π(h2)− π(h)2 ̸= 0 we have

1√
nσ(h)

n∑
j=1

(h(ξj)− π(h)) −→ N (0, 1),

in distribution as n → ∞.

Here π(g) =
∫
Θ g(θ)π(dθ).
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Some remarks about our results

Our result shows that we can split the error of adaptive MCMC integration into:

• One part which matches the “iid rate”.

• One part which is only depending on approximation error of Z .

• One part which reflects “how good” sampling from πn is possible.

Note that the error is w.r.t. to the integral
∫
Θ h(θ)π(dθ), which in particular means we

can have an asymptotic exact method.

The estimator(s) Zn need not satisfy additional conditions such as unbiasedness or
being iid (but the theorem also works if they do).
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Some remarks about our results – computational costs

Computational costs of our method to get {ξ1, . . . , ξn}:

• The costs to obtain the Zn’s, which depend on the specific estimator one uses.

• The MCMC steps to sample from the πn’s, which are
∑n−1

j=0 mj .

• In each MCMC step (for sampling from πn) evaluation(s) of Zn may be required
which also could be “expensive”.

The choice of (mn)n∈N0 as well as Zn are problem specific, however, finding a “clever”
estimator Zn may pay off in the computational costs.
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Main idea of the proofs

We split the Monte Carlo sum into three parts:

n∑
j=1

h(ξj)− π(h) = Mn + R1(n) + R2(n),

with

• a martingale part Mn,

• R1 only depending on E|Zn(θ)− Z (θ)|2,
• R2 only depending on supθ∈Θ

∥∥Kmn
Zn

(θ, ·)− πn
∥∥
tv
.
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Main idea of the proofs – II

Thereto we solve Poisson’s equation: Given h : Y → R find uγ such that

uγ(y)− Kγuγ(y) = h(y)− πγ(h).

Having computed the uγ ’s we can use it within the sum

n∑
j=1

(h(ξj)− πj(h)) ,

which yields the desired martingale decomposition.
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Example: Ising model

We consider an Ising model with M1 ×M2 nodes

X =
{
{xi ,j}M1−1,M2−1

i=0, j=0 : xi ,j ∈ {−1, 1}
}

and energy function

E (x) = −
M1−1∑
i=0

M2−1∑
j=0

xi ,j · (x(i+1 mod M1 , j) + x(i , j+1 mod M2)).

Set

• Y = {y : ∃x ∈ X with y = E (x)}
• Θ = [0,K ] for some K < ∞
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Example: Ising model – II

We have ϱ(y |θ) = exp(−y · θ) and

Z (θ) =
∑
x∈X

ϱ(E (x)|θ) as well as p(θ|y) = 1

Cy

ϱ(y |θ)
Z (θ)

.

For Zn based on Importance Sampling and h ∈ L∞(Θ) we can show:

E

∣∣∣∣∣∣1n
n∑

j=1

h(ξj)− π(h)

∣∣∣∣∣∣
2 ≤ C ∥h∥∞

1

n

with C ∈ (0,∞) independent of n and also a CLT can be shown.
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Example: Ising model – Setup for numerics

We did some simulations for the Ising model with the following parameters:

• Grid size: 16× 16 (so 2256 summands in Z ).

• Posterior is w.r.t. a measurement with true inverse temperature 0.2.

• Estimators Zn are based on importance sampling.

• Choice of mn = 100 + (n mod 250).

Time for computing a sample of size 30000: roughly 15 – 20 minutes.
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Example: Ising model – Numerics
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Example: Ising model – Numerics II
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Example: Ising model – Numerics III
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Summary and outlook

Main message:

Explicit error bounds for adaptive MCMC within
the doubly intractable setting are available.

Possible further topics to explore:

• Not only use the last step of the chains targeting πn.

• Try to weaken the uniform ergodicity assumption.
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Thank you for listening!
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