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Both research fields estimate expectations wrt some 
probability distribution 𝝅(𝒙; 𝜷, 𝜽) ∝ 𝒆!𝜷𝑼(𝒙;	𝜽)



Bayesian inference

• 𝝅 𝒙	 𝒚, 𝜷, 𝜽) ∝ 𝒆!𝜷𝑼 𝒙	 𝒚,	𝜽)

• Fix hyperparameters 𝜷, 𝜽.

• Encode input data 𝒚 via likelihood…

• …and estimate expectations wrt 𝒙.

Statistical physics

• 𝝅(𝒙; 𝜷, 𝜽) ∝ 𝒆!𝜷𝑼(𝒙;	𝜽)

• Defined independent of input data.

• Expectations are functions of 𝜷 and 𝜽.

• 𝜷, 𝜽 are thermodynamic parameters, 
eg, system temperature ≡ 𝟏/𝜷.



Fig.: Murayama, Kasahara, Matsuda (2020)

Liquid to solid

Expected potential variance per particle 
(black) is non-analytic at 𝜷c

magnetic to non-magnetic

Fig.: Faulkner & Livingstone, Stat. Sci., in press (2023)



Fig.: Pampel & Valsson, J. Chem. Theory Comput. 18, 4127 (2022)

…Bayesian computation

Metastability informs…

𝜷U(x)

x

Diverging barrier height 
blocks access to right-hand 

well of potential 𝜷U(x)



•Statistical physics and phase transitions

•Metastability and Wolff algorithm

•Continuous state spaces and ECMC



(a)

2D hard-disk model

𝝅𝐝𝐢𝐬𝐤𝐬 = 𝟎 or  constantUIsing	= − 𝑱
𝟐
∑𝒊$𝟏𝑵 ∑𝒋	∈	𝑺𝒊 𝒙𝒊𝒙𝒋 , 𝒙𝒊 = ±𝟏

2D Ising model



(a)

𝝅𝐝𝐢𝐬𝐤𝐬 = 𝐜𝐨𝐧𝐬𝐭.

(b)

𝝅𝐝𝐢𝐬𝐤𝐬 = 𝟎



(a)

Periodic boundary conditions



• With 𝝌(𝒙; 𝜷, 𝜽,𝑵) some observable…

• Thermodynamic phase space (TPS) of 𝝌(𝒙; 𝜷, 𝜽,𝑵) is lim
𝑵→'

𝔼[𝝌 𝒙; 𝜷, 𝜽,𝑵 ]
as a function of 𝜷 and 𝜽.

• Thermodynamic phase: any open and connected region of TPS where 
lim
𝑵→'

𝔼[𝝌 𝒙; 𝜷, 𝜽,𝑵 ] is analytic.

• Phase transition: any boundary between any two thermodynamic phases.

Thermodynamic phase space



…but no phase transition has 
been detected in 1D case

Figs: Faulkner & Livingstone, Stat. Sci., in press (2023)
Theory: Onsager, Phys. Rev. 65, 117 (1944); Ising, Z. Physik 31, 253 (1925)

2D Ising model has non-analytic 
expectations at 𝜷 = 𝜷𝐜…

UIsing	= − 𝑱
𝟐
∑𝒊+𝟏𝑵 ∑𝒋	∈	𝑺𝒊 𝒙𝒊𝒙𝒋 , 𝒙𝒊 = ±𝟏



•Statistical physics and phase transitions

•Metastability and Wolff algorithm

•Continuous state spaces and ECMC



• Single active particle 𝒂 ∈ 𝟏,… ,𝑵

• 𝒙𝒂2 = −𝒙𝒂

• 𝚫UIsing	= 𝑱∑𝒋	∈	𝑺𝒂 𝒙𝒂𝒙𝒋

• Accept 𝒙𝒂2 w/prob 𝐦𝐢𝐧 𝟏, 𝐞𝐱𝐩 −𝜷𝚫UIsing

• NB, one unit of MC time corresponds to N 
attempted particle moves

2D Ising model



• Magnetisation: 𝒎 𝒙;𝜷, 𝑱, 𝒉, 𝑵 ≔ 𝟏
𝑵
∑𝒊3𝟏𝑵 𝒙𝒊

• 𝔼 𝒎 𝒙;𝜷𝑱, 𝒉 = 𝟎,𝑵 = 𝟎	 for all  𝜷 < ∞	 (spin-flip symmetry)

• So 𝟏
𝝉𝒏
∑𝒕3𝝉𝟏
𝝉𝒏 𝒎(𝒙𝒕; 𝜷𝑱, 𝒉 = 𝟎,𝑵) → 𝟎 on some timescale 𝝉𝒏

• But at low temperature and w/Metropolis dynamics… 

• …𝝉𝒏	diverges with system size N



Right-hand figs: Faulkner & Livingstone, Stat. Sci., in press (2023)

Low-temp Metrop dynamics freeze…

…as neighbours are typically aligned

Metastable dynamics result in 
m(t) close to 1 at low temp.



1. Randomly pick base lattice site for new cluster

2. Add aligned neighbours (to cluster) with 
probability  𝒑	 ≔ 	𝟏 − 𝒆!𝟐𝜷𝑱

3. Repeat step 2 for each new spin…

4. …and flip entire cluster with probability one.

Flips entire clusters of aligned 
spins in ‘intelligent’ way

Algorithms: Swendsen & Wang, PRL 58, 86 (1987); Wolff, PRL 62, 361 (1989)
Fig.: Jorge L. deLyra, Sao Paulo Physics
Proof: Faulkner & Livingstone, Stat. Sci., in press (2023)

Wolff algorithm



Figs: Faulkner & Livingstone, Stat. Sci., in press (2023) (N = 32x32 spins)

Magnetisation: 𝒎 𝒙;𝜷, 𝑱, 𝒉, 𝑵 ≔ 𝟏
𝑵
∑𝒊3𝟏𝑵 𝒙𝒊



Experimental-theoretical discrepancies are essence of symmetry breaking

Figs: Faulkner & Livingstone, Stat. Sci., in press (2023) (N = 32x32 spins)
Metropolis convergence: Neal & Roberts, Ann. Appl. Probab. 16 475 (2006) 



Berry, Physics Today 55, 10 (2002)

lim
!↓𝟎

lim
𝑵→&

𝔼𝒎 𝒙;𝜷𝑱, 𝒉, 𝑵 ≠ 𝟎 = lim
𝑵→&

lim
!↓𝟎

𝔼𝒎 𝒙;𝜷𝑱, 𝒉, 𝑵

Thermodynamic limit of expected magnetisation
is singular for all 𝜷 > 𝜷𝐈𝐬𝐢𝐧𝐠



Figs: Walter & Barkema, Physica A 418, 78 (2015)

𝜷 ≈ 𝜷𝐜 𝜷 ≪ 𝜷𝐜𝜷 ≫ 𝜷𝐜



Top figs: Walter & Barkema, Physica A 418, 78 (2015); bottom figs: Anshul Kogar

𝜷 ≈ 𝜷𝐜 𝜷 ≪ 𝜷𝐜𝜷 ≫ 𝜷𝐜

Low-temperature bimodal

m = 0

U
(m

)

High-temperature unimodal

m = 0

U
(m

)

Critical flattening

m = 0

U
(m

)



Figs: Faulkner & Livingstone, Stat. Sci., in press (2023) (N = 64x64 spins in top panel)

Fig. (c) is now near the transition
where growing correlated clusters 

induce strong autocorrelations



Figs: Faulkner & Livingstone, Stat. Sci., in press (2023) (N = 64x64 spins in top panel)



Figs: Faulkner & Livingstone, Stat. Sci., in press (2023)



•Statistical physics and phase transitions

•Metastability and Wolff algorithm

•Continuous state spaces and ECMC



(a)

…were first applied to hard disks

(b)

ECMC and Metrop. algorithms…



• Evolve single particle at each iteration

• 𝒙𝒂2 = 𝒙𝒂 ⨁𝒖, where…

• 𝒖𝒋	~	𝓤(−𝜺, 𝜺) for 𝒋 ∈ 𝟏,… , 𝒅 , 𝜺 > 𝟎

• …and ⨁ indicates addition on torus

• Accept/reject configs without/with overlaps

Algorithm: Metropolis et al., J. Chem. Phys. 21, 1087 (1953)
Fig.: Bernard, Krauth & Wilson, Phys. Rev. E 80, 056704 (2009)

Discrete moves è rejections

Metropolis move accepted



Figure 2.2: Initial and thermalized configurations with the Markov-chain Monte Carlo method
for 322 disks at η = 0.710. Left: The initial configuration is a triangular lattice. Right:

Configuration after thermalization, each disk has been displaced 5 × 109 times.

condition. Let φ(A → B) be the probability flux from A toward B, two subsets of the
configuration space. For the stationary distribution π, the flux φ satisfies

∀A ⊂ Ω φ(A → Ω) = φ(Ω → A) , (2.9)

which expresses the balance of the probability fluxes in and out of each subset of the
configuration space at the stationary distribution. In a discrete configuration space, this
equality can be written as

∀ i ∈ Ω π(i) ∑
j∈Ω

P(i → j) = ∑
j∈Ω

π(j)P(j → i) . (2.10)

For simplicity, most Markov chains satisfy a stronger condition, the detailed-balance
condition, which itself implies the balance condition. The detailed-balance condition is
given by

∀A, B ⊂ Ω φ(A → B) = φ(B → A) , (2.11)

and it expresses the equality of probability fluxes between each pair of subsets at the
stationary distribution. This condition is related to the time reversibility of molecular
dynamics, and is sometimes known as micro-reversibility. In a discrete configuration
space, the above equality becomes

∀ i, j ∈ Ω π(i)P(i → j) = π(j)P(j → i). (2.12)

This condition implies that the Markov chain and its probability distribution are diffusive.
For hard disks, as the distribution is uniform, the detailed-balance condition is expressed
by P(i → j) = P(j → i) (between valid configurations) which is referred to as the
reversibility of the algorithm.

In Section 2.2, we will see that the event-chain algorithm allows the detailed-balance
condition to be broken, that is, only the balance condition of Eq. (2.9) is satisfied. This
property is not common for Monte Carlo algorithms, and it allows speeding-up of the
equilibration.

45

𝝅(overlaps / no overlaps) = 0 / Unif.

Hard-disk model

Discrete moves ⟹ rejections

Tightly packed 
clusters ⟹ high 
rejection rates

Left-hand fig.: Bernard, PhD thesis, ENS (2011)
Right-hand fig.: Bernard, Krauth & Wilson, Phys. Rev. E 80, 056704 (2009)



Event-chain Monte Carlo

Lcoll

∆x

∆y

Figure 2.12: Event-chain move in the +x direction. The cell scheme is shown in red. Left:

A single displacement, only 6 cells is explored for a possible collision. Lcoll can be computed
in a simple way without trigonometric functions. If the displaced particle is crossing its cell
boundary, the new cell is necessarily the one on the right. Right: A complete move during the
thermalization of 642 disks at η = 0.706. The displaced disks are colored in dark gray. The
length of the move is chosen to be ! ∝

√
N. The only parameter to optimize is the size of the

cells.

a lower precision of the numbers. In a 64 bytes processor, the CPU time needed to
perform a computation with simple (32 bytes) or double-precision (64 bytes) is identical.
However the allocation of the memory is important in the optimization. Indeed, it takes
roughly ∼ 1 CPU cycle to access the registers memory, ∼ 10 cycles to access cache
memory, ∼ 100 cycles to access RAM memory, and ∼ 1000 cycles to access hard-drive
memory. The goal is to store the maximum amount of data in the fastest, but smallest,
memory level. In that sense, the precision of numbers is reduced to single precision.

Other improvements were achieved by optimizing each computation. This was done
by exploring the program with a profiler which computes the exact time spent in each
part of the program. This “fine-tuning”proved efficient. The last step was to find the best
optimization option for the compiler, the simplest one “-O2” for Gfortran being already
very efficient.

The optimized code performs more than 3.1010 displaced disks for systems up to
N = 2562. For larger systems, this speed drops to 1010 displaced disks per hour for a
N = 20482 system. This speed roughly corresponds to one displacement per 100 CPU
cycles, a value that could be still improved by coding the time-consuming subroutines
in assembly language, the code would then be CPU specific. This would allow one to
allocate memory in a precise way; the disks which are likely to be part of the move could,
for example, be already stored in registers or cache memory.

59

Chain of events traverses system

Nonreversible, continuous moves è
events replace rejections

Right-hand fig.: Bernard, PhD thesis, ENS (2011)Left-hand fig.: Krauth, unpublished



Random coordinate switches…
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…to sample along both dimensions

Right-hand fig.: Bernard, PhD thesis, ENS (2011)Left-hand fig.: Krauth, unpublished



xy refreshment… …vs uniform refreshment

𝝅-invariance: Andrieu & Livingstone, Ann. Stat. 49, 1958 (2021)
Left-hand fig.: Krauth, unpublished
Right-hand fig.: Bernard, PhD thesis, ENS (2011)



form a thermodynamically stable loop due to the interface
free energy. The pressure loop in the coexistence window of
a finite system is caused by the curved interface between a
bubble of minority phase and the surroundingmajority phase
[see Fig. 2(b) and 2(d)]. In a system with periodic boundary
conditions, the pressure loop contains a horizontal piece
corresponding to the ‘‘stripe’’ regime, where the interfaces
are flat. This is visible near !! 0:708 for the largest sys-
tems in Fig. 2. In a finite system, the Maxwell construction
suppresses the interface effects. For the equation of state of
Fig. 2(a), this construction confirms the boundary densities
! ¼ 0:700 and ! ¼ 0:716 of Fig. 1 for the coexistence
interval, with very small finite-size effects. The interface
free energy per disk, the hatched area in Fig. 2, depends on
the length /

ffiffiffiffi
N

p
of the interface in the stripe regime so that

!f ¼ !F=N / 1=
ffiffiffiffi
N

p
[see Fig. 2(f)].

The first-order nature of the transition involving the
liquid is thus established by (i) the visual evidence of phase
coexistence in Fig. 1, (ii) the / 1=

ffiffiffiffi
N

p
scaling of the inter-

face free energy per disk [23], and (iii) the characteristic
shape of the equation of state in a finite periodic system
[24–26]. We stress that the system size is larger than the
physical length scales so that the results hold in the ther-
modynamic limit (see [22]).
In the coexistence interval, the individual phases are

difficult to analyze at large length scales because of the
fluctuating interface, and only the low-density coexisting
phase is identified as a liquid with orientational correlations
below a scale of !100" [see Figs. 1(a) and 1(d)]. Unlike
constant NV simulations, Gibbs ensemble simulations can
have phase coexistence without interfaces, but these

FIG. 2 (color). Equilibrium equation of state for hard disks.
The pressure is plotted vs volume per particle [v ¼ V=N) (lower
scale) and density ! (upper scale)]. In the coexistence region, the
strong system-size dependence stems from the interface free
energy. The Maxwell constructions (horizontal lines) suppress
the interface effects (with a convex free energy) for each N.
Stripe [(c), for N ¼ 10242] and bubble configurations (b), (d) are
shown in the coexistence region, together with two single-phase
configurations (a), (e). The interface free energy per disk #!f
(hatched area) scales as 1=

ffiffiffiffi
N

p
(f).

FIG. 1 (color). Phase coexistence for 10242 thermalized hard disks at density ! ¼ 0:708. (a) Color-coded local orientations "k

showing long orientational correlations [blue region, see (b), (c)] coexisting with short-range correlations [see (d)]. (e) Local densities
(averaged over a radius of 50"), demonstrating the connection between density and local orientation (see [22]). In (b), (c), and (d),
disks with five (seven) neighbors are colored in gray (black).

PRL 107, 155704 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 OCTOBER 2011

155704-2

Figure 1(a) shows a typical experimental image of the
colloidal monolayer in sedimentation-diffusion equilibrium
at a tilt angle α ¼ 0.56°. Here, the structure is seen to vary
from that of a dilute liquid at large z to a dense ordered
phase at small z. Crucially, the width of the region over
which this transition occurs increases with decreasing tilt
angle, allowing for a detailed investigation of the full phase
behavior of the system (see Supplemental Material [35] for
experimental images of the monolayer at all tilt angles).
From the tracked particle positions, we determine the
density profiles, ϕðzÞ, which are linked to the equation
of state as

Π
ρkBT

¼ 1

hg∥

1

ϕðzÞ

Z
∞

z
ϕðz0Þdz0; ð1Þ

where Π is the osmotic pressure, ρ the number density,
kB the Boltzmann constant, and T the temperature.
As the experimental equation of state in the liquid phase
is known to be accurately described by scaled particle
theory (SPT) [33,41], we obtain values of hg∥ by calculat-
ing the ϕðzÞ dependent part of Eq. (1) from the exper-
imental density profiles and then comparing this result in
the liquid phase with the SPTequation of state. Importantly,
this allows the tilt angle, α, to be determined directly from
the experimental data via hg∥, which thus acts as a very
sensitive internal calibration mechanism (see Supplemental
Material [35]).
The density profiles as a function of the height, z,

rescaled by hg∥, and the full equations of state each fall
onto a single curve for systems at different tilt angles and
Figs. 1(b) and 1(c) show the density profile and equation of
state averaged over the six tilt angles considered. Note that
the individual density profiles and equations of state do not
vary with tilt angle (see Supplemental Material [35]), which
implies that we observe consistent results despite hg∥
changing by almost an order of magnitude. Also shown
are the SPT expressions for these quantities in the liquid
phase, which are in excellent agreement with the exper-
imental data. Strikingly, the equation of state exhibits a
discontinuity at ϕ ≈ 0.68, shown more clearly in the inset
of Fig. 1(c). This is a clear signature of a first-order
transition and the width of the coexistence region can be
roughly estimated from the equation of state as Δϕ ≈ 0.02,
which is in agreement with the width of the liquid-hexatic
coexistence region found in simulations of hard disks
[11–14]. The equation of state provides no evidence for
another first-order transition at higher area fractions.
Next, to characterize the nature of the different phases,

we calculate the height-resolved bond-orientational corre-
lation function in time, g6ðtÞ, and the modified Lindemann
parameter, γLðtÞ [20] (see Supplemental Material [35]).
While g6ðtÞ probes the bond-orientational order, allowing
the liquid and hexatic phases to be distinguished, the long-
time limit of γLðtÞ probes the translational order [20,29],
which enables the transition between the hexatic and crystal
phases to be identified. In Fig. 2(a) we show the behavior of
g6ðtÞ at a wide range of area fractions, i.e., different heights,
for the sample tilted by α ¼ 0.25°. As the area fraction
increases, there is a clear change from an exponential decay
at low ϕ, characteristic of a liquid, to g6ðtÞ attaining a
constant value at high ϕ as expected for a crystal. Crucially,
however, at intermediate values of ϕ, the decay is algebraic,
g6ðtÞ ∼ t−η6=2, characteristic of a hexatic phase. The corre-
sponding measurement of the modified Lindemann param-
eter for the same sample is shown in Fig. 2(b). Upon
increasing area fraction, γLðtÞ exhibits the transient sub-
diffusive behavior at intermediate times as expected for a
hard disk system upon increasing area fraction [34,43].
However, there is a systematic change from a linear long-
time behavior at low area fractions, characteristic of the

(a)

(b) (c)
x

z

z

x

α

α

FIG. 1. The sedimentation-diffusion equilibrium for 2D colloi-
dal hard spheres. (a) A typical experimental image of the system
in sedimentation-diffusion equilibrium for a tilt angle of
α ¼ 0.56°. Inset, a schematic diagram of the experimental
geometry showing the effect of tilting the sample by a small
angle, α, and the resultant in-plane component of gravity. (b) The
density profile, ϕðzÞ, as a function of the height, z, rescaled by the
in-plane gravitational height, hg∥. The data shown are averaged
over samples at six different values of α, with error bars, arising
from the standard deviation of this average, smaller than the
symbol size. The solid red line indicates the prediction for the
density profile in the liquid phase from scaled particle theory
[41]. (c) The equation of state Π=ρkBT, averaged over six
different values of α, with error bars as in (b). The inset shows
an expanded view of the behavior of the equation of state in the
region of the discontinuity. The solid red line gives the prediction
of scaled particle theory for the range of area fractions character-
istic of a liquid, Π=ρkBT ¼ 1=ð1 − ϕÞ2. As a guide to the eye, the
solid blue line shows a semiempirical fit to the behavior at high ϕ
of Π=ρkBT ¼ a=ðϕcp − ϕÞ [42], where ϕcp is the area fraction at
close packing (ϕcp ≈ 0.91).
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Confirms ECMC numericsDisputed for 50 years

Right-hand fig.: Thorneywork et al., Phys. Rev. Lett. 118, 158001 (2017)Left-hand fig.: Bernard & Krauth, Phys. Rev. Lett. 107, 155704 (2011)



1 Peters & de With, Phys. Rev. E 85, 026703 (2012); Michel, Kapfer & Krauth, J. Chem. Phys. 140, 054116 (2014)

Continuous potentials1

• 𝝅hard(x) = 0 or const. ⟺ Uhard(x) = ∞ or finite…

• …so ECMC freely advances hard disks until dU/dxa = ∞…

• …but particles never collide in the case of continuous potentials U(x)

• è somehow account for continuous increases in U(x)?



• Consider m Metropolis translations of length 𝚫 in a fixed direction.

• Probability of translating active particle a through distance 𝜼 := m𝚫 is…

• 𝒑 𝒙𝒂 → 𝒙𝒂 + 𝜼 = ∏𝒊$𝟏
𝒎 𝐦𝐢𝐧 𝟏, 𝐞𝐱𝐩 −𝜷 𝑼 𝒙𝒂 + 𝚫𝒊 − 𝑼 𝒙𝒂 + 𝚫 𝒊 − 𝟏

       = 𝐞𝐱𝐩 −𝜷∑𝒊$𝟏𝒎 𝐦𝐚𝐱 𝟎,𝑼 𝒙𝒂 + 𝚫𝒊 − 𝑼 𝒙𝒂 + 𝚫 𝒊 − 𝟏
       → 𝐞𝐱𝐩 −𝜷∫𝟎

𝜼𝐦𝐚𝐱 𝟎, 𝛁𝒂𝑼(𝒙) 𝐝𝒙𝒂 as  𝚫 → 𝟎

• è Advance active particle at constant velocity 𝒗 from time 𝒕𝟎 ≥ 𝟎	and solve:

−	𝐥𝐨𝐠	𝚼 = 𝜷∫𝒕𝟎
𝒕𝜼𝐦𝐚𝐱 𝟎, 𝒗 S 𝛁𝒂𝑼(𝒙) 𝐝𝐭 where 𝚼	~ 𝓤[𝟎, 𝟏)…

• …to find the next event time 𝒕𝜼 ≔ 𝒕𝟎 + 𝜼/𝒗 (assuming no ‘boundary’ collisions).

• Particle i then becomes active w/prob. ∝ 𝐦𝐚𝐱 𝟎,−𝒗 S 𝛁𝒊𝑼 𝒙 𝒕𝜼 at 𝒕 = 𝒕𝜼.

Peters & de With, Phys. Rev. E 85, 026703 (2012); Michel, Kapfer & Krauth, J. Chem. Phys. 140, 054116 (2014)



• Need to integrate 𝒗 S 𝛁𝒂𝑼 𝒙 over only positive 
contributions…

• …but this is non-trivial for multiple particles

• So we have two options for Poisson process (PP):
1. Thinned PP: choose [𝒒𝒂 to overestimate event 

rate 𝒒𝒂 𝒙 ≔ 𝜷	𝐦𝐚𝐱 𝟎, 𝒗 S 𝛁𝒂𝑼(𝒙) , then 
confirm events with probability 𝒒𝒂 𝒙 /[𝒒𝒂 𝒙

2. 2-particle blocking: Sample Poisson process of 
each two-particle interaction and take shortest 
displacement (superposition of PPs)

Fig.: Manon Michel, PhD thesis, ENS (2015)

2-particle sampling



2DXY model

UXY	 = −𝑱∑𝒊+𝟏𝑵 ∑𝒋	∈	𝑺𝒊 𝐜𝐨𝐬 𝒙𝒊 − 𝒙𝒋 with 𝒙𝒊 ∈ (−𝝅,𝝅], J > 0



UXY	 = −𝑱∑𝒊$𝟏𝑵 ∑𝒋	∈	𝑺𝒊 𝐜𝐨𝐬 𝒙𝒊 − 𝒙𝒋 with 𝒙𝒊 ∈ (−𝝅, 𝝅], J > 0

E

ECMC rotates active spin 
until neighbouring veto



𝒎 𝒙;𝜷, 𝑱, 𝒉, 𝑵 ≔ 𝟏
𝑵
∑𝒊3𝟏𝑵 (𝐜𝐨𝐬	𝒙𝒊, 𝐬𝐢𝐧	𝒙𝒊)𝒕, 𝒙𝒊 ∈ (−𝝅,𝝅]

Faulkner, arXiv:2209.03699 (2022); Faulkner & Livingstone, Stat. Sci., in press (2023)



Faulkner, arXiv:2209.03699 (2022); Faulkner & Livingstone, Stat. Sci., in press (2023)



Faulkner, arXiv:2209.03699 (2022); Faulkner & Livingstone, Stat. Sci., in press (2023)

ECMC’s constant-speed dynamics circumvent critical slowing down?



1 Faulkner & Livingstone, Stat. Sci., in press (2023)

• Bayesians fix hyperparameters, whereas physicists vary them.

• Varying hyperparameters can induce metastability and critical slowing down.

• Physicists combat these phenomena w/sophisticated sampling algorithms.

• Future plans: use ECMC to characterise CSD in 2DXY model; explore Bayesian analogues.

• Also interested in 𝝅-invariance of canonical ECMC if anyone has any ideas!

• Thanks to Sam Livingstone1, EPSRC and Advanced Computing Research Centre (Bristol).

Summary and outlook



Example 2D Ising configuration

• UIsing	= − 𝑱
𝟐
∑𝒊+𝟏𝑵 ∑𝒋	∈	𝑺𝒊 𝒙𝒊𝒙𝒋 , 𝒙𝒊 = ±𝟏

• Spin—spin correlation length 
increases as temperature decreases

• è nonergodic Metropolis dynamics

• Wolff combats this by flipping clusters

Swendsen & Wang, PRL 58, 86 (1987); Wolff, PRL 62, 361 (1989)



• If some scalar observable 𝝌(𝒙; 𝜷, 𝜽,𝑵) is sum of O(N) random numbers…

• …and 
𝝈𝝌
𝔼 𝝌 can be made arbitrarily small as 𝑵 → ∞ (with lim

𝑵→7
𝔼[𝝌 𝒙; 𝜷, 𝜽, 𝑵 ] 	≠ 𝟎)…

• …then ∃	𝑵𝟎 ∈ ℕ s.t.  𝔼 𝝌 𝒙;𝜷,𝜽,𝑵+𝑵𝟎
FGH
𝑵→'

𝔼[𝝌 𝒙;𝜷,𝜽,𝑵 ] 	− 𝟏 < 𝜺 (with 𝜺 > 𝟎	immeasurably small)

• ⇒ thermodynamic limit (usually!) reflects macroscopic physics

Fundamental axiom



1D Ising model

• UIsing	= − 𝑱
𝟐
∑𝒊+𝟏𝑵 ∑𝒋	∈	𝑺𝒊 𝒙𝒊𝒙𝒋 	− 𝒉∑𝒊+𝟏

𝑵 𝒙𝒊 , 𝒉 ∈ ℝ

• 𝑭Ising
𝒅+𝟏 (𝜷, 𝑱, 𝒉, 𝑵) = -𝜷L𝟏log 𝝀M𝑵(𝜷, 𝑱, 𝒉)+ 𝝀L𝑵(𝜷, 𝑱, 𝒉)

• 𝝀±𝑵(𝜷, 𝑱, 𝒉) ≔ 𝒆𝜷𝑱[𝐜𝐨𝐬𝐡(𝜷𝒉) ± 𝐬𝐢𝐧𝐡𝟐 𝜷𝒉 + 𝒆L𝟒𝜷𝑱]

No phase transition wrt free energy, F

Fig.: Faulkner & Livingstone, arXiv:2208.04751 (2022)
Theory: Ising, Z. Physik 31, 253 (1925)



• Expected specific heat (𝔼𝑪𝐕 = 𝜷𝟐𝐕𝐚𝐫[𝑼]) is non-
analytic as N → ∞ at 𝜷 = 𝜷𝐜, 𝒉 = 𝟎 (black curve)

• lim
𝑵→h

𝔼𝑪𝐕 𝒙;𝜷,𝑱,𝒉3𝟎,𝑵
𝑵

= 𝜷𝟐𝝏𝜷𝟐𝜸(𝜷𝑱)

• 𝜸(𝜷𝑱) ≔ 𝐥𝐧[𝟐𝐜𝐨𝐬𝐡(2𝜷𝐽)] + 𝟏
𝝅∫𝟎

𝝅/𝟐 𝐥𝐧 𝟏
𝟐 𝟏 + 𝟏 − 𝟒𝐬𝐢𝐧𝐡𝟐 𝟐𝜷𝑱 𝐬𝐢𝐧𝟐 𝒘

𝐜𝐨𝐬𝐡𝟒 𝟐𝜷𝑱 𝐝𝒘

2D Ising model Thermodynamic specific heat per particle 
(black curve) diverges at 𝜷 = 𝜷𝐜, 𝒉 = 𝟎

Theory: Onsager, Phys. Rev. 65, 117 (1944)
Fig.: Faulkner & Livingstone, arXiv:2208.04751 (2022)



• 𝒎 𝒙;𝜷, 𝑱, 𝒉, 𝑵 ≔ 𝟏
𝑵
∑𝒊+𝟏𝑵 𝒙𝒊

• 𝒎𝟎 𝜷, 𝑱 ≔ lim
R↓𝟎

lim
𝑵→'

𝔼𝒎 𝒙;𝜷, 𝑱, 𝒉, 𝑵 is…

• …also non-analytic at 𝜷 = 𝜷𝐜 (below & red curve)

• 𝒎𝟎 𝜷, 𝑱 = b(𝟏 − (𝐬𝐢𝐧𝐡(𝟐𝜷𝑱))
L𝟒)𝟏/𝟖	𝐟𝐨𝐫	𝜷 > 𝜷𝐜

𝟎	 𝐟𝐨𝐫	𝜷 < 𝜷𝐜

What about order and magnetisation? Spontaneous magnetisation (m0 in red) is 
also non-analytic…

…indicating an order—disorder
transition at 𝜷 = 𝜷𝐜

Theory: Onsager, Nuovo Cimento 6, 261 (1949); Yang, Phys. Rev. 85, 808 (1952)
Fig.: Faulkner & Livingstone, arXiv:2208.04751 (2022)



Spontaneous magnetisation (m0 in red) 
reflects experimental reality…

𝒎𝟎 𝜷, 𝑱 ≔ lim
R↓𝟎

lim
𝑵→'

𝔼𝒎 𝒙;𝜷, 𝑱, 𝒉, 𝑵

…as symmetry breaking induces 
N → ∞ discontinuity in 𝔼𝒎	at 𝒉 = 𝟎



Berry, Physics Today 55, 10 (2002)

𝒎𝟎 𝜷, 𝑱 ≔ lim
R↓𝟎

lim
𝑵→'

𝔼𝒎 𝒙;𝜷, 𝑱, 𝒉, 𝑵

Thermodynamic limit is singular as swapping 
limits in equation returns zero



1D, two-particle model

Translational symmetry

• ECMC potentials: symmetric to 
simultaneous translation of both 
particles; 

• U(xi, xj) = f(x);

• x := (xi – xj + L / 2) mod (L) – L / 2 is 
shortest separation with PBCs.

Fig.: Michel, PhD thesis, ENS Paris (2015)

78 CHAPTER 3. IRREVERSIBLE FACTORIZED METROPOLIS ALGORITHM

Figure 3.2: Left: Random walk on a loop with a probability on each location to move
right, left or to stay at the current location, Eq. 3.1. Right: Extension of the configura-
tion space W by addition of a lifting variable s 2 { ,!}. Two replicas of the initial
physical configuration space are then created, (W, ) where the chain only moves
to the left, (W,!) where the chain only moves to the right. If the move is rejected
physically in (W,!), a lifting move (dashed lines) takes place towards (W, ), and
conversely. During this lifting move, the physical configuration does not change, only
the lifting variable is updated.

T realizes a Metropolis scheme, where, at each time step, it is proposed with probabil-
ity 1

2 to move from k to k + 1 or to k� 1. The acceptance probability of the move is the
Metropolis filter, Eq. 2.33.

The space W is now extended into two replicas (W, ) and (W,!) thanks to the
additional lifting variable s 2 { ,!}. In the lifted scheme, s sets the a priori proba-
bilities so that,
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The acceptance probability of a move in the lifted scheme is 1. The scheme is rejection-
free, as the rejected moves have been transformed into lifting moves. The detailed-
balance condition is violated, as in (W, ) (resp. (W,!)), only the physical moves
k ! k � 1 (resp. k ! k + 1) are proposed, apart from the lifting moves
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with the flows IN,

Red / blue: +ve / -ve x evolution

Time-driven, reversible algorithm



Lifted Markov process
• Can explore x via positive particle motion;

• Active particles augment the configuration 
space: x à (x, 𝝃 = ±1);

• Lifting variable 𝝃 = ±1 describes two copies of 
the original config. space (x); 

• 𝝅(x, 𝝃 = 1) = 𝟏
𝟐
𝝅(x) = 𝝅(x, 𝝃 = -1);

• Red: particle i active è 𝝃 = +1;  system on 
positive copy of config. space;

• Blue: particle j active è 𝝃 = -1; system on 
negative copy of config. space;

78 CHAPTER 3. IRREVERSIBLE FACTORIZED METROPOLIS ALGORITHM

Figure 3.2: Left: Random walk on a loop with a probability on each location to move
right, left or to stay at the current location, Eq. 3.1. Right: Extension of the configura-
tion space W by addition of a lifting variable s 2 { ,!}. Two replicas of the initial
physical configuration space are then created, (W, ) where the chain only moves
to the left, (W,!) where the chain only moves to the right. If the move is rejected
physically in (W,!), a lifting move (dashed lines) takes place towards (W, ), and
conversely. During this lifting move, the physical configuration does not change, only
the lifting variable is updated.

T realizes a Metropolis scheme, where, at each time step, it is proposed with probabil-
ity 1

2 to move from k to k + 1 or to k� 1. The acceptance probability of the move is the
Metropolis filter, Eq. 2.33.

The space W is now extended into two replicas (W, ) and (W,!) thanks to the
additional lifting variable s 2 { ,!}. In the lifted scheme, s sets the a priori proba-
bilities so that,
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The acceptance probability of a move in the lifted scheme is 1. The scheme is rejection-
free, as the rejected moves have been transformed into lifting moves. The detailed-
balance condition is violated, as in (W, ) (resp. (W,!)), only the physical moves
k ! k � 1 (resp. k ! k + 1) are proposed, apart from the lifting moves
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with the flows IN,

Red / blue: +ve / -ve x evolution

Two copies of space

Fig.: Michel, PhD thesis, ENS Paris (2015)



𝝅-invariant?

Nonreversible process
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Figure 3.2: Left: Random walk on a loop with a probability on each location to move
right, left or to stay at the current location, Eq. 3.1. Right: Extension of the configura-
tion space W by addition of a lifting variable s 2 { ,!}. Two replicas of the initial
physical configuration space are then created, (W, ) where the chain only moves
to the left, (W,!) where the chain only moves to the right. If the move is rejected
physically in (W,!), a lifting move (dashed lines) takes place towards (W, ), and
conversely. During this lifting move, the physical configuration does not change, only
the lifting variable is updated.

T realizes a Metropolis scheme, where, at each time step, it is proposed with probabil-
ity 1

2 to move from k to k + 1 or to k� 1. The acceptance probability of the move is the
Metropolis filter, Eq. 2.33.

The space W is now extended into two replicas (W, ) and (W,!) thanks to the
additional lifting variable s 2 { ,!}. In the lifted scheme, s sets the a priori proba-
bilities so that,
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The acceptance probability of a move in the lifted scheme is 1. The scheme is rejection-
free, as the rejected moves have been transformed into lifting moves. The detailed-
balance condition is violated, as in (W, ) (resp. (W,!)), only the physical moves
k ! k � 1 (resp. k ! k + 1) are proposed, apart from the lifting moves
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Figs: Michel, PhD thesis, ENS Paris (2015) Faulkner & Livingstone, in preparation
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Figure 3.2: Left: Random walk on a loop with a probability on each location to move
right, left or to stay at the current location, Eq. 3.1. Right: Extension of the configura-
tion space W by addition of a lifting variable s 2 { ,!}. Two replicas of the initial
physical configuration space are then created, (W, ) where the chain only moves
to the left, (W,!) where the chain only moves to the right. If the move is rejected
physically in (W,!), a lifting move (dashed lines) takes place towards (W, ), and
conversely. During this lifting move, the physical configuration does not change, only
the lifting variable is updated.

T realizes a Metropolis scheme, where, at each time step, it is proposed with probabil-
ity 1

2 to move from k to k + 1 or to k� 1. The acceptance probability of the move is the
Metropolis filter, Eq. 2.33.

The space W is now extended into two replicas (W, ) and (W,!) thanks to the
additional lifting variable s 2 { ,!}. In the lifted scheme, s sets the a priori proba-
bilities so that,
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The acceptance probability of a move in the lifted scheme is 1. The scheme is rejection-
free, as the rejected moves have been transformed into lifting moves. The detailed-
balance condition is violated, as in (W, ) (resp. (W,!)), only the physical moves
k ! k � 1 (resp. k ! k + 1) are proposed, apart from the lifting moves
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with the flows IN,

Detailed balance è 𝝅-invariant

Reversible process



𝝅(x, 𝝃 = 1) p(x à x + 1) =
𝝅(x + 1, 𝝃 = -1) p(x + 1 à x)

At (x, 𝝃 = ±1): p(x à x + 𝝃) = min{1, 𝝅(x + 𝝃, 𝝃) / 𝝅(x, 𝝃)}
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Figure 3.2: Left: Random walk on a loop with a probability on each location to move
right, left or to stay at the current location, Eq. 3.1. Right: Extension of the configura-
tion space W by addition of a lifting variable s 2 { ,!}. Two replicas of the initial
physical configuration space are then created, (W, ) where the chain only moves
to the left, (W,!) where the chain only moves to the right. If the move is rejected
physically in (W,!), a lifting move (dashed lines) takes place towards (W, ), and
conversely. During this lifting move, the physical configuration does not change, only
the lifting variable is updated.

T realizes a Metropolis scheme, where, at each time step, it is proposed with probabil-
ity 1

2 to move from k to k + 1 or to k� 1. The acceptance probability of the move is the
Metropolis filter, Eq. 2.33.

The space W is now extended into two replicas (W, ) and (W,!) thanks to the
additional lifting variable s 2 { ,!}. In the lifted scheme, s sets the a priori proba-
bilities so that,
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The acceptance probability of a move in the lifted scheme is 1. The scheme is rejection-
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with the flows IN,

Figs: Michel, PhD thesis, ENS Paris (2015) Faulkner & Livingstone, in preparation
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to the left, (W,!) where the chain only moves to the right. If the move is rejected
physically in (W,!), a lifting move (dashed lines) takes place towards (W, ), and
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the lifting variable is updated.

T realizes a Metropolis scheme, where, at each time step, it is proposed with probabil-
ity 1

2 to move from k to k + 1 or to k� 1. The acceptance probability of the move is the
Metropolis filter, Eq. 2.33.

The space W is now extended into two replicas (W, ) and (W,!) thanks to the
additional lifting variable s 2 { ,!}. In the lifted scheme, s sets the a priori proba-
bilities so that,
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The acceptance probability of a move in the lifted scheme is 1. The scheme is rejection-
free, as the rejected moves have been transformed into lifting moves. The detailed-
balance condition is violated, as in (W, ) (resp. (W,!)), only the physical moves
k ! k � 1 (resp. k ! k + 1) are proposed, apart from the lifting moves
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with the flows IN,

𝝅(x)p(x à x + 1) = 𝝅(x + 1)p(x + 1 à x)

At x: p(x à x ± 1) = min{1, 𝝅(x ± 1) / 𝝅(x)}



𝝅-invariant

Skew detailed balance
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Figure 3.2: Left: Random walk on a loop with a probability on each location to move
right, left or to stay at the current location, Eq. 3.1. Right: Extension of the configura-
tion space W by addition of a lifting variable s 2 { ,!}. Two replicas of the initial
physical configuration space are then created, (W, ) where the chain only moves
to the left, (W,!) where the chain only moves to the right. If the move is rejected
physically in (W,!), a lifting move (dashed lines) takes place towards (W, ), and
conversely. During this lifting move, the physical configuration does not change, only
the lifting variable is updated.

T realizes a Metropolis scheme, where, at each time step, it is proposed with probabil-
ity 1

2 to move from k to k + 1 or to k� 1. The acceptance probability of the move is the
Metropolis filter, Eq. 2.33.

The space W is now extended into two replicas (W, ) and (W,!) thanks to the
additional lifting variable s 2 { ,!}. In the lifted scheme, s sets the a priori proba-
bilities so that,
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(3.3)
The acceptance probability of a move in the lifted scheme is 1. The scheme is rejection-
free, as the rejected moves have been transformed into lifting moves. The detailed-
balance condition is violated, as in (W, ) (resp. (W,!)), only the physical moves
k ! k � 1 (resp. k ! k + 1) are proposed, apart from the lifting moves
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Figure 3.2: Left: Random walk on a loop with a probability on each location to move
right, left or to stay at the current location, Eq. 3.1. Right: Extension of the configura-
tion space W by addition of a lifting variable s 2 { ,!}. Two replicas of the initial
physical configuration space are then created, (W, ) where the chain only moves
to the left, (W,!) where the chain only moves to the right. If the move is rejected
physically in (W,!), a lifting move (dashed lines) takes place towards (W, ), and
conversely. During this lifting move, the physical configuration does not change, only
the lifting variable is updated.

T realizes a Metropolis scheme, where, at each time step, it is proposed with probabil-
ity 1

2 to move from k to k + 1 or to k� 1. The acceptance probability of the move is the
Metropolis filter, Eq. 2.33.

The space W is now extended into two replicas (W, ) and (W,!) thanks to the
additional lifting variable s 2 { ,!}. In the lifted scheme, s sets the a priori proba-
bilities so that,
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The acceptance probability of a move in the lifted scheme is 1. The scheme is rejection-
free, as the rejected moves have been transformed into lifting moves. The detailed-
balance condition is violated, as in (W, ) (resp. (W,!)), only the physical moves
k ! k � 1 (resp. k ! k + 1) are proposed, apart from the lifting moves
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with the flows IN,

𝝅-invariant

Detailed balance



• Easy to implement.

• Converges quickly enough in many 
settings.

• Recreates physical Brownian 
dynamics – useful for experiment.

Metropolis is very successful

• Convergence slow at high particle 
density with long-range interactions.

• Suffers from symmetry breaking.

• And critical slowing down – inducing 
strongly non-convergent estimates.

However…



• Molecular dynamics (MD) follows numerical Newtonian 
trajectories (eg, red curve on potential landscape)

• It sets random initial particle positions and velocities…

• …then solves �̈�𝒊 = −𝛁𝒊𝑼 𝒙 	∀𝒊 at each time step.

• Approximately converges on 𝝅 w/resampled velocities.
Fig.: arogozhnikov.github.io (2016)



• MD is typically much more efficient than Metropolis…

• …and captures physical Newtonian dynamics.

• BUT it’s unstable – especially at high particle density 
with long-range interactions…

• …and it also suffers from energy drifts.
Fig.: arogozhnikov.github.io (2016)


