Phase transitions, metastability and critical slowing down in statistical physics

Michael Faulkner

Algorithms \& Computationally Intensive Inference Seminars
Warwick Statistics, 27 October 2023

Both research fields estimate expectations wrt some probability distribution $\pi(x ; \beta, \theta) \propto e^{-\beta U(x ; \theta)}$

Bayesian inference

- $\pi(x \mid y, \beta, \theta) \propto e^{-\beta U(x \mid y, \theta)}$
- Fix hyperparameters $\boldsymbol{\beta}, \boldsymbol{\theta}$.
- Encode input data y via likelihood...
- ...and estimate expectations wrt \boldsymbol{x}.

Statistical physics

- $\pi(x ; \beta, \theta) \propto e^{-\beta U(x ; \theta)}$
- Defined independent of input data.
- Expectations are functions of $\boldsymbol{\beta}$ and $\boldsymbol{\theta}$.
- $\boldsymbol{\beta}, \boldsymbol{\theta}$ are thermodynamic parameters, eg, system temperature $\equiv 1 / \beta$.

P!|OS Oł P!nb!

Expected potential variance per particle

 (black) is non-analytic at $\boldsymbol{\beta}_{\mathrm{c}}$
magnetic to non-magnetic

- Statistical physics and phase transitions

- Metastability and Wolff algorithm
- Continuous state spaces and ECMC

Periodic boundary conditions

Thermodynamic phase space

- With $\chi(x ; \beta, \theta, N)$ some observable...
- Thermodynamic phase space (TPS) of $\chi(x ; \beta, \theta, N)$ is $\lim _{N \rightarrow \infty} \mathbb{E}[\chi(x ; \beta, \theta, N)]$ as a function of $\boldsymbol{\beta}$ and $\boldsymbol{\theta}$.
- Thermodynamic phase: any open and connected region of TPS where $\lim _{N \rightarrow \infty} \mathbb{E}[\chi(\boldsymbol{x} ; \boldsymbol{\beta}, \boldsymbol{\theta}, N)]$ is analytic.
- Phase transition: any boundary between any two thermodynamic phases.

2D Ising model has non-analytic expectations at $\beta=\beta_{c} \ldots$

...but no phase transition has been detected in 1D case

$$
U_{\text {Ising }}=-\frac{J}{2} \sum_{i=1}^{N} \sum_{j \in S_{i}} x_{i} x_{j}, x_{i}= \pm 1
$$

- Statistical physics and phase transitions

- Metastability and Wolff algorithm
- Continuous state spaces and ECMC

- Single active particle $a \in\{1, \ldots, N\}$
- $x_{a}^{\prime}=-x_{a}$
- $\Delta U_{\text {Ising }}=J \sum_{j \in S_{a}} x_{a} x_{j}$
- Accept $x_{a}^{\prime} \mathbf{w} /$ prob $\min \left[1, \exp \left(-\beta \Delta U_{\text {Ising }}\right)\right]$
- NB, one unit of MC time corresponds to N attempted particle moves
- Magnetisation: $m(x ; \beta, J, h, N):=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
- $\mathbb{E}[\boldsymbol{m}(\boldsymbol{x} ; \boldsymbol{\beta}, \boldsymbol{h}=\mathbf{0}, N)]=\mathbf{0}$ for all $\boldsymbol{\beta}<\infty$ (spin-flip symmetry)
- So $\frac{1}{\tau_{n}} \sum_{t=\tau_{1}}^{\tau_{n}} m\left(x_{t} ; \beta J, h=0, N\right) \rightarrow \mathbf{0}$ on some timescale τ_{n}
- But at low temperature and w/Metropolis dynamics...
- ... τ_{n} diverges with system size N

Low-temp Metrop dynamics freeze...

...as neighbours are typically aligned

Wolff algorithm

Flips entire clusters of aligned spins in 'intelligent' way

1. Randomly pick base lattice site for new cluster
2. Add aligned neighbours (to cluster) with probability $p:=1-e^{-2 \beta J}$
3. Repeat step 2 for each new spin...
4. ...and flip entire cluster with probability one.

Magnetisation: $\boldsymbol{m}(\boldsymbol{x} ; \boldsymbol{\beta}, \boldsymbol{J}, \boldsymbol{h}, N):=\frac{1}{N} \sum_{i=1}^{N} x_{i}$

Experimental-theoretical discrepancies are essence of symmetry breaking

Thermodynamic limit of expected magnetisation

is singular for all $\beta>\beta_{\text {Ising }}$

$\lim _{h \downarrow 0} \lim _{N \rightarrow \infty} \mathbb{E} \boldsymbol{m}(\boldsymbol{x} ; \boldsymbol{\beta J}, \boldsymbol{h}, N) \neq 0=\lim _{N \rightarrow \infty} \lim _{h \downarrow 0} \mathbb{E} \boldsymbol{m}(\boldsymbol{x} ; \boldsymbol{\beta J}, \boldsymbol{h}, N)$

High-temperature unimodal

Fig. (c) is now near the transition where growing correlated clusters induce strong autocorrelations

- Statistical physics and phase transitions

- Metastability and Wolff algorithm
- Continuous state spaces and ECMC

...were first applied to hard disks

Event-chain Monte Carlo

Chain of events traverses system

Random coordinate switches...

...to sample along both dimensions

ECMC solved 2D melting

Disputed for 50 years

Colloidal hard-disk experiment

Confirms ECMC numerics

Continuous potentials ${ }^{1}$

- $\pi_{\text {hard }}(x)=0$ or const. $\Leftrightarrow U_{\text {hard }}(x)=\infty$ or finite...
- ...so ECMC freely advances hard disks until $\mathrm{dU} / \mathrm{d} x_{a}=\infty$...
- ...but particles never collide in the case of continuous potentials $U(x)$
- \Rightarrow somehow account for continuous increases in $U(x)$?
- Consider m Metropolis translations of length Δ in a fixed direction.
- Probability of translating active particle a through distance $\eta:=m \Delta$ is...
- $p\left(x_{a} \rightarrow x_{a}+\eta\right)=\prod_{i=1}^{m} \min \left[1, \exp \left(-\beta\left[U\left(x_{a}+\Delta i\right)-U\left(x_{a}+\Delta(i-1)\right)\right]\right)\right]$

$$
\begin{aligned}
& =\exp \left[-\beta \sum_{i=1}^{m} \max \left(0, U\left(x_{a}+\Delta i\right)-U\left(x_{a}+\Delta(i-1)\right)\right)\right] \\
& \rightarrow \exp \left[-\beta \int_{0}^{\eta} \max \left(0, \nabla_{a} U(x)\right) \mathrm{d} x_{a}\right] \text { as } \Delta \rightarrow 0
\end{aligned}
$$

- \Rightarrow Advance active particle at constant velocity v from time $t_{0} \geq 0$ and solve:

$$
-\log \Upsilon=\beta \int_{t_{0}}^{t_{\eta}} \max \left(0, v \cdot \nabla_{a} U(x)\right) \text { dt where } \Upsilon \sim \mathcal{U}[0,1) \ldots
$$

- ...to find the next event time $\boldsymbol{t}_{\boldsymbol{\eta}}:=\boldsymbol{t}_{\mathbf{0}}+\boldsymbol{\eta} / \boldsymbol{v}$ (assuming no 'boundary' collisions).
- Particle i then becomes active $w /$ prob. $\propto \max \left(0,-v \cdot \nabla_{i} U\left[x\left(t_{\eta}\right)\right]\right)$ at $t=t_{\eta}$.
- Need to integrate $v \cdot \nabla_{a} U(x)$ over only positive contributions...
- ...but this is non-trivial for multiple particles
- So we have two options for Poisson process (PP):

1. Thinned PP: choose $\widetilde{q_{a}}$ to overestimate event rate $q_{a}(x):=\beta \max \left(0, v \cdot \nabla_{a} U(x)\right)$, then confirm events with probability $q_{a}(x) / \widetilde{q_{a}}(x)$
2. 2-particle blocking: Sample Poisson process of each two-particle interaction and take shortest displacement (superposition of PPs)

$$
U_{\mathrm{xy}}=-J \sum_{i=1}^{N} \sum_{j \in S_{i}} \cos \left(x_{i}-x_{j}\right) \text { with } x_{i} \in(-\pi, \pi], J>0
$$

$$
U_{\mathrm{XY}}=-J \sum_{i=1}^{N} \sum_{j \in S_{i}} \cos \left(x_{i}-x_{j}\right) \text { with } x_{i} \in(-\pi, \pi], J>0
$$

$$
m(x ; \beta, J, h, N):=\frac{1}{N} \sum_{i=1}^{N}\left(\cos x_{i}, \sin x_{i}\right)^{t}, x_{i} \in(-\pi, \pi]
$$

ECMC's constant-speed dynamics circumvent critical slowing down?

Summary and outlook

- Bayesians fix hyperparameters, whereas physicists vary them.
- Varying hyperparameters can induce metastability and critical slowing down.
- Physicists combat these phenomena w/sophisticated sampling algorithms.
- Future plans: use ECMC to characterise CSD in 2DXY model; explore Bayesian analogues.
- Also interested in π-invariance of canonical ECMC if anyone has any ideas!
- Thanks to Sam Livingstone ${ }^{1}$, EPSRC and Advanced Computing Research Centre (Bristol).

- $\boldsymbol{U}_{\text {lsing }}=-\frac{J}{2} \sum_{i=1}^{N} \sum_{j \in S_{i}} x_{i} x_{j}, x_{i}= \pm 1$
- Spin-spin correlation length increases as temperature decreases
- \rightarrow nonergodic Metropolis dynamics
- Wolff combats this by flipping clusters

Fundamental axiom

- If some scalar observable $\chi(x ; \beta, \theta, N)$ is sum of $O(N)$ random numbers...
- ...and $\frac{\sigma_{\chi}}{\mathbb{E}[\chi]}$ can be made arbitrarily small as $N \rightarrow \infty\left(\right.$ with $\left.\lim _{N \rightarrow \infty} \mathbb{E}[\chi(x ; \beta, \theta, N)] \neq 0\right)$...
- ...then $\exists N_{0} \in \mathbb{N}$ s.t. $\left|\frac{\mathbb{E}\left[\chi\left(x ; \beta, \theta, N=N_{0}\right)\right]}{\lim _{N \rightarrow \infty} \mathbb{E}[\chi(x ; \beta, \theta, N)]}-1\right|<\varepsilon$ (with $\varepsilon>0$ immeasurably small)
- \Rightarrow thermodynamic limit (usually!) reflects macroscopic physics

No phase transition wrt free energy, F

- $U_{\text {Ising }}=-\frac{J}{2} \sum_{i=1}^{N} \sum_{j \in S_{i}} x_{i} x_{j}-h \sum_{i=1}^{N} x_{i}, h \in \mathbb{R}$
- $F_{\text {Ising }}^{d=1}(\beta, J, h, N)=-\beta^{-1} \log \left[\lambda_{+}^{N}(\beta, J, h)+\lambda_{-}^{N}(\beta, J, h)\right]$
- $\lambda_{ \pm}^{N}(\beta, J, h):=e^{\beta J}\left[\cosh (\beta h) \pm \sqrt{\sinh ^{2}(\beta h)+e^{-4 \beta J}}\right]$

2D Ising model

- Expected specific heat $\left(\mathbb{E} C_{V}=\beta^{2} \operatorname{Var}[U]\right)$ is nonanalytic as $\boldsymbol{N} \rightarrow \infty$ at $\boldsymbol{\beta}=\boldsymbol{\beta}_{\mathrm{c}}, \boldsymbol{h}=\mathbf{0}$ (black curve)
- $\lim _{N \rightarrow \infty} \frac{\mathbb{E} C_{V}(x ; \beta, J, h=0, N)}{N}=\beta^{2} \partial_{\beta}^{2} \gamma(\beta J)$
- $\gamma(\beta):=\ln [2 \cosh (2 \beta J)]+\frac{1}{\pi} \int_{0}^{\pi / 2} \ln \left[\frac{1}{2}\left(1+\sqrt{1-\frac{4 \sinh ^{2}(2 \beta) / \sin ^{2}(w)}{\cosh ^{4}(2 \beta)}}\right)\right] \mathrm{d} w$

Thermodynamic specific heat per particle (black curve) diverges at $\boldsymbol{\beta}=\boldsymbol{\beta}_{\mathrm{c}}, \boldsymbol{h}=\mathbf{0}$

What about order and magnetisation?

- $m(x ; \beta, J, h, N):=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
- $\boldsymbol{m}_{\mathbf{0}}(\boldsymbol{\beta}, \boldsymbol{J}):=\lim _{h \downarrow \mathbf{0}} \lim _{N \rightarrow \infty} \mathbb{E} \boldsymbol{m}(\boldsymbol{x} ; \boldsymbol{\beta}, \boldsymbol{J}, \boldsymbol{h}, N)$ is...
- ...also non-analytic at $\beta=\beta_{\text {c }}$ (below $\&$ red curve)
- $m_{0}(\beta, J)=\left\{\begin{array}{lr}\left(1-(\sinh (2 \beta J))^{-4}\right)^{1 / 8} \text { for } \beta>\boldsymbol{\beta}_{\mathrm{c}} \\ 0 & \text { for } \beta<\boldsymbol{\beta}_{\mathrm{c}}\end{array}\right.$

Spontaneous magnetisation (m_{0} in red) is also non-analytic...

...indicating an order-disorder transition at $\boldsymbol{\beta}=\boldsymbol{\beta}_{\mathrm{c}}$

$$
\boldsymbol{m}_{\mathbf{0}}(\boldsymbol{\beta}, \boldsymbol{J}):=\lim _{h \downarrow \mathbf{0} N \rightarrow \infty} \lim _{N} \mathbb{E} \boldsymbol{m}(\boldsymbol{x} ; \boldsymbol{\beta}, \boldsymbol{J}, \boldsymbol{h}, N)
$$

Thermodynamic limit is singular as swapping limits in equation returns zero

$$
\boldsymbol{m}_{\mathbf{0}}(\boldsymbol{\beta}, \boldsymbol{J}):=\lim _{h \downarrow 0} \lim _{N \rightarrow \infty} \mathbb{E} \boldsymbol{m}(\boldsymbol{x} ; \boldsymbol{\beta}, \boldsymbol{J}, \boldsymbol{h}, \boldsymbol{N})
$$

Translational symmetry

- ECMC potentials: symmetric to simultaneous translation of both particles;
- $\mathrm{U}\left(\mathrm{x}_{\mathrm{i}}, x_{\mathrm{j}}\right)=\mathrm{f}(x)$;
- $x:=\left(x_{i}-x_{j}+L / 2\right) \bmod (L)-L / 2$ is shortest separation with PBCs.

1D, two-particle model

Time-driven, reversible algorithm

Red / blue: +ve / -ve x evolution

Lifted Markov process

- Can explore x via positive particle motion;
- Active particles augment the configuration space: $x \rightarrow(x, \xi= \pm 1)$;
- Lifting variable $\xi= \pm 1$ describes two copies of the original config. space (x);
- $\pi(x, \xi=1)=\frac{1}{2} \pi(x)=\pi(x, \xi=-1)$;
- Red: particle i active $\Rightarrow \xi=+1$; system on positive copy of config. space;
- Blue: particle j active $>\xi=-1$; system on

Two copies of space

Red / blue: +ve / -ve x evolution negative copy of config. space;

Nonreversible process

π-invariant?

At $(x, \xi= \pm 1): \mathrm{p}(x \rightarrow x+\xi)=\min \{1, \pi(x+\xi, \xi) / \pi(x, \xi)\}$

Metropolis is very successful

- Easy to implement.
- Converges quickly enough in many settings.
- Recreates physical Brownian dynamics - useful for experiment.

However...

- Convergence slow at high particle density with long-range interactions.
- Suffers from symmetry breaking.
- And critical slowing down - inducing strongly non-convergent estimates.

- Molecular dynamics (MD) follows numerical Newtonian trajectories (eg, red curve on potential landscape)
- It sets random initial particle positions and velocities...
- ...then solves $\ddot{x}_{i}=-\nabla_{i} U(x) \forall i$ at each time step.
- Approximately converges on π w/resampled velocities.

- MD is typically much more efficient than Metropolis...
- ...and captures physical Newtonian dynamics.
- BUT it's unstable - especially at high particle density with long-range interactions...
- ...and it also suffers from energy drifts.

