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Focus of this talk:

Propose, discuss and analyse ensemble methods for noisy and expensive likelihood.

Today’s plan:

▷ Bayesian inverse problems

▷ Multi-scale forward problems

▷ Interacting particle methods aka ensemble sampling

▷ Formal multi-scale analysis in case of noisy likelihood functions

▷ Computational experiments
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Bayesian inverse problems

The inverse problem: Given observations y ∈ RK infer x ∈ Rd based on evaluations of G0(x)
polluted by noise ξ:

y = G0(x) + ξ.

▷ Assumption: noise ξ ∼ N (0, Γ), with strictly positive-definite covariance Γ ∈ RK×K .

Bayes rule: Imposing a Gaussian prior x ∼ N (m,Σ), the posterior distribution is given by

π0(x) ∝ e−V0(x),

V0(x) :=
1

2
|y − G0(x)|2Γ +

1

2
|x −m|2Σ.
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1 Multi-scale forward problems

2 Ensemble sampling

3 Behaviour of the sampling methods in case of rapid fluctuations

4 Computational experiments
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Multi-scale problem

Assume that the forward problem has the following multi-scale structure:

Gϵ(x) = G0(x) + G1(x/ϵ).

where ϵ ≪ 1, G0(·) is expensive to evaluate and only noisy observations of Gϵ are available.

▷ G1 can be random or periodic

▷ Multi-scale nature arises for example when using time-averaged statistics as data from
chaotic systems, ...

Goal:

Solve the inverse problem defined by G0, using only evaluations of Gϵ, not of G0.

The associated multi-scale posterior is πϵ(x) ∝ e−Vϵ (x) with multi-scale potential

Vϵ(x) :=
1

2
|y − Gϵ(x)|2Γ +

1

2
|x −m|2Σ.
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Multi-scale forward problems when using time-averaged data

Consider the following parameter-dependent dynamical system:

du

ds
= F (u; θ), u(0) = u0,

which we assume to be ergodic and mixing.

Goal: identify θ from data y computed from finite time-averages of a function φ(·) over
time-interval T :

y = Gϵ(θ) + ξobs , where Gϵ(θ) =
1

T

∫ T

0
φ
(
u(s; θ)

)
ds,

and ξobs ∼ N (0,∆obs) is the observational noise.

For ergodic, mixing dynamical systems a central limit theorem may hold; then

Gϵ(θ) ≈ G0(θ) + G1(θ),

G1(θ) ∼ N
(
0,T−1∆(θ)

)
,

▷ G0 is the infinite time-average, which is independent of the initial condition u0;

▷ Noise induced by the unknown initial condition u0 only in G1.
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Multi-scale forward problems when using time-averaged data

▷ We approximate T−1∆(θ) by a constant covariance ∆model estimated from a single
long-run of the (ergodic and mixing) model at a fixed parameter θ† and batched into
windows of length T .

▷ If ξmodel ∼ N (0,∆model ) and if ξobs is independent of the initial condition u0, then we
can rewrite the inverse problem as

y = G0(θ) + ξ,

where ξ = ξobs + ξmodel ∼ N (0,∆obs +∆model ).
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Interacting particle methods aka ensemble sampling

The setting: Consider N interacting particles X i
t , i = 1, . . .N, which explore the data land-

scape (aka posterior or target) satisfying a stochastic differential equation.

Objective:

▷ Sampling: generate approximate samples from the log-posterior distribution;
particle ensemble should approximate target as t → ∞

▷ Optimisation: find a minimiser of the target
particle ensemble collapses in the minimum; no quantification of uncertainty.
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Gradient-based vs. gradient-free approaches:

▷ Gradient-based methods: ensemble Langevin sampler (ELS), Metropolis Adjusted Langevin
Algorithm (MALA)....
Often derived from over-damped Langevin equations

dX i
t = −K∇V (Xt)dt +

√
2KdWt

where K is symmetric and pos. definite.

▷ Gradient-free methods: ensemble Kalman sampler (EKS), consensus based optimisa-
tion),...

M.T. Wolfram (Warwick) Ensemble methods 10 / 34



Ensemble Kalman sampler (EKS)

EKS comprises N coupled SDEs in Rd , for X i
t given by

dX i
t = −

(
1

N

N∑
n=1

⟨Gϵ(X
n
t )− G ϵ,t ,Gϵ(X

i
t )− y⟩ΓX n

t

)
dt − CtΣ

−1(X i
t −m) dt

+
d + 1

N
(X i

t − X t) dt +
√

2Ct dW
i
t ;

here the W i are standard independent Brownian motions in Rd and

X t =
1

N

N∑
n=1

X n
t , G ϵ,t =

1

N

N∑
n=1

Gϵ(X
n
t ),

Ct =
1

N

N∑
n=1

(
X n
t − X t

)
⊗
(
X n
t − X t

)
.

▷ Derivation is based on the assumption that all probability distributions involved are
Gaussians.

▷ Gradient free.

▷ Extremely robust.
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Ensemble Langevin methods (ELS)

The ELS is given by

dX i
t = −C(Xt)∇Vϵ(X

i
t ) dt +∇x i · C(Xt) dt +

√
2C(Xt)dW

i
t .

Here C : RNd → Rd×d denotes the empirical covariance function of arbitrary collection of N
vectors {x i}Ni=1 in Rd and Xt = {X i

t }Ni=1.

▷ If Gϵ is linear, the SDEs defining the ELS and EKS are the same.

▷ Performance deteriorates for noisy potentials as fluctuations dominate.
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Gaussian process regression

Gaussian process:a A Gaussian process is a collection of random variables, any finite number
of which have (consistent) joint Gaussian distributions.

A Gaussian process is specified by its mean function m(x) and covariance function k(x , x ′):

f ∼ GP(m(x), k(x , x ′))

Example of kernel/covariance functions: k(x , y ;λ, l) = λe
− ∥x−y∥2

2l2 , where λ > 0.

Gaussian process regression: Given noisy observations of the function f

y = f (x) + σξ,

where ξ ∼ N (0, σn), then the Gaussian process posterior f ∗ is given by

f∗|X ,Y ,X∗ ∼ N
(
k(X∗,X )

[
k(X ,X ) + σ2I

]−1
f ,

k(X∗,X∗)− k(X∗,X )
[
k(X ,X ) + σ2I

]−1
k(X ,X∗)

)
where X is the matrix of training input {xi}ni=1 and X∗ the matrix of test inputs.

aRasmussen & Williams, Gaussian Processes for Machine Learning, MIT Press 2006
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Ensemble Gaussian sampler (EGS)

Assumption: data misfit term

VL(x) =
1

2
⟨y − G(x), Γ−1(y − G(x))⟩ is a Gaussian process.

Given (noisy) evaluations of the potential at Xt = (X 1
t , . . . ,X

N
t ) ∈ RN×d we seek a function

f such that, for some σ > 0

VL(X
i
t ) = f (X i

t ) + σξi , ξ = (ξ1, · · · , ξN) ∼ N (0, I ).

The corresponding Gaussian process posterior for f has mean function

V̂L(x ;σ, λ, l) =
N∑

i,j=1

k(x ,X i
t ;λ, l)K(X ;σ, λ, l)−1

ij VL(X
j
t ), x ∈ Rd

and covariance function

γ(x , y ;σ, λ, l) = K(x , y ;σ, λ, l)−
N∑

i,j=1

k(x ,X i
t ;λ, l)K(X ;σ, λ, l)−1

ij k(X j
t , y ;λ, l).

Here K(X )i,j = σ2δi,j + k(X i
t ,X

j
t ).
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Ensemble Gaussian sampler

Gradient of the posterior mean

∇V̂L(x ;σ, λ, l) =
N∑

i,j=1

∇xk(x ,X
i
tλ, l)K(X ;σ, λ, l)−1

ij VL(X
j
t ).

Ensemble particles evolve according to over-damped Langevin dynamics

dX i
t = −∇V̂L(X

i
t ;σ, λ, l) dt − Σ−1X i

t dt +
√
2 dWt .

Approximate gradient ∇V̂L depends on the hyper-parameters (σ, λ, l), which have to be
trained as the density evolves.
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Updating the GP hyperparameters

Priors:

▷ log-normal priors on the amplitude λ and the noise’s standard deviation σ, and

▷ Gamma prior on the lengthscale l .

Update (σ, λ, l) by maximising the log marginal posterior

MLP(σ, λ, l ;X ) ∝
1

2
log

N∑
i,j=1

V̂L(X
i
t ;σ, λ, l)K(X ;σ, λ, l)−1V̂L(X

j
t ;σ, λ, l)

−
1

2
log detK(X ;σ, λ, l) + log p0(σ, λ, l),

where p0 denotes the prior density over the hyperparameters.
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Putting it all together

Euler-Maruyama discretisation of the SDE coupled with a gradient descent scheme for adap-
tively selecting the hyperparameters.

Let Xn = (X 1
n , . . . ,X

N
n ) ∈ RN×d denote the particle ensemble at time-step n. Then

▷ For i = 1, . . . ,N:

� Set X i
n+1 = X i

n−∆t∇V̂L(X
i
n;σn, λn, ln)−∆tΣ−1X i

n +
√
2∆t ξn, where ξ ∼ N (0, 1)

iid.

▷ Update (σn+1, λn+1, ln+1) = (σn, λn, ln) + δt∇(σ,λ,l)MLP(σn, λn, ln;Xn+1).

Here ∆t and δt are step-sizes for the Langevin updates and the hyperparameter gradient
descent, respectively.
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Ensemble methods

ELS

Gradient based

Calculate gradient of
log-posterior for every
particle and update the

particle positions.

Performance deteriorates
as ε → 0.
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EKS

Gradient free

Approximate gradient of
log-posterior under the
assumption that all

probabilities are Gaussians.

Robust to roughness of
posterior landscape
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Gradient free
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the log-posterior and

assume that it’s a Gaussian
process.

Robust to roughness of
posterior landscape

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00

0.4

0.6

0.8

1.0

1.2

1.4

M.T. Wolfram (Warwick) Ensemble methods 18 / 34



1 Multi-scale forward problems

2 Ensemble sampling

3 Behaviour of the sampling methods in case of rapid fluctuations

4 Computational experiments

M.T. Wolfram (Warwick) Ensemble methods 19 / 34



Performance of the different sampling methods for rough posteriors

▷ Use formal multi-scale analysis to analyse the behaviour of the interacting particle meth-
ods in the case of rapid fluctuations, that is

ε ≪ 1.

▷ Do the limiting solutions of the methods converge to the correct (unperturbed) equilib-
rium distribution as t → ∞?

Recall: we wish to sample from π0 NOT πϵ!

Assumption:

The forward model satisfies

Gϵ(x) = G0(x) + G1(x/ϵ),

G0 ∈ C1(Rd ,RK ), G1 ∈ C1(Td ,RK ) and

∫
Td

G1(y) dy = 0. G1 is a 1-periodic function in

every dimension.
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EKS: mean-field limit

The mean field limit is given by

dxt = −F(xt , ρ) dt − C(ρ)Σ−1xt dt +
√

2C(ρ) dWt ,

where W is a standard Brownian motion in Rd and,

X (π) =

∫
Rd

X ′π(X ′)dX ′, G(π) =
∫

Rd
Gϵ(X

′)π(X ′)dX ′,

C(π) =
∫

Rd

(
X ′ −X (π)

)
⊗
(
X ′ −X (π)

)
π(X ′)dX ′,

F(x , π) =
(∫

Rd
⟨Gϵ(X

′)− G(π),Gϵ(x)− y⟩ΓX ′π(X ′)dX ′
)
.

The time-dependent density of the process ρ satisfies the nonlinear Fokker-Planck equation

∂tρ = ∇x ·
(
∇x ·

(
C(ρ)ρ

)
+ F(x , ρ)ρ

)
. (EKS)
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EKS: formal multi-scale analysis

Mean field limit equations of the unperturbed problem:

dxt = −F0(xt , ρ0) dt − C(ρ0)Σ−1xt dt +
√

2C(ρ0) dWt ,

with

G0(π) =

∫
Rd

G0(X
′)π(X ′)dX ′,

F0(x , π) =

∫
Rd

⟨G0(X
′)− G0(π),G0(x)− y⟩ΓX ′π(X ′)dX ′.

The time dependent density ρ0(x , t) ∈ C
(
(0,∞); L1(Rd ;R+)

)
of this process satisfies

∂tρ0 = ∇x ·
(
∇x ·

(
C(ρ0)ρ0

)
+ F0(x , ρ0)ρ0

)
. (EKS0)
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EKS: Performance as ε → 0

Let Assumption (A1) hold with 0 < ϵ ≪ 1. If ρ satisfying (EKS) is of the form

ρ = ρ0 + ϵρ1 + ϵ2ρ2 + · · · ,

then formal multi-scale analysis demonstrates that ρ0 satisfies (EKS0) (FPE relating to the
unperturbed process).

▷ As ε → 0 the limiting mean field PDE for the density of the process (EKS0) corresponds
to the nonlinear FPE of the unperturbed process.

⇒ EKS behaves as if G1 ≡ 0, and ignores the rapid O(1) fluctuations.

▷ Formal perturbation result confirms empirically observed robustness of the EKS for very
noisy problems.

▷ Rigorous results: tedious, since the main technical difficulty would be to derive bounds
from below for the covariance operator.
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ELS: mean field limit

The mean field limit of the ELS is given by

dxt = −C(ρt)∇Vϵ(xt) +
√

2C(ρ)dWt ,

where function C(·) on densities is defined as for the mean-field equation for the EKS.

The associated non-linear Fokker-Planck equation for the time-dependent density of the
process ρ ∈ C((0,∞); L1(Rd ;R+)) is given by

∂tρ = ∇x ·
(
C(ρ) (∇xρ+∇xVϵρ)

)
. (ELS)

▷ Carrillo and Vaes established stability estimates in the Wasserstein distance for solutions
in the case of linear G .
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ELS: formal multi-scale analysis

If the solution ρ to (ELS) is expanded in the form ρ = ρ0+ ϵρ1+ ϵ2ρ2+ · · · , then the formal
multi-scale analysis demonstrates that ρ0 satisfies

∂tρ0 = ∇x ·
(
D(ρ0)

(
∇xρ0 +∇xVρ0

))
, (ELS0)

where V = V0 − logZ(x), Z(x) =

∫
Td

e−V1(x,z) dz and

D(ρ0) =
1

Z(x)

∫
Td

(
I +∇zχ(x , z)

)⊤C(ρ0)
(
I +∇zχ(x , z)

)
e−V dz.

Here χ : Rd × Td → Rd solves the following second order PDE in z (parameterized by x):

∇z ·
(
C(ρ0)e−V (x)(∇zχ(x , z) + I )

)
= 0, (x , z) ∈ Rd × Td .

Furthermore, for arbitrary ζ ∈ Rd ,

ζ⊤D(ρ0)ζ ≤ ζ⊤C(ρ0)ζ.
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ELS: performance as ε → 0

▷ For ε → 0 the function ρ0 satisfying (ELS0) the unique invariant distribution is given
by

π̄(x) ∝ π0Z(x)

No ’averaging out’ of fluctuations

▷ Perturbations slow down convergence: the effective diffusion D(ρ0, x) is given by

D(ρ0, x) =
1

Z(x)

∫
Td

C(ρ0)e−V1 (I +∇zχ) dz

= C(ρ0)−
∫

Td
∇zχ

⊤C(ρ0)∇zχe
−V1(x,z) dz.
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Linear forward model

Forward map Gϵ of the form, for x = (x1, x2),

Gϵ(x) = G0(x) + G1(x/ϵ),

G0(x) = Ax , G1(x) = [sin (2πx1) , sin (2πx2)]
⊤ , with A =

(
−1 0
0 2

)
.
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Lorenz 63 equations

Consider the 3-dimensional Lorenz 63 equations:

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = x1x2 − bx3,

with parameters σ, r , b ∈ R+.

▷ Fix σ = 10 and focus on the inverse problem of identifying r and b from time-averaged
data.

▷ Impose multivariate log-normal prior on θ = (r , b) with mean m = (3.3, 1.2) and
covariance Σ = diag(0.152, 0.52).

▷ We take T = 10 and define φ : R3 → R9

φ(x) = (x1, x2, x3, x
2
1 , x

2
2 , x

2
3 , x1x2, x2x3, x1x3);
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Data generation

▷ Data is generated for (σ, r†, b†) = (10, 28,
8

3
) (chaotic behaviour) using a single eval-

uation of the random (with respect to initial condition) function Gϵ. Furthermore
∆obs ≡ 0.

▷ We set ∆model to be the empirical covariance of Gϵ(θ
†) over windows of size 10 from a

single trajectory with θ† = (r†, b†), over 360 time units.

▷ Negative LL function VL(θ) :=
1

2
⟨(y − Gϵ(θ)),∆

−1
model (y − Gϵ(θ))⟩.
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Figure: Profile of the noisy negative log-likelihood over r for b fixed at optimal value. The blue dashed
line denotes the ’true’ value r = 8/3.
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Lorenz 63

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

(a) ELS

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

(b) EKS

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

(c) EGPS

10 4 10 3 10 2 10 1 100

Time

102

6 × 101

2 × 102

3 × 102

Ne
ga

tiv
e 

Lo
g-

Lik
el

ih
oo

d
GPS
Langevin
EKS

(d) Negative Log-Likelihood

M.T. Wolfram (Warwick) Ensemble methods 31 / 34



Multi-modal posteriors

We consider a forward map for x = (x1, x2) which is defined by

Gϵ(x) = G0(x) + G1(x/ϵ),

G0(x) = (x21 − 1)2 + (x22 − 1)2, G1(x) = ν(sin(2πx1) + sin(2πx2)),

and where Γ = γ2I .

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(e) ELS

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(f) EKS

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(g) EGPS

M.T. Wolfram (Warwick) Ensemble methods 32 / 34



Conclusion & Outlook

▷ Discussed and analysed different ensemble methods for solving inverse problems with
noisy and expensive likelihoods.

▷ Used formal multi-scale approach to understand the influence of rapid fluctuations, when
trying to identify the large-scale smoothly varying underlying structure of the posterior.

▷ EKS is robust with respect to noisy and periodic fluctuations, while the ELS is signifi-
cantly impacted by it.

▷ Propose a new class of ensemble Gaussian process samplers, which are robust to fluc-
tuations but still employ gradient information.

▷ Open problems:

� Understanding the tuning of the hyper-parameters for the Gaussian process;
� Making the formal multi-scale argument rigorous;
� Long time behaviour of the EGPS;
� ....

Thank you very much for your attention!
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