Ensemble Inference Methods for Models with Noisy and Expensive Likelihoods

Marie-Therese Wolfram

in collaboration with O.R.A. Dunbar, A. Duncan and A.M. Stuart

Algorithms Seminar Warwick Stats

Focus of this talk:

Propose, discuss and analyse ensemble methods for noisy and expensive likelihood.

Focus of this talk:

Propose, discuss and analyse ensemble methods for noisy and expensive likelihood.

Today's plan:

- Bayesian inverse problems
- Multi-scale forward problems
- > Interacting particle methods aka ensemble sampling
- > Formal multi-scale analysis in case of noisy likelihood functions
- Computational experiments

Bayesian inverse problems

The inverse problem: Given observations $y \in \mathbb{R}^{K}$ infer $x \in \mathbb{R}^{d}$ based on evaluations of $G_{0}(x)$ polluted by noise ξ :

$$y=G_0(x)+\xi.$$

▷ Assumption: noise $\xi \sim \mathcal{N}(0, \Gamma)$, with strictly positive-definite covariance $\Gamma \in \mathbb{R}^{K \times K}$.

Bayes rule: Imposing a Gaussian prior $x \sim \mathcal{N}(m, \Sigma)$, the posterior distribution is given by

$$\pi_0(x) \propto e^{-V_0(x)},$$

 $V_0(x) := rac{1}{2} |y - G_0(x)|_{\Gamma}^2 + rac{1}{2} |x - m|_{\Sigma}^2.$

Multi-scale forward problems

Ensemble sampling

Behaviour of the sampling methods in case of rapid fluctuations

Computational experiments

Multi-scale problem

Assume that the forward problem has the following multi-scale structure:

$$G_{\epsilon}(x) = G_0(x) + G_1(x/\epsilon).$$

where $\epsilon \ll 1$, $G_0(\cdot)$ is expensive to evaluate and only noisy observations of G_{ϵ} are available.

- \triangleright G₁ can be random or periodic
- Multi-scale nature arises for example when using time-averaged statistics as data from chaotic systems, ...

Goal:

Solve the inverse problem defined by G_0 , using only evaluations of G_{ϵ} , not of G_0 .

The associated multi-scale posterior is $\pi_{\epsilon}(x) \propto e^{-V_{\epsilon}}(x)$ with multi-scale potential

$$V_{\epsilon}(x) := rac{1}{2}|y - \mathcal{G}_{\epsilon}(x)|_{\Gamma}^2 + rac{1}{2}|x - m|_{\Sigma}^2.$$

Multi-scale forward problems when using time-averaged data

Consider the following parameter-dependent dynamical system:

$$\frac{du}{ds}=F(u;\theta),\quad u(0)=u_0,$$

which we assume to be ergodic and mixing.

Goal: identify θ from data y computed from finite time-averages of a function $\varphi(\cdot)$ over time-interval T:

$$y = \mathcal{G}_{\epsilon}(\theta) + \xi_{obs}, \text{ where } \mathcal{G}_{\epsilon}(\theta) = \frac{1}{T} \int_{0}^{T} \varphi(u(s;\theta)) ds,$$

and $\xi_{obs} \sim \mathcal{N}(0, \Delta_{obs})$ is the observational noise.

For ergodic, mixing dynamical systems a central limit theorem may hold; then

$$egin{aligned} \mathcal{G}_\epsilon(heta) &pprox \mathcal{G}_0(heta) + \mathcal{G}_1(heta), \ \mathcal{G}_1(heta) &\sim \mathcal{N}(0, T^{-1}\Delta(heta)), \end{aligned}$$

- $\triangleright \mathcal{G}_0$ is the infinite time-average, which is independent of the initial condition u_0 ;
- \triangleright Noise induced by the unknown initial condition u_0 only in \mathcal{G}_1 .

Multi-scale forward problems when using time-averaged data

- \triangleright We approximate $T^{-1}\Delta(\theta)$ by a constant covariance Δ_{model} estimated from a single long-run of the (ergodic and mixing) model at a fixed parameter θ^{\dagger} and batched into windows of length T.
- ▷ If $\xi_{model} \sim \mathcal{N}(0, \Delta_{model})$ and if ξ_{obs} is independent of the initial condition u_0 , then we can rewrite the inverse problem as

$$y = \mathcal{G}_0(\theta) + \xi,$$

where $\xi = \xi_{obs} + \xi_{model} \sim \mathcal{N}(0, \Delta_{obs} + \Delta_{model}).$

1 Multi-scale forward problems

2 Ensemble sampling

Behaviour of the sampling methods in case of rapid fluctuations

Computational experiments

Interacting particle methods aka ensemble sampling

The setting: Consider N interacting particles X_t^i , i = 1, ..., N, which explore the data landscape (aka posterior or target) satisfying a stochastic differential equation.

Objective:

- \triangleright Sampling: generate approximate samples from the log-posterior distribution; particle ensemble should approximate target as $t \to \infty$
- Optimisation: find a minimiser of the target particle ensemble collapses in the minimum; no quantification of uncertainty.

Gradient-based vs. gradient-free approaches:

 Gradient-based methods: ensemble Langevin sampler (ELS), Metropolis Adjusted Langevin Algorithm (MALA)....
 Often derived from over-damped Langevin equations

$$dX_t^i = -K
abla V(X_t) dt + \sqrt{2K} dW_t$$

where K is symmetric and pos. definite.

Gradient-free methods: ensemble Kalman sampler (EKS), consensus based optimisation),... EKS comprises N coupled SDEs in \mathbb{R}^d , for X_t^i given by

$$dX_t^i = -\left(\frac{1}{N}\sum_{n=1}^N \langle G_{\epsilon}(X_t^n) - \overline{G}_{\epsilon,t}, G_{\epsilon}(X_t^i) - y \rangle_{\Gamma} X_t^n\right) dt - C_t \Sigma^{-1}(X_t^i - m) dt \\ + \frac{d+1}{N} (X_t^i - \overline{X}_t) dt + \sqrt{2C_t} dW_t^i;$$

here the W^i are standard independent Brownian motions in \mathbb{R}^d and

$$egin{aligned} \overline{X}_t &= rac{1}{N}\sum_{n=1}^N X_t^n, \qquad \overline{G}_{\epsilon,t} &= rac{1}{N}\sum_{n=1}^N G_\epsilon(X_t^n), \ C_t &= rac{1}{N}\sum_{n=1}^N \left(X_t^n - \overline{X}_t
ight) \otimes \left(X_t^n - \overline{X}_t
ight). \end{aligned}$$

- Derivation is based on the assumption that all probability distributions involved are Gaussians.
- ▷ Gradient free.
- ▷ Extremely robust.

Ensemble Langevin methods (ELS)

The ELS is given by

$$dX^{i}_{t} = -C(X_{t})\nabla V_{\epsilon}(X^{i}_{t}) dt + \nabla_{x^{i}} \cdot C(X_{t}) dt + \sqrt{2C(X_{t})} dW^{i}_{t}$$

Here $C : \mathbb{R}^{Nd} \to \mathbb{R}^{d \times d}$ denotes the empirical covariance function of arbitrary collection of N vectors $\{x^i\}_{i=1}^N$ in \mathbb{R}^d and $X_t = \{X_t^i\}_{i=1}^N$.

 \triangleright If G_{ϵ} is linear, the SDEs defining the ELS and EKS are the same.

> Performance deteriorates for noisy potentials as fluctuations dominate.

Gaussian process.^a A Gaussian process is a collection of random variables, any finite number of which have (consistent) joint Gaussian distributions.

A Gaussian process is specified by its mean function m(x) and covariance function k(x, x'):

$$f \sim GP(m(x), k(x, x'))$$

Example of kernel/covariance functions: $k(x, y; \lambda, I) = \lambda e^{-\frac{||x-y||^2}{2l^2}}$, where $\lambda > 0$.

Gaussian process regression: Given noisy observations of the function f

 $y = f(x) + \sigma\xi,$

where $\xi \sim \mathcal{N}(0, \sigma_n)$, then the Gaussian process posterior f^* is given by

$$\begin{aligned} f_*|X, Y, X_* &\sim \mathcal{N}\left(k(X_*, X)\left[k(X, X) + \sigma^2 I\right]^{-1} f, \\ k(X_*, X_*) - k(X_*, X)\left[k(X, X) + \sigma^2 I\right]^{-1} k(X, X_*)\right) \end{aligned}$$

where X is the matrix of training input $\{x_i\}_{i=1}^n$ and X_* the matrix of test inputs.

^aRasmussen & Williams, Gaussian Processes for Machine Learning, MIT Press 2006

Assumption: data misfit term

$$V_L(x) = \frac{1}{2} \langle y - G(x), \Gamma^{-1}(y - G(x)) \rangle$$
 is a Gaussian process.

Given (noisy) evaluations of the potential at $X_t = (X_t^1, \dots, X_t^N) \in \mathbb{R}^{N \times d}$ we seek a function f such that, for some $\sigma > 0$

$$V_L(X_t^i) = f(X_t^i) + \sigma \xi^i, \quad \xi = (\xi^1, \cdots, \xi^N) \sim \mathcal{N}(0, I).$$

The corresponding Gaussian process posterior for f has mean function

$$\widehat{V_L}(x;\sigma,\lambda,l) = \sum_{i,j=1}^N k(x,X_t^i;\lambda,l) \mathcal{K}(X;\sigma,\lambda,l)_{ij}^{-1} V_L(X_t^j), \quad x \in \mathbb{R}^d$$

and covariance function

$$\gamma(x,y;\sigma,\lambda,l) = K(x,y;\sigma,\lambda,l) - \sum_{i,j=1}^{N} k(x,X_t^i;\lambda,l) K(X;\sigma,\lambda,l)_{ij}^{-1} k(X_t^j,y;\lambda,l).$$

Here $K(X)_{i,j} = \sigma^2 \delta_{i,j} + k(X_t^i, X_t^j)$.

Ensemble Gaussian sampler

Gradient of the posterior mean

$$\nabla \widehat{V_L}(x;\sigma,\lambda,l) = \sum_{i,j=1}^N \nabla_x k(x,X_t^i\lambda,l) K(X;\sigma,\lambda,l)_{ij}^{-1} V_L(X_t^j).$$

Ensemble particles evolve according to over-damped Langevin dynamics

$$dX_t^i = -\nabla \widehat{V_L}(X_t^i; \sigma, \lambda, I) dt - \Sigma^{-1} X_t^i dt + \sqrt{2} dW_t.$$

Approximate gradient $\nabla \hat{V}_{L}$ depends on the hyper-parameters (σ, λ, l) , which have to be trained as the density evolves.

Updating the GP hyperparameters

Priors:

- \triangleright log-normal priors on the amplitude λ and the noise's standard deviation σ , and
- ▷ Gamma prior on the lengthscale *I*.

Update (σ, λ, l) by maximising the log marginal posterior

$$\begin{split} MLP(\sigma,\lambda,l;X) \propto \frac{1}{2} \log \sum_{i,j=1}^{N} \widehat{V_L}(X_t^i;\sigma,\lambda,l) \mathcal{K}(X;\sigma,\lambda,l)^{-1} \widehat{V_L}(X_t^j;\sigma,\lambda,l) \\ &- \frac{1}{2} \log \det \mathcal{K}(X;\sigma,\lambda,l) + \log p_0(\sigma,\lambda,l), \end{split}$$

where p_0 denotes the prior density over the hyperparameters.

Putting it all together

Euler-Maruyama discretisation of the SDE coupled with a gradient descent scheme for adaptively selecting the hyperparameters.

Let $X_n = (X_n^1, \dots, X_n^N) \in \mathbb{R}^{N \times d}$ denote the particle ensemble at time-step *n*. Then \triangleright For $i = 1, \dots, N$:

- Set $X_{n+1}^i = X_n^i \Delta t \nabla \widehat{V_L}(X_n^i; \sigma_n, \lambda_n, I_n) \Delta t \Sigma^{-1} X_n^i + \sqrt{2\Delta t} \xi_n$, where $\xi \sim \mathcal{N}(0, 1)$ iid.
- $\triangleright \text{ Update } (\sigma_{n+1}, \lambda_{n+1}, I_{n+1}) = (\sigma_n, \lambda_n, I_n) + \delta t \nabla_{(\sigma, \lambda, I)} MLP(\sigma_n, \lambda_n, I_n; X_{n+1}).$

Here Δt and δt are step-sizes for the Langevin updates and the hyperparameter gradient descent, respectively.

Ensemble methods

ELS

Gradient based

Calculate gradient of log-posterior for every particle and update the particle positions.

EKS

Gradient free

Approximate gradient of log-posterior under the assumption that all probabilities are Gaussians.

EGPS

Gradient free

Approximate gradient of the log-posterior and assume that it's a Gaussian process.

Performance deteriorates as $\varepsilon \rightarrow 0$.

Robust to roughness of posterior landscape

Robust to roughness of posterior landscape

Multi-scale forward problems

Ensemble sampling

Behaviour of the sampling methods in case of rapid fluctuations

4 Computational experiments

Performance of the different sampling methods for rough posteriors

Use formal multi-scale analysis to analyse the behaviour of the interacting particle methods in the case of rapid fluctuations, that is

$\varepsilon \ll 1.$

▷ Do the limiting solutions of the methods converge to the correct (unperturbed) equilibrium distribution as $t \to \infty$?

Recall: we wish to sample from π_0 NOT π_{ϵ} !

Performance of the different sampling methods for rough posteriors

Use formal multi-scale analysis to analyse the behaviour of the interacting particle methods in the case of rapid fluctuations, that is

$\varepsilon \ll 1.$

▷ Do the limiting solutions of the methods converge to the correct (unperturbed) equilibrium distribution as $t \to \infty$?

Recall: we wish to sample from π_0 NOT π_{ϵ} !

Assumption:

The forward model satisfies

$$G_{\epsilon}(x) = G_0(x) + G_1(x/\epsilon),$$

 $G_0 \in C^1(\mathbb{R}^d, \mathbb{R}^K)$, $G_1 \in C^1(\mathbb{T}^d, \mathbb{R}^K)$ and $\int_{\mathbb{T}^d} G_1(y) \, dy = 0$. G_1 is a 1-periodic function in every dimension.

EKS: mean-field limit

The mean field limit is given by

$$dx_t = -\mathcal{F}(x_t, \rho) dt - \mathcal{C}(\rho) \Sigma^{-1} x_t dt + \sqrt{2\mathcal{C}(\rho)} dW_t,$$

where W is a standard Brownian motion in \mathbb{R}^d and,

$$\begin{split} \overline{\mathcal{X}}(\pi) &= \int_{\mathbb{R}^d} X' \pi(X') dX', \quad \overline{\mathcal{G}}(\pi) = \int_{\mathbb{R}^d} G_{\epsilon}(X') \pi(X') dX', \\ \mathcal{C}(\pi) &= \int_{\mathbb{R}^d} \left(X' - \overline{\mathcal{X}}(\pi) \right) \otimes \left(X' - \overline{\mathcal{X}}(\pi) \right) \pi(X') dX', \\ \mathcal{F}(x,\pi) &= \left(\int_{\mathbb{R}^d} \langle G_{\epsilon}(X') - \overline{\mathcal{G}}(\pi), G_{\epsilon}(x) - y \rangle_{\Gamma} X' \pi(X') dX' \right). \end{split}$$

The time-dependent density of the process ρ satisfies the nonlinear Fokker-Planck equation

$$\partial_t \rho = \nabla_x \cdot \left(\nabla_x \cdot (\mathcal{C}(\rho)\rho) + \mathcal{F}(x,\rho)\rho \right).$$
(EKS)

EKS: formal multi-scale analysis

Mean field limit equations of the unperturbed problem:

$$dx_t = -\mathcal{F}_0(x_t,
ho_0) dt - \mathcal{C}(
ho_0) \Sigma^{-1} x_t dt + \sqrt{2\mathcal{C}(
ho_0)} dW_t,$$

with

$$\begin{split} \overline{\mathcal{G}}_{0}(\pi) &= \int_{\mathbb{R}^{d}} G_{0}(X')\pi(X')dX', \\ \mathcal{F}_{0}(x,\pi) &= \int_{\mathbb{R}^{d}} \langle G_{0}(X') - \overline{\mathcal{G}_{0}}(\pi), G_{0}(x) - y \rangle_{\Gamma} X'\pi(X')dX'. \end{split}$$

The time dependent density $\rho_0(x,t) \in C((0,\infty); L^1(\mathbb{R}^d; \mathbb{R}^+))$ of this process satisfies

$$\partial_t \rho_0 = \nabla_x \cdot \left(\nabla_x \cdot \left(\mathcal{C}(\rho_0) \rho_0 \right) + \mathcal{F}_0(x, \rho_0) \rho_0 \right).$$
(EKS₀)

EKS: Performance as $\varepsilon \rightarrow 0$

Let Assumption (A1) hold with $0 < \epsilon \ll 1$. If ρ satisfying (EKS) is of the form

$$\rho = \rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2 + \cdots,$$

then formal multi-scale analysis demonstrates that ρ_0 satisfies (EKS₀) (FPE relating to the unperturbed process).

▷ As $\varepsilon \rightarrow 0$ the limiting mean field PDE for the density of the process (EKS₀) corresponds to the nonlinear FPE of the unperturbed process.

 \Rightarrow EKS behaves as if $G_1 \equiv 0$, and ignores the rapid $\mathcal{O}(1)$ fluctuations.

- Formal perturbation result confirms empirically observed robustness of the EKS for very noisy problems.
- ▷ Rigorous results: tedious, since the main technical difficulty would be to derive bounds from below for the covariance operator.

ELS: mean field limit

The mean field limit of the ELS is given by

$$dx_t = -\mathcal{C}(\rho_t)\nabla V_{\epsilon}(x_t) + \sqrt{2\mathcal{C}(\rho)}dW_t,$$

where function $\mathcal{C}(\cdot)$ on densities is defined as for the mean-field equation for the EKS.

The associated non-linear Fokker-Planck equation for the time-dependent density of the process $\rho \in C((0,\infty); L^1(\mathbb{R}^d; \mathbb{R}^+))$ is given by

$$\partial_t \rho = \nabla_x \cdot \left(\mathcal{C}(\rho) \left(\nabla_x \rho + \nabla_x V_\epsilon \rho \right) \right).$$
(ELS)

▷ Carrillo and Vaes established stability estimates in the Wasserstein distance for solutions in the case of linear G.

ELS: formal multi-scale analysis

If the solution ρ to (ELS) is expanded in the form $\rho = \rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2 + \cdots$, then the formal multi-scale analysis demonstrates that ρ_0 satisfies

$$\partial_t \rho_0 = \nabla_x \cdot \left(\mathcal{D}(\rho_0) \left(\nabla_x \rho_0 + \nabla_x \overline{V} \rho_0 \right) \right), \qquad (\text{ELS}_0)$$

where $\overline{V} = V_0 - \log Z(x)$, $Z(x) = \int_{\mathbb{T}^d} e^{-V_1(x,z)} dz$ and

$$\mathcal{D}(\rho_0) = \frac{1}{Z(x)} \int_{\mathbb{T}^d} (I + \nabla_z \chi(x, z))^\top \mathcal{C}(\rho_0) (I + \nabla_z \chi(x, z)) e^{-V} dz.$$

Here $\chi : \mathbb{R}^d \times \mathbb{T}^d \to \mathbb{R}^d$ solves the following second order PDE in *z* (parameterized by *x*):

$$abla_z \cdot \left(\mathcal{C}(
ho_0) e^{-V(x)} (
abla_z \chi(x,z) + I)
ight) = 0, \quad (x,z) \in \mathbb{R}^d imes \mathbb{T}^d.$$

Furthermore, for arbitrary $\zeta \in \mathbb{R}^d$,

$$\zeta^{\top} \mathcal{D}(\rho_0) \zeta \leq \zeta^{\top} \mathcal{C}(\rho_0) \zeta.$$

ELS: performance as $\varepsilon \to 0$

 $\triangleright\,$ For $\varepsilon\to 0$ the function ρ_0 satisfying (${\rm ELS}_0)$ the unique invariant distribution is given by

 $\bar{\pi}(x) \propto \pi_0 Z(x)$

No 'averaging out' of fluctuations

 \triangleright Perturbations slow down convergence: the effective diffusion $\mathcal{D}(\rho_0, x)$ is given by

$$\mathcal{D}(\rho_0, x) = \frac{1}{Z(x)} \int_{\mathbb{T}^d} \mathcal{C}(\rho_0) e^{-V_1} (I + \nabla_z \chi) \, dz$$
$$= \mathcal{C}(\rho_0) - \int_{\mathbb{T}^d} \nabla_z \chi^\top \mathcal{C}(\rho_0) \nabla_z \chi e^{-V_1(x,z)} \, dz$$

Multi-scale forward problems

2 Ensemble sampling

Behaviour of the sampling methods in case of rapid fluctuations

Computational experiments

Linear forward model

Forward map G_{ϵ} of the form, for $x = (x_1, x_2)$,

$$\begin{aligned} G_{\epsilon}(x) &= G_{0}(x) + G_{1}(x/\epsilon), \\ G_{0}(x) &= Ax, \quad G_{1}(x) = [\sin(2\pi x_{1}), \sin(2\pi x_{2})]^{\top}, \text{ with } A = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}. \end{aligned}$$

M.T. Wolfram (Warwick)

Lorenz 63 equations

Consider the 3-dimensional Lorenz 63 equations:

$$\begin{aligned} \dot{x}_1 &= \sigma(x_2 - x_1) \\ \dot{x}_2 &= rx_1 - x_2 - x_1 x_3 \\ \dot{x}_3 &= x_1 x_2 - b x_3, \end{aligned}$$

with parameters σ , $r, b \in \mathbb{R}_+$.

- ▷ Fix $\sigma = 10$ and focus on the inverse problem of identifying *r* and *b* from time-averaged data.
- \triangleright Impose multivariate log-normal prior on $\theta = (r, b)$ with mean m = (3.3, 1.2) and covariance $\Sigma = \text{diag}(0.15^2, 0.5^2)$.
- $\triangleright\,$ We take ${\mathcal T}=10$ and define $\varphi\colon {\mathbb R}^3\to {\mathbb R}^9$

$$\varphi(x) = (x_1, x_2, x_3, x_1^2, x_2^2, x_3^2, x_1x_2, x_2x_3, x_1x_3);$$

Data generation

- ▷ Data is generated for $(\sigma, r^{\dagger}, b^{\dagger}) = (10, 28, \frac{8}{3})$ (chaotic behaviour) using a single evaluation of the random (with respect to initial condition) function \mathcal{G}_{ϵ} . Furthermore $\Delta_{obs} \equiv 0$.
- ▷ We set Δ_{model} to be the empirical covariance of $\mathcal{G}_{\epsilon}(\theta^{\dagger})$ over windows of size 10 from a single trajectory with $\theta^{\dagger} = (r^{\dagger}, b^{\dagger})$, over 360 time units.
- $\triangleright \text{ Negative LL function } V_L(\theta) := \frac{1}{2} \langle (y \mathcal{G}_{\epsilon}(\theta)), \Delta_{model}^{-1}(y \mathcal{G}_{\epsilon}(\theta)) \rangle.$

Figure: Profile of the noisy negative log-likelihood over r for b fixed at optimal value. The blue dashed line denotes the 'true' value r = 8/3.

(a) ELS

GPS Langevin

- EKS

10°

10-1

Multi-modal posteriors

We consider a forward map for $x = (x_1, x_2)$ which is defined by

$$\begin{split} & G_{\epsilon}(x) = G_0(x) + G_1(x/\epsilon), \\ & G_0(x) = (x_1^2 - 1)^2 + (x_2^2 - 1)^2, \quad G_1(x) = \nu(\sin(2\pi x_1) + \sin(2\pi x_2)), \end{split}$$

and where $\Gamma = \gamma^2 I$.

(e) ELS

(g) EGPS

M.T. Wolfram (Warwick)

Conclusion & Outlook

- Discussed and analysed different ensemble methods for solving inverse problems with noisy and expensive likelihoods.
- Used formal multi-scale approach to understand the influence of rapid fluctuations, when trying to identify the large-scale smoothly varying underlying structure of the posterior.
- EKS is robust with respect to noisy and periodic fluctuations, while the ELS is significantly impacted by it.
- Propose a new class of ensemble Gaussian process samplers, which are robust to fluctuations but still employ gradient information.

Open problems:

- Understanding the tuning of the hyper-parameters for the Gaussian process;
- Making the formal multi-scale argument rigorous;
- Long time behaviour of the EGPS;
-

Conclusion & Outlook

- Discussed and analysed different ensemble methods for solving inverse problems with noisy and expensive likelihoods.
- Used formal multi-scale approach to understand the influence of rapid fluctuations, when trying to identify the large-scale smoothly varying underlying structure of the posterior.
- EKS is robust with respect to noisy and periodic fluctuations, while the ELS is significantly impacted by it.
- Propose a new class of ensemble Gaussian process samplers, which are robust to fluctuations but still employ gradient information.

Open problems:

- Understanding the tuning of the hyper-parameters for the Gaussian process;
- Making the formal multi-scale argument rigorous;
- Long time behaviour of the EGPS;
-

Thank you very much for your attention!

References:

- O.R.A. Dunbar, A.B. Duncan, A.M. Stuart and MTW, Ensemble Inference Methods for Models with Noisy and Expensive Likelihoods, to appear in SIADS, 2022
- ▷ J.A. Carrillo and U. Vaes, Wasserstein stability estimates for covariance Fokker-Planck equations, Nonlinearity, 2020
- A. Garbuno-Inigo, F. Hoffmann, W. Li and A.M. Stuart, Interacting Langevin diffusions: Gradient Structure and ensemble Kalman sampler, SIADS 19, 2020
- V. Araujo, I. Melbourne and P. Varandas, Rapid mixing for Lorenz attractor and statistical limit laws for their time-1 maps, Communications in Mathematical Physics 340, 2015.
- C.E. Rasmussen and C.K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006