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Focus of this talk:

Propose, discuss and analyse ensemble methods for noisy and expensive likelihood.
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Focus of this talk:

Propose, discuss and analyse ensemble methods for noisy and expensive likelihood.

Today's plan:
> Bayesian inverse problems
> Multi-scale forward problems
> Interacting particle methods aka ensemble sampling
> Formal multi-scale analysis in case of noisy likelihood functions

> Computational experiments
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Bayesian inverse problems

The inverse problem: Given observations y € RK infer x € RY based on evaluations of Go(x)
polluted by noise &:

y = Go(x) +¢&.

> Assumption: noise & ~ N(0,T), with strictly positive-definite covariance I' € RKXK,

Bayes rule: Imposing a Gaussian prior x ~ N(m, X), the posterior distribution is given by

mo(x) oc e~ Vo(x),

1 1
Vo(x) i= 31y = Go(x)? + 3 1x — mi2.
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° Multi-scale forward problems
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Assume that the forward problem has the following multi-scale structure:
Ge(x) = Go(x) + Gi(x/e).

where € < 1, Gy(+) is expensive to evaluate and only noisy observations of G are available.
> Gj can be random or periodic

> Multi-scale nature arises for example when using time-averaged statistics as data from
chaotic systems, ...

Goal:

Solve the inverse problem defined by Gy, using only evaluations of G, not of Gp.

The associated multi-scale posterior is mc(x) o< e~ "¢ (x) with multi-scale potential

1 1
Ve(x) i= 51y = GG + 5 1x — mE2.
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Consider the following parameter-dependent dynamical system:

du = F(u;0), u(0)= up,
ds

which we assume to be ergodic and mixing.

Goal: identify 0 from data y computed from finite time-averages of a function ¢(-) over
time-interval T:

1 T
Y = Ge(0) + Eobs, where Ge(0) = 7/0 o (u(s; 0))ds,

and Eops ~ N (0, Ayps) is the observational noise.

For ergodic, mixing dynamical systems a central limit theorem may hold; then

Ge(0) ~ Go(0) + G1(0),
Gi1(0) ~ N (0, T1A(9)),

> Gp is the infinite time-average, which is independent of the initial condition wg;

> Noise induced by the unknown initial condition ug only in G;.
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Multi-scale forward problems when using time-averaged data

> We approximate T_IA(G) by a constant covariance A4 estimated from a single
long-run of the (ergodic and mixing) model at a fixed parameter 0t and batched into
windows of length T.

> If Emoder ~ N(0, Amoder) and if Eqps is independent of the initial condition ug, then we
can rewrite the inverse problem as

y =Go(0) +¢,

where £ = §obs + Emoder ~ N(O: Aops + Amodel)-
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© Ensemble sampling
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The setting: Consider N interacting particles Xl i= 1,... N, which explore the data land-
scape (aka posterior or target) satisfying a stochastic differential equation.

Objective:

> Sampling: generate approximate samples from the log-posterior distribution;
particle ensemble should approximate target as t — co

> Optimisation: find a minimiser of the target
particle ensemble collapses in the minimum; no quantification of uncertainty.
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Gradient-based vs. gradient-free approaches:

> Gradient-based methods: ensemble Langevin sampler (ELS), Metropolis Adjusted Langevin
Algorithm (MALA)....
Often derived from over-damped Langevin equations

dX! = —KVV(X;)dt + V2KdW,

where K is symmetric and pos. definite.

> Gradient-free methods: ensemble Kalman sampler (EKS), consensus based optimisa-
tion),...

M.T. Wolfram (Warwick) Ensemble methods



EKS comprises N coupled SDEs in RY, for X,_f given by

N
dXi = — (L D (Ge(X]) = Ger, Ge(X]) — y)rxp> dt — GZY(X{ — m)dt
n=1
d+1 .
+ L(X' X1) dt + \/2C; dW;

here the W' are standard independent Brownian motions in R? and
N - 1
LYK Gaem 52600,
n=1 n=1
1
—_ n __ Y n __ Y
C= ; (xt xt) ® (xt xt) .

2 \

> Derivation is based on the assumption that all probability distributions involved are

Gaussians.
> Gradient free.

> Extremely robust.
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Ensemble Langevin methods (ELS)

The ELS is given by
dX'y = —C(Xe)VVe(X!) dt + Vi - C(Xe) dt + /2C(Xe)dW;.

Here C: R'Nd — RY%9 denotes the empirical covariance function of arbitrary collection of N
vectors {x'}¥ | in R? and X, = {X/}V,.

> If Ge is linear, the SDEs defining the ELS and EKS are the same.

> Performance deteriorates for noisy potentials as fluctuations dominate.

M.T. Wolfram (Warwick) Ensemble methods



Gaussian process:? A Gaussian process is a collection of random variables, any finite number
of which have (consistent) joint Gaussian distributions.

A Gaussian process is specified by its mean function m(x) and covariance function k(x, x’):

f ~ GP(m(x), k(x,x"))

lx—ylI?

Example of kernel/covariance functions: k(x,y;\, /) =Xe 27 , where A > 0.

Gaussian process regression: Given noisy observations of the function f
y = f(x) + ¢,
where € ~ N(0,0,), then the Gaussian process posterior f* is given by
£IX, Y, X ~ N (k(X*,X) [k(X,X) +021] ' f,
K(Xe, Xe) = K(Xe, X) [K(X, X) +021] 71 k(X X,)

where X is the matrix of training input {x;}7_; and X, the matrix of test inputs.

?Rasmussen & Williams, Gaussian Processes for Machine Learning, MIT Press 2006
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Assumption: data misfit term
1
Vi(x) = E(y — G(x),T"Y(y — G(x))) is a Gaussian process.

Given (noisy) evaluations of the potential at X; = (X2, ..., XN) € RVX? we seek a function
f such that, for some ¢ > 0

VLX) = f(XD) + o€, e=(&, &Ny~ N(0,)).

The corresponding Gaussian process posterior for f has mean function

N
Vil oA\ 1) = > k(o XEA DK(X 0, A, 1) Vi(Xl),  x e R
ij=1
and covariance function
N ) .
Y06y oA 1) = KOy o, A 1) = D k(G XEADK(X; 0,0, D) k(X yi A D).
ij=1

Here K(X);j = 026;; + k(X{, XJ).
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Ensemble Gaussian sampler

Gradient of the posterior mean

N
VVL(xio A 1) = D Viek(x, X{X, K(X; 0, A, Ny Vi(xd).
ij=1

Ensemble particles evolve according to over-damped Langevin dynamics

dX] = —VV (X[;0,\, ) dt — =71X] dt + /2 dW;.

Approximate gradient VVI depends on the hyper-parameters (o, A, /), which have to be
trained as the density evolves.
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Updating the GP hyperparameters

Priors:
> log-normal priors on the amplitude A and the noise’s standard deviation o, and

> Gamma prior on the lengthscale /.

Update (o, A, /) by maximising the log marginal posterior

N
1 — . .
MLP(o, X\, I; X) 2 log E Vi(X{ oo X DK(X; 0, A, l)_IVL(XJ; a,\ 1)
ij=1

1
=5 logdet K(X; o, \, 1) + log po(o, A, 1),

where pp denotes the prior density over the hyperparameters.
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Euler-Maruyama discretisation of the SDE coupled with a gradient descent scheme for adap-
tively selecting the hyperparameters.

Let X, = (X},...,XN) € RVX? denote the particle ensemble at time-step n. Then
> Fori=1,...,N:

o Set Xi 1 = X~ AtVV(X}; o0, An, n) —AtE1X] +V2A¢ £y, where & ~ N(0,1)
iid.
> Update (cf,,+1, Antl, /n+1) = (CJ’,,7 An, In) + 5tV(U7A’/) MLP(O’,,, Any In; Xn+1).

Here At and §t are step-sizes for the Langevin updates and the hyperparameter gradient
descent, respectively.
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Gradient based Gradient free
Calculate gradient of Approximate gradient of
log-posterior for every log-posterior under the

particle and update the assumption that all
particle positions. probabilities are Gaussians.
Performance deteriorates Robust to roughness of
ase — 0. posterior landscape

ELS EKS

200 175 150 125 100 075 650 025 0%0
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EGPS
Gradient free

Approximate gradient of
the log-posterior and
assume that it's a Gaussian
process.

Robust to roughness of
posterior landscape

200 ~175 150 -17% ~100 075 050 675 050
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e Behaviour of the sampling methods in case of rapid fluctuations
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Performance of the different sampling methods for rough posteriors

> Use formal multi-scale analysis to analyse the behaviour of the interacting particle meth-
ods in the case of rapid fluctuations, that is

ek 1.

> Do the limiting solutions of the methods converge to the correct (unperturbed) equilib-
rium distribution as t — oco?

Recall: we wish to sample from w9 NOT 7!
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Performance of the different sampling methods for rough posteriors

> Use formal multi-scale analysis to analyse the behaviour of the interacting particle meth-
ods in the case of rapid fluctuations, that is

ek 1.

> Do the limiting solutions of the methods converge to the correct (unperturbed) equilib-
rium distribution as t — oco?

Recall: we wish to sample from w9 NOT 7!

r
.

Assumption:

The forward model satisfies

Ge(x) = Go(x) + Gi(x/e),

Go € CY(RY,RX), G € CL(T%,RK) and / El)dy — 0. G, s o Ipaiedis Gnedon i
Td

every dimension.
\
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The mean field limit is given by

dxe = —F(xt, p) dt — C(p)Z " 1xe dt + +/2C(p) dW4,

where W is a standard Brownian motion in R? and,
T = [ X)X, ) = [ G(xX (X)X,
e = [ (¢ =F(m) & (X = F(m) w0’
Flxum) = ([ (GelX") = T(m). 6:0) = p)rX'm(X')aX").
The time-dependent density of the process p satisfies the nonlinear Fokker-Planck equation

Btp = V- (V- (Clp)0) + F(x, p)p). (EKS)
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EKS: formal multi-scale analysis

Mean field limit equations of the unperturbed problem:

dxt = —Fo(xt, po) dt — C(po)Z ~xe dt + +/2C(po) dWs,

with
Gom) = [ Go(X')m(xyax’
Bfbii) = /R {6o(X") = To(m), Go(x) — V) X/m(X')aX'"

The time dependent density po(x, t) € C((0, c0); LY(RY; R™)) of this process satisfies

dtpo = Vx - (Vx - (C(po)po) + Fo(x, Po)Po)~ (EKSo)
\ J
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Let Assumption (A1) hold with 0 < € < 1. If p satisfying (EKS) is of the form
pP=pot+epit+eprt -,

then formal multi-scale analysis demonstrates that pg satisfies (EKSg) (FPE relating to the
unperturbed process).

> As e — 0 the limiting mean field PDE for the density of the process (EKSp) corresponds
to the nonlinear FPE of the unperturbed process.

= EKS behaves as if G; = 0, and ignores the rapid O(1) fluctuations.

> Formal perturbation result confirms empirically observed robustness of the EKS for very
noisy problems.

> Rigorous results: tedious, since the main technical difficulty would be to derive bounds
from below for the covariance operator.
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The mean field limit of the ELS is given by

dxy = _C(Pt)VVE(Xt) + \/mdwtv

where function C(-) on densities is defined as for the mean-field equation for the EKS.
The associated non-linear Fokker-Planck equation for the time-dependent density of the
process p € C((0,00); L1(RY; RT)) is given by

Aep = V- (C(p) (Vxp+ VxVep)). (ELS)

> Carrillo and Vaes established stability estimates in the Wasserstein distance for solutions
in the case of linear G.
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If the solution p to (ELS) is expanded in the form p = pg+ep1 +€2pa+ - - -, then the formal
multi-scale analysis demonstrates that pg satisfies

Otpo = Vx - (D(po) (pro + Vme)) ) (ELSo)

where V = Vg — log Z(x), Z(x) = / e~ V1(2) gz and
Td
1
D(po) = 27/ (I + Vax(x, z))TC(po)(l + Vzx(x, z))efv dz.

(x) Jre

Here x : R? x T¢ — RY solves the following second order PDE in z (parameterized by x):
v, - (C(po)e_v(x)(vzx(x,z) 4 /)) =0, (x,z)eR?x T

Furthermore, for arbitrary ¢ € R,

¢TD(po)¢ < ¢TCpo)C.
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ELS: performance as ¢ — 0

> For e — 0 the function pg satisfying (ELSp) the unique invariant distribution is given
by

T(x) o< moZ(x)

No 'averaging out’ of fluctuations

> Perturbations slow down convergence: the effective diffusion D(pg, x) is given by

Dipo.x) = 575 [ Cloo)e™1(1 + ) d

L
Z(x)

=C(po) — er VZXTC(PO)VZXG_Vl(X’Z) dz.
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@ Computational experiments
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Linear forward model

Forward map G, of the form, for x = (x1,x2),

Ge(x) = Go(x) + Gi(x/e),

Go(x) = Ax, Gi(x) = [sin (2mx1),sin (2mx2)] T, with A= (_01 g) .

200 175 150 ~125 100 ~0.75 ~050 025 000

(b) Ensemble Kalman Sampler
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(c) Ensemble GP sampler (d) Negative Log-Likelihood
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Lorenz 63 equations

Consider the 3-dimensional Lorenz 63 equations:

x1 = o(x2 — x1)
Xp = IX] — Xp — X1X3

X3 = x1x2 — bxz,
with parameters o, r, b € R;.

> Fix o = 10 and focus on the inverse problem of identifying r and b from time-averaged
data.

> Impose multivariate log-normal prior on 6 = (r,b) with mean m = (3.3,1.2) and
covariance ¥ = diag(0.152,0.5%).

> We take T = 10 and define p: R® — R°

2 2 2 .
o(x) = (X1, X2, X3, X1, X2, X3, X1X2, X2X3, X1X3);
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> Data is generated for (o, rf, bt) = (10,28, §) (chaotic behaviour) using a single eval-
uation of the random (with respect to initial condition) function G.. Furthermore
Aobs =0.

> We set A, odel to be the empirical covariance of QE(GT) over windows of size 10 from a
single trajectory with 87 = (rf, bT), over 360 time units.

> Negative LL function V;(0) := %((y —Ge(0)), AL (y — Ge(0)))-

250 °
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Figure: Profile of the noisy negative log-likelihood over r for b fixed at optimal value. The blue dashed
line denotes the 'true’ value r = 8/3.
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Lorenz 63
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Multi-modal posteriors

We consider a forward map for x = (x1, x2) which is defined by

Ge(x) = Go(x) + Gi(x/e),
Go(x) = (& —1)2 + (x2 — 1)%,  Gi(x) = v(sin(2mx1) + sin(27x2)),

and where I = ~2/.

10
g
.
© 05
. ©
e .
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-10
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(e) ELS (F) EKS

|
- @

X} s o 65 oo o5 10 1s

(g) EGPS
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Discussed and analysed different ensemble methods for solving inverse problems with
noisy and expensive likelihoods.

Used formal multi-scale approach to understand the influence of rapid fluctuations, when
trying to identify the large-scale smoothly varying underlying structure of the posterior.

EKS is robust with respect to noisy and periodic fluctuations, while the ELS is signifi-
cantly impacted by it.

Propose a new class of ensemble Gaussian process samplers, which are robust to fluc-
tuations but still employ gradient information.

Open problems:
e Understanding the tuning of the hyper-parameters for the Gaussian process;
e Making the formal multi-scale argument rigorous;
e Long time behaviour of the EGPS;
L



> Discussed and analysed different ensemble methods for solving inverse problems with
noisy and expensive likelihoods.

> Used formal multi-scale approach to understand the influence of rapid fluctuations, when
trying to identify the large-scale smoothly varying underlying structure of the posterior.

> EKS is robust with respect to noisy and periodic fluctuations, while the ELS is signifi-
cantly impacted by it.

> Propose a new class of ensemble Gaussian process samplers, which are robust to fluc-
tuations but still employ gradient information.

> Open problems:

e Understanding the tuning of the hyper-parameters for the Gaussian process;
e Making the formal multi-scale argument rigorous;

e Long time behaviour of the EGPS;
L

Thank you very much for your attention!
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