
From Denoising Diffusions to
Denoising Markov Models

Joe Benton

University of Warwick
Friday 10th November 2023

Benton et al. From Denoising Diffusions to DMMs 10/11/2023 1 / 28



Motivation

Motivation

Benton et al. From Denoising Diffusions to DMMs 10/11/2023 2 / 28



Motivation

Diffusion Models

Figure: Images generated by DDPM [1], DALLE-2 [2] and Imagen [3].
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Motivation

Generative Modeling

The problem
Given samples from a data distribution pdata(x), generate synthetic
samples coming from approximately the same distribution.

Applications: Image generation, text-to-speech, protein structure
modeling, approximate posterior inference etc.

Benton et al. From Denoising Diffusions to DMMs 10/11/2023 4 / 28



Motivation

Generative Modeling

The problem
Given samples from a data distribution pdata(x), generate synthetic
samples coming from approximately the same distribution.

Applications: Image generation, text-to-speech, protein structure
modeling, approximate posterior inference etc.

Benton et al. From Denoising Diffusions to DMMs 10/11/2023 4 / 28



Motivation

Motivation

But... these diffusion models are either restricted to data on Rd , or
rely on ad-hoc extensions to new state spaces.

Motivating question
Can we find a principled generalisation of diffusion models to new
state spaces?

Yes – Denoising Markov Models!
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Brief Introduction to Diffusion Models

Diffusion models on Rd

• Noising process (Yt)t∈[0,T ] with maringals qt(x) via the SDE

dYt = −1
2Ytdt + dBt , Y0 = x0 ∼ pdata.

• Time-reversed process Xt = YT−t satisfies

dXt = {−1
2Xt +∇ log qT−t(Xt)}dt + dB̂t .

• Strategy: Learn approximation to ∇ log qt(x), use to simulate
reverse process.
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Brief Introduction to Diffusion Models

Diffusion models on Rd

• We approximate ∇ log qt(x) using the L2 objective

IDSM(θ) =
1
2

∫ T

0
Eq0,t (x0,xt )

[
||∇x log qt |0(xt |x0)− sθ(xt , t)||2

]
dt .

• sθ(xt , t) is an approximation parameterised by a neural
network.

• Originally proposed ad hoc; later derived by Huang et al. [4].
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Brief Introduction to Diffusion Models

Score Matching

• A method for fitting unnormalized probability distributions of
Hyvärinen [5].

• Approximate the distribution q0 using parametric family
p(x; θ) = q(x ; θ)/Z (θ) by minimising

JESM(θ) =
1
2
Eq0(x)

[
||∇x log q0(x)−∇x log q(x; θ)||2

]
.

• This is intractable, but equivalent to minimising

JISM(θ) = Eq0(x)

[
∆x log q(x; θ) +

1
2
∥∇x log q(x; θ)||2

]
,

or a denoising score matching objective.
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Our Novel Framework: Denoising Markov Models
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Our Novel Framework: Denoising Markov Models

Denoising Markov Models

• pdata(x) on space X .
• Noising Markov process (Yt)t∈[0,T ], generator L, marginals

qt(x).
• Learn reverse process (Xt)t∈[0,T ], generator K, marginals pt(x).
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Our Novel Framework: Denoising Markov Models

Example

Euclidan Diffusion
If (Xt)t∈[0,T ], (Yt)t∈[0,T ] are given by the SDEs

dXt = µ(Xt , t)dt + dB̂t ,

dYt = b(Yt , t)dt + dBt ,

then the corresponding generators are

K = ∂t + µ · ∇+ 1
2∆,

L = ∂t + b · ∇+ 1
2∆.
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Our Novel Framework: Denoising Markov Models

Plan

Key question
How do we learn the reverse process generator K?

The plan:
1 Model likelihood using Fokker–Planck, Feynman–Kac.
2 Lower bound on model log likelihood using Girsanov.
3 Equivalent tractable objectives.
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Our Novel Framework: Denoising Markov Models

Model Likelihood

(Generalised) Fokker–Planck PDE
∂tpt = K̂∗pt

Assumption 1
With v(x, t) = pT−t(x), FP becomes Mv + cv = 0, where M is
generator of (Zt)t∈[0,T ] and c : X × [0,T ] → R.

Euclidean Diffusion
Set-up is K = ∂t + µ · ∇+ 1

2∆, and L = ∂t + b · ∇+ 1
2∆.

Then, FP PDE is: ∂tv = µ · ∇v + (∇ · µ)v − 1
2∆v .

c = −(∇ · µ) and M = ∂t − µ · ∇+ 1
2∆.
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Our Novel Framework: Denoising Markov Models

Model Likelihood

Applying a generalised form of the Feynman–Kac theorem, we can
write the model likelihood as

pT (x) = E
[
p0(ZT ) exp

{∫ T

0
c(Zt , t) dt

} ∣∣∣∣ Z0 = x
]
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Our Novel Framework: Denoising Markov Models

Lower Bound on Model Log Likelihood

Assumption 2
There is β : X × [0,T ] → (0,∞) s.t. β−1Mf = L(β−1f )− fL(β−1).

Recall K determines M via ∂tpt = K̂∗pt ⇔ Mv + cv = 0.

We think of β as parameterising K via M.

Euclidean Diffusion
Set-up is K = ∂t + µ · ∇+ 1

2∆, and L = ∂t + b · ∇+ 1
2∆.

Assumption 2 becomes ∇ log β = µ+ b.
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Our Novel Framework: Denoising Markov Models

Lower Bound on Model Log Likelihood

Starting from

log pT (x) = logE
[
p0(ZT ) exp

{∫ T

0
c(Zt , t) dt

} ∣∣∣∣ Z0 = x
]

and applying Jensen’s and (generalised) Girsanov,

log pT (x) ≥ EQ

[
log p0(YT )

∣∣∣Y0 = x
]
−
∫ T

0
EQ

[
L̂∗β

β
+L̂ log β

∣∣∣∣ Y0 = x
]

dt .
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Our Novel Framework: Denoising Markov Models

Tractable Training Objective

Consider

E∞ := EQ

[
log p0(YT )

∣∣∣Y0 = x
]
−
∫ T

0
EQ

[
L̂∗β

β
+ L̂ log β

∣∣∣∣ Y0 = x
]

dt .

The first term is constant.

The expectation of the second term is

IISM(β) =

∫ T

0
Eqt (xt )

[
L̂∗β(xt , t)
β(xt , t)

+ L̂ log β(xt , t)

]
dt .

This is tractable to minimise!
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Our Novel Framework: Denoising Markov Models

Tractable Training Objective

We also have the corresponding denoising score matching
objective

IDSM(β) =

∫ T

0
Eq0,t

[L(q·|0/β(·, ·))(xt , t)
qt |0(xt |x0)/β(xt , t)

− L log(q·|0/β)(xt , t)
]

dt .

Euclidean Diffusion
The objective becomes

IDSM(β) =
1
2

∫ T

0
Eq0,t (x0,xt )

[
||∇x log qt |0(xt |x0)−∇x log β(xt , t)||2

]
dt .

We recover the original diffusion objective.
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Our Novel Framework: Denoising Markov Models

Other Properties of DMMs

• Can be used for inference; draw (x0, ξ0) ∼ pdata, noise x0
according to L, learn generative process conditioned on
observation ξ∗, parameterised by β(xt , ξ

∗, t).
• Original discrete-time diffusion model framework of

Sohl-Dickstein et al. is natural first order discretisation of
DMMs.
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Generalised Score Matching

Generalised Score Matching

• IISM(β) reduces to implicit score matching objective of
Hyvärinen [5] for Euclidean diffusions.

• So, we interpret IISM(β) as a generalisation of the score
matching objective.

• Given data distribution q0(x) on X , we learn an approximation
φ(x) to q0 by minimising

JESM(φ) = Eq0(x)

[
L(q0/φ)(x)
(q0(x)/φ(x))

− L log(q0/φ)(x)
]
.
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Generalised Score Matching

Generalised Score Matching

• This is not directly tractable, but is equivalent to

JISM(φ) = Eq0(x)

[
L̂∗φ(x)
φ(x)

+ L̂ logφ(x)
]
.

• This gives a principled generalisation of score matching to
arbitrary state spaces!

• We define the score matching operator

Φ(f ) =
Lf
f

− L log f .
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Generalised Score Matching

Generalized Score Matching

Intuitions for score matching on Rd carry over:

Proposition 1
Feller process Y with generator L, semigroup operators (Qt)t≥0
and score matching operator Φ. Then:

1 Φ(f ) ≥ 0 with equality if f is constant;
2 for probability measures π1, π2 on X ,

d
dt

KL(π1Qt ||π2Qt) = −Eπ1Qt

[
Φ

(
d(π1Qt)

d(π2Qt)

)]
.
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Experimental Performance of DMMs

Discrete Space CTMC: MNIST

We train a DMM to reconstruct images of handwritten digits,
conditioned on the border of the image and the value of the digit.
Our state space is X = {0, . . . ,255}28×28 and our noising process is
a continuous time Markov chain.

Figure: First column plots the ground truth images. Second column has
the centre 14 × 14 pixels missing.

Benton et al. From Denoising Diffusions to DMMs 10/11/2023 26 / 28



Experimental Performance of DMMs

Brownian Diffusion on SO(3): Pose Estimation
DMM estimates 3D orientation of solids based on 2D views. State
space is X = SO(3), noising process is a Brownian diffusion.

Figure: Ground truth (middle) and DMM estimation (right) of the 3D pose
conditioned on 2D views of two shapes (left).
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Experimental Performance of DMMs
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