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Bayesian computation

• Computational scalability is crucial for Bayesian statistics applications.
• Exact posterior sampling is usually not available.
• Approximations needed.

• Task: approximate complex and high-dimensional posterior distributions

p(θ | Y )

for observations Y and parameters/latent variables θ
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High dimensional hierarchical models
General formulation:

Yj |θj
ind.∼ f (Yj | θj)

θj | ψ ∼ p(θj | ψ),
ψ ∼ p0(ψ),

θ0

θ2 θ3θ1

• Example: prediction of real estate prices at high spatial resolution.
• Problems with high number of datapoints n and parameters p.

1. Which computational schemes are scalable for both n and p?
2. What about non Gaussian likelihood?
3. What about a non Gaussian prior?
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Complexity of Bayesian computation

Main Markov chain Monte Carlo (MCMC) approaches:
1. Gradient-based: MALA, HMC,. . .
2. Coordinate-wise: Gibbs (single-site, blocked,

collapsed,. . . ), Metropolis-within-Gibbs, . . .

• How do these scale with n and p for important classes of
statistical models?

• Which algorithm is good for which class of models?
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Motivation

Hierarchical models:
• Data are divided in groups.
• Each group has its own “local” parameters.

High dimensional regime:
large n and large p.

Coordinate-wise schemes:
• Can naturally exploit model structure (conditional

conjugacy, conditional independence, . . . ) resulting
in appealing features (cheap block-updating, no
tuning, . . . )

• Default choice in many applications; empirical
evidences of competitive/state-of-the-art
performances

Figure: HMC (orange) vs collapsed-Gibbs
(blue) for a high-d hierarchical model
(Papaspiliopoulos et al., 2021).
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Goal

A lot of interest in scalability of MCMC methods:
• Many recent advances in gradient-based techniques1. Increasingly sharper understanding.

State-of-the-art Black-Box schemes.
• Relatively less results for Gibbs-type schemes. Arguments and proofs are quite

case–specific.2

Goals: contribute to complexity theory by
• Use the tools of Bayesian asymptotics to provide average-case complexity results3 for

coordinate-wise MCMC on hierarchical/structured models.
• Seek general proof technique (e.g. w.r.t. likelihood)

1Dalalyan (2017), Durmus and Moulines (2017), Chen et al. (2020), . . .
2see e.g. Diaconis, Khare, Saloff-Coste (2008) or Qin and Hobert (2021)
3Belloni and Chernozhukov (2009)
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Motivating example: Hierarchical models
Yj | θj ∼ f (Yj | θj) j = 1, . . . , J

θj | ψ
iid∼ p(θj | ψ) j = 1, . . . , J

ψ ∼ p0(ψ).

ψ

. . .

. . .

θ1

Y1

θJ

YJ

Yj = (Yj1, . . . ,Yjm) ∈ R
m

θj ∈ R
ℓ

ψ ∈ R
d

Gibbs sampler (GS):{
ψ ∼ p (ψ | Y1:J , θ)

θj ∼ p (θj | Yj , ψ) for j = 1, . . . , J

n = mJ datapoints
p = d + ℓJ parameters

How does GS perform as J grows?
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Numerical illustration. Toy logistic hierarchical model:

Yji | θj ∼ Ber
(

logit−1(θj)
)
, θj | µ, τ ∼ N

(
µ, τ−1) , (µ, τ) ∼ p(µ, τ)

Simulation with µ∗ = τ∗ = 1 and 10 observations per group.

# iterations for each posterior sample for:
• Gibbs sampler (GS) alternating updates of θ and (µ, τ)

• Langevin Monte Carlo (MALA) with optimal
preconditioning.

• Hamiltonian Monte Carlo (HMC) with default Stan
implementation.

⇝ numerics suggest GS enjoys dimension-free convergence
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Numerical illustration. Toy logistic hierarchical model:

Yji | θj ∼ Ber
(

logit−1(θj)
)
, θj | µ, τ ∼ N

(
µ, τ−1) , (µ, τ) ∼ p(µ, τ)

Simulation with µ∗ = τ∗ = 1 and 10 observations per group.

# iterations for each posterior sample for:
• Metropolis-within-Gibbs sampler (MwG)
• Gibbs sampler (GS) alternating updates of θ and (µ, τ)

• Langevin Monte Carlo (MALA) with optimal
preconditioning.

• Hamiltonian Monte Carlo (HMC) with default Stan
implementation.

⇝ numerics suggest GS and MwG enjoy dimension-free convergence
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Gibbs Sampler and asymptotics
Sequence of posterior distributions

πn(x) := p(x | Y1:n) , n ≥ 1

Gibbs kernels

x = (x1, . . . , xK ) parameters partitioned in K blocks

Gn =
1
K

K∑
i=1

Gn,i , Gn,i := “sample xi ∼ πn(xi |x−i)
′′

Metropolis-within-Gibbs kernels

Pn =
1
K

K∑
i=1

Pn,i , Pn,i invariant with respect to πn(xi |x−i)
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Mixing times from warm starts

Worst case mixing time from M-warm starts:

t (n)mix(Pn, ε,M) = sup
µn∈M(πn,M)

min
{

t ≥ 1 :
∣∣∣∣µnP t

n − πn
∣∣∣∣

TV < ε
}

Interpretation: number of iterations to sample from πn up to error ε.

Warm starts:

M(π,M) :=

{
µ :

dµ
dπ

(x) ≤ M for all x
}

M ∈ [1,∞)

⇒ starting point.
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Exponential-family priors, generic likelihood

ψ

. . .

. . .

θ1

Y1

θJ

YJ

Assumptions:
Likelihood f (Yj |θj) generic

Prior in the exponential family:

p(θj | ψ) = h(θj)exp
{
ηT (ψ)T (θj)− A(ψ)

}

Implications:

L (ψ | θ,Y1:J) = L (ψ | T (θ),Y1:J)

but
L(Y1:J | θ, ψ) ̸= L(Y1:J | T (θ), ψ) .
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Dimensionality reduction

Lemma
Let

(ψ(t), θ(t))t≥1 ∼ GS(L(ψ, θ|Y1:J)).

Then (ψ(t),T (θ(t)))t≥1 is also a Markov chain4, it has transition kernel GS(L(ψ,T |Y1:J)) and its
mixing times t̂ (J)mix satisfy

sup
µ̂J∈M(L(ψ,T |Y1:J ),M)

t̂ (J)mix(ε, µ̂J) = sup
µJ∈M(L(ψ,θ|Y1:J ),M)

t (J)mix(ε, µJ) .

• This is a Gibbs sampler of fixed dimensionality.
• The law L(ψ,T |Y1:J) and corresponding GS not available in closed form.

4a de-initializing one, see e.g. Roberts & Rosenthal (2001) Markov chains and de-initializing processes
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Asymptotic convergence for reduced model

Assume data generated from the exact likelihood with fixed ψ∗

Yj | θj ∼ f (Yj | θj), θj ∼ p(θj | ψ∗) j = 1,2, . . . .

Consider the Gibbs sampler on (ψ,T ).

Approach:
1. A rescaling of (ψ,T ) converges to a Gaussian distribution!

• Bernstein - von Mises Theorem for ψ.
• Conditional CLT in Total Variation for T .

2. Gibbs samplers on Gaussian distributions behave well.

General idea: asymptotic behaviour of πn can be translated in the asymptotic behaviour of
t (n)mix(Gn, ε,M).
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Dimension-free convergence of GS for hierarchical models

Theorem
Assume:
1) Yj

i.i.d.∼ gψ∗

2) Regularity assumptions for BvM (testability, non-singular Fisher information, . . . )
Then for every M ≥ 1 and ε > 0 the GS mixing time satisfies

t (J)mix(GJ , ε,M) = OP(1) as J → ∞.

Mixing times are bounded with respect to the number of groups.

Ascolani, F. and Zanella, G. (2023+) Dimension-free mixing times of Gibbs samplers for Bayesian
hierarchical models. Submitted.
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Numerical illustration. Binomial hierarchical model:

Yji | θj ∼ Ber
(

logit−1(θj)
)
, θj | µ, τ ∼ N

(
µ, τ−1) , (µ, τ) ∼ p(µ, τ)

Simulation with µ∗ = τ∗ = 1 and 10 observations per group.

• Gibbs sampler.
• MALA with optimal tuning

and preconditioning.
• HMC with default Stan

implementation.
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Numerical illustration (using integrated autocorrelation times as proxy of mixing times)
Variability refers to randomness over different datasets.

Figure: Left: hierarchical linear model; Right: hierarchical binomial model
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What about MwG? Issues

Various tools to study Gibbs samplers:
• Drift minorization (Rosenthal, 1995), orthogonal decomposition (Diaconis et al., 2008),

de-initializing sequences (Roberts and Rosenthal, 2001), . . .
• Sharp results for specific distributions, e.g. Gaussian (Amit, 1996 and Roberts and Sahu,

1997).
• Asymptotic analysis: Yang and Rosenthal (2021), Jin and Hobert (2022), Ascolani and Zanella

(2023+), . . .

Difficult to translate them for generic coordinate-wise schemes! Challenges:
1. Passing from Gibbs to generic coordinate-wise ⇔ from exact to invariant updates.
2. Exploit the asymptotic characterization of the posterior.

Filippo Ascolani and Giacomo Zanella Coordinate-wise MCMC schemes for Bayesian hierarchical models Warwick University 18 / 31



What about MwG? Issues

Various tools to study Gibbs samplers:
• Drift minorization (Rosenthal, 1995), orthogonal decomposition (Diaconis et al., 2008),

de-initializing sequences (Roberts and Rosenthal, 2001), . . .
• Sharp results for specific distributions, e.g. Gaussian (Amit, 1996 and Roberts and Sahu,

1997).
• Asymptotic analysis: Yang and Rosenthal (2021), Jin and Hobert (2022), Ascolani and Zanella

(2023+), . . .

Difficult to translate them for generic coordinate-wise schemes! Challenges:
1. Passing from Gibbs to generic coordinate-wise ⇔ from exact to invariant updates.
2. Exploit the asymptotic characterization of the posterior.

Filippo Ascolani and Giacomo Zanella Coordinate-wise MCMC schemes for Bayesian hierarchical models Warwick University 18 / 31



From MwG to Gibbs

Common tool to study MCMC convergence: conductance

Φ0(P) = inf

{∫
A P(x ,Ac)π(dx)
π(A)π(Ac)

: π(A) > 0
}
.

Φ0(P) > 0 ⇒ exponentially fast convergence:

∥∥µP t − π
∥∥

TV ≤ M
(

1 − 1
2
Φ2

0(P)

)t

,

with M-warm start µ.
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From MwG to Gibbs

How to measure the goodness of conditional updates?

κ
(

Px−i
i

)
= Φ0 (Pi(· | x−i)) Conditional conductance

It is the conductance of the i-th update, conditional on x−i .

(A - Conditional updates): assume κ := min
i

inf
x
κ
(

Px−i
i

)
> 0 (⇐= to be relaxed)

Theorem
Under (A) we have Φ0(P) ≥ κΦ0(G) → connection between GS and MwG!
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Sketch of the proof

Let P(∂A) =
∫

A
P(x ,Ac)π(dx) .

Then:

Pi(∂A) ≥
∫

A
κ
(

Px−i
i

)
Gi(x ,Ac)π(dx) ≥ κ

∫
A

Gi(x ,Ac)π(dx) ≥ κGi(∂A)

Remark: If κ(C) := min
i

inf
x∈C

κ
(

Px−i
i

)
, then

Pi(∂A) ≥ κ(C)Gi(∂A)− κ(C)π(A ∪ Cc)

It suffices to choose C large enough!
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Asymptotic characterization

(B - Posterior convergence): assume π̃ such that π̃n := L(φn(x)|Y1:n) satisfies

∥π̃n − π̃∥TV → 0 as n → ∞ ,

in probability under Y1:n ∼ Qn, with (φn)n≥1 coordinate-wise and injective transformations.

We require concentration of the posterior distribution, e.g. Bernstein - von Mises Theorem.

Problem: asymptotic characterization of the posterior does not control the conductance.

Let G̃ be the Gibbs sampler on π̃. Under (B), we have

Φ0(G̃) > 0 ≠⇒ lim inf
n
Φ0(Gn) > 0

Nice conductance of the limit ≠⇒ nice limit of conductances.
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Φ0(G̃) > 0 ≠⇒ lim inf
n
Φ0(Gn) > 0

Nice conductance of the limit ≠⇒ nice limit of conductances.
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Asymptotic characterization
Approximate conductance

Φs(P) = inf

{∫
A P(x ,Ac)π(dx)

π(A)− s
, s < π(A) ≤ 1

2

}
, s > 0.

Φs(P) > 0 for every s > 0 ⇒ still control of the TV distance.

(B): ∥π̃n − π̃∥TV → 0 in probability under Y1:n ∼ Qn

Theorem
Assume (B) with GS G̃ on π̃ such that Φ0(G̃) > 0. Then for every s > 0 we have

lim inf
n
Φs(Gn) > 0

Nice conductance of the limit =⇒ nice limit of approximate conductances.
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Convergence of Metropolis-within-Gibbs

(A): lim infn infx∈Cn κ
(

Px−i
n,i

)
> 0, for i = 1, . . . ,K and large enough Cn.

(B): ∥π̃n − π̃∥TV → 0 in probability under Y1:n ∼ Qn

Theorem
Assume (A)-(B) with GS G̃ on π̃ such that Φ0(G̃) > 0. Then for every ε ∈ (0,1) and M ≥ 1

t (n)mix(Pn, ε,M) = Op(1) as n → ∞ ,

i.e. the induced sequence of mixing times is bounded in probability (or uniformly tight5).

5limc→∞ supn≥1 Pr(t(n)mix (ε,M) > c) = 0
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Motivating example: Hierarchical models
Yj | θj ∼ f (Yj | θj) j = 1, . . . , J

θj | ψ
iid∼ p(θj | ψ) j = 1, . . . , J

ψ ∼ p0(ψ).

ψ

. . .

. . .

θ1

Y1

θJ

YJ

Yj = (Yj1, . . . ,Yjm) ∈ R
m

θj ∈ R
ℓ, ψ ∈ R

d

Metropolis-within-Gibbs (MwG):{
ψ ∼ p (ψ | Y1:J , θ)

θ
(t)
j ∼ P

(
θj | Yj , ψ, θ

(t−1)
j

)
n = mJ datapoints
p = d + ℓJ parameters

How does MwG perform as J grows?
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Recap: general strategy

Two steps:

1. Show that the Gibbs sampler is asymptotically well-behaved ⇐= first part of the talk!

2. Check that conditional updates are “good enough” ⇐= conditional conductance.

We ask that there exists Ψ neighborhood of ψ∗ such that

inf
Yj

inf
ψ∈Ψ

Φ0

(
P(θ

(t)
j | Yj , ψ, θ

(t−1)
j

)
> 0. (⋆)

Conditional updates need to be good “around” ψ∗.
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Dimension-free convergence of MwG for hierarchical models

Theorem
Assume:
1) Yj

i.i.d.∼ gψ∗

2) Regularity assumptions for BvM (testability, non-singular Fisher information, . . . )
3) Control of the conditional updates as in (⋆).
Then for every M ≥ 1 and ε > 0 the MwG mixing time satisfies

t (J)mix(PJ , ε,M) = OP(1) as J → ∞.

Mixing times are bounded with respect to the number of groups.

Ascolani, F., Roberts, G. O. and Zanella, G. Asymptotic behaviour of Metropolis-within-Gibbs
schemes through conditional conductance. In preparation.
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Starting distribution

Feasible start. It can be obtained in a natural way:
1. sample ψ from

Unif (ψ̂MML − cJ−1/2, ψ̂MML + cJ−1/2)

with c > 0 where ψ̂MML is the maximum marginal likelihood estimator.
2. run the conditional updates of {θj}j for ≈ log(J) iterations.

Overall computational cost: OP(J log(J)).
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Non-conjugate models
The technique allows to study various non-conjugate models.

1. Hierarchical models with Yj supported on finite space (e.g. binary or categorical data) and
arbitrary likelihood.

• Metropolis-within-Gibbs
• Gibbs sampler.
• MALA with optimal tuning

and preconditioning.
• HMC with default Stan

implementation.
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1. Hierarchical models with Yj supported on finite space (e.g. binary or categorical data) and
arbitrary likelihood.

2. More general hierarchical models with multiple blocks
=⇒ multilevel, crossed, . . .

3. Gaussian processes with non-gaussian likelihood, e.g. binary data.

4. Beyond hierarchical models: regression problems, conditionally log-concave distributions...
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Conclusions

Summary:
• Develop general theory to derive asymptotic complexity of generic coordinate-wise MCMC

schemes.
• Connection between Bayesian computation and Bayesian asymptotics.
• Application to hierarchical models with conjugate global-local priors and general likelihood.

What’s next?
• Connection between GS and MwG can exploited much beyond hierarchical models.
• What happens under misspecification?

Thanks for listening!
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